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Abstract: The investigation into the enigmatic origin of Pb-Zn mineralization within the Middle-
Lower Yangtze River Metallogenic Belt has long been marred by a paucity of prior studies. Seeking to
alleviate this dearth of knowledge, our study meticulously scrutinizes the Yinshan Pb-Zn-Ag deposit
nestled within the Edong district of the belt, endeavoring to cast an illuminating spotlight upon its
enigmatic genesis. We identify two distinct epochs: (1) the pre-mineralization pyrite epoch (Epoch I)
mainly characterized by colloform and massive pyrite, and (2) the hydrothermal mineralization
epoch (Epoch II) which can be further divided into three stages: pyrite-arsenopyrite (stage 1),
galena-sphalerite (stage 2), and vein pyrite (stage 3). We conduct in-situ sulfur isotope analyses on
sulfide minerals from both epochs, revealing δ34S values ranging from −0.5 to 4.8‰ for Epoch I and
varying from 2.2–4.9‰ (stage 1), 1.1–3.0‰, 4.2–7.1‰ (stage 2), and 2.1–3.8‰ (stage 3) for Epoch II.
Integrating our sulfur isotope data with the geological characteristics of the deposit, we infer that
Pb-Zn mineralization was related to a granite of ~130 Ma age. Additionally, our study suggests the
possibility of coexisting Mo mineralization beneath the Pb-Zn mineralization. Our findings contribute
to a better understanding of the origin of Pb-Zn mineralization in the Middle-Lower Yangtze River
Metallogenic Belt.

Keywords: Yinshan deposit; Edong district; in-situ sulfur isotope; Pb-Zn mineralization

1. Introduction

The Middle–Lower Yangtze River Valley metallogenic belt (MYRB) resides along the
northern margin of the Yangtze craton, renowned for its porphyry–skarn–stratabound
Cu–Au–Mo–Fe deposits in uplift areas and magnetite–apatite deposits within Cretaceous
fault basins [1]. Despite some investigations into Pb-Zn mineralization within the region,
it has received comparably less attention than Cu-Fe deposits [2–8]. Typically, Pb-Zn
mineralization in skarn systems is observed at a distance from associated igneous rocks,
with limited skarn minerals present due to the requisite lower temperatures for Pb-Zn
sulfide mineral deposition [9]. Consequently, the occurrence of Pb-Zn mineralization serves
as a valuable indicator for identifying deep-seated magmatic fluid mineralization [9]. Thus,
comprehending the genesis of Pb-Zn mineralization assumes paramount importance in the
pursuit of exploring Cu-Fe-Au-Mo deposits in the MYRB. Nonetheless, the origin of Pb-Zn
deposits in the MYRB remains an issue subject to contention, with varying hypotheses
proposed, including: (1) magmatic origin [2–5,7,8,10–20]; (2) Hercynian sedimentary sulfide
minerals overprinted by Yanshanian magmatic hydrothermal fluid [21–25]; (3) basinal fluid
origin [6]; or (4) organic fluid origin [26,27]. This state of uncertainty has hindered the
exploration of Pb-Zn and other metals within the MYRB.

This study focuses specifically on the Yinshan Pb-Zn-Ag deposit, located within the
westernmost Edong district of the MYRB. Previous investigations have posited diverse
models, such as the sedimentary-exhalative (SedEx) model and sedimentary-reworked
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model [28], as well as the epithermal model [10]. Through our examination of the Yinshan
deposit, our objective is twofold: to enhance our understanding of its origin and to illumi-
nate the genesis of Pb-Zn deposits within the broader MYRB. We do so by leveraging the
potency of in-situ sulfur isotope analysis, a formidable tool for revealing the evolution of
sulfur isotopes with high spatial resolution. Due to its small analysis size of 33 µm, this
technique is capable of avoiding mixing compositions and providing detailed insights into
the sulfur isotopic signatures of individual mineral phases [29]. We employ this technique
in conjunction with geological evidence. In doing so, we unveil the magmatic origin of the
Yinshan deposit, with some contribution from Hercynian sulfide minerals, albeit without
exerting control over the system. Furthermore, our study advances the notion of potential
Mo mineralization beneath the Pb-Zn mineralization, thereby underscoring the prospects
for further exploration in this region.

2. Regional and Deposit Geology

The Yangtze Craton represents a distinct geological entity that exhibits notable dis-
tinctions from both the North China Craton and the Cathaysian block. It is spatially
separated from these regions by the Dabie Ultrahigh Pressure (UHP) metamorphic belt
to the north and a Neoproterozoic suture to the south [30]. Within the eastern part of
the Yangtze Craton, three prominent faults traverse the landscape: the Xiangfan-Guangji
fault (XGF) to the northwest, the Tangcheng-Lujiang regional strike-slip fault (TLF) to the
northeast, and the Yangxin-Changzhou fault (YCF) to the south (Figure 1a). The Middle
and Lower Yangtze River metallogenic belt, positioned between the North China Craton
and the Yangtze Craton, encompasses various districts, including the Edong, Jiurui, Anqing,
Luzong, Tongling, Ningwu, and Ningzhen districts, from west to east (Figure 1a). We
specifically focus on the Edong district, which is demarcated by three major fault systems:
the Tan-Lu, Xiangfan-Guangji, and Ma-Tuan faults (Figure 1b).
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oliths in the Edong district. TLF-Tangcheng-Lujiang fault, XGF-Xiangfan-Guangji fault, YCF-Yang-
xin-Changzhou fault. Modified from Xie et al. (2011) [31]. 
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Triassic and exhibiting a thickness exceeding 10 km. Subsequently, continental deposits 
and Cretaceous volcanic assemblages, spanning the late Triassic to the Cenozoic period, 
follow this sequence (Figure 1b) [30,32]. The collision between the Yangtze and North 
China cratons during the middle Triassic period resulted in the folding of pre-Triassic 
strata within the Edong district [33]. Magmatic events within the Edong district can be 
classified into two distinct stages. The initial plutonic stage, occurring between 157–132 
million years ago (Ma), emplaced the Echeng, Tieshan, Jinshandian, Lingxiang, Yinzu and 
Yangxin batholiths, alongside numerous smaller intrusions (Figure 1b) [34,35]. It is worth 
noting that the plutonic rocks can be classified into two categories: one exhibiting elevated 
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Figure 1. (a) Schematic illustration of the seven magmatic and metallogenic districts of the Middle and
Lower Yangtze River metallogenic belt in the northeastern Yangtze Craton; (b) Granitoid batholiths
in the Edong district. TLF-Tangcheng-Lujiang fault, XGF-Xiangfan-Guangji fault, YCF-Yangxin-
Changzhou fault. Modified from Xie et al. (2011) [31].

Within the Edong district, the stratigraphic sequence primarily comprises a substantial
accumulation of marine sedimentary rocks ranging from the Ordovician to the middle
Triassic and exhibiting a thickness exceeding 10 km. Subsequently, continental deposits
and Cretaceous volcanic assemblages, spanning the late Triassic to the Cenozoic period,
follow this sequence (Figure 1b) [30,32]. The collision between the Yangtze and North
China cratons during the middle Triassic period resulted in the folding of pre-Triassic strata
within the Edong district [33]. Magmatic events within the Edong district can be classified
into two distinct stages. The initial plutonic stage, occurring between 157–132 million
years ago (Ma), emplaced the Echeng, Tieshan, Jinshandian, Lingxiang, Yinzu and Yangxin
batholiths, alongside numerous smaller intrusions (Figure 1b) [34,35]. It is worth noting
that the plutonic rocks can be classified into two categories: one exhibiting elevated Sr/Y
and La/Yb ratios, devoid of significant Eu anomalies predating 136 Ma, and the other
characterized by diminished Sr/Y and La/Yb ratios, accompanied by a conspicuously
negative Eu anomaly ranging from 133 to 127 Ma [36]. The former category is thought to be
associated with Cu-Fe mineralization, while the latter is related to Fe mineralization with a
more substantial contribution of crust materials [37]. During the subsequent volcanic stage,
which erupted between 130–125 Ma [31], over 2 km of volcanic and related sedimentary
rocks were deposited, including the Majiashan Formation, the Lingxiang Formation, and
the Dasi Formation (in order from the base to the top). For a more detailed lithology
description, refer to Regional Geology of the Hubei Province [33].

The Yinshan Pb-Zn-Ag deposit (115◦10′11′′–115◦11′19′′, 29◦54′29′′–29◦53′58′′), located
in the southern region of the Edong district, lies within the MYRB (Figure 1b). The deposit
is mainly comprised of Pb and Zn mineralization, in addition to Ag, Au, Cd, Fe and Mn,
with 95 kt Pb @ 2.0%; 262 kt Zn @ 5.6%; 501.7 t Ag @ 107 g/t; 2 t Au @ 0.43 g/t; 1.2 kt Cd @
261 ppm. It is situated on the south side of the east part of the Huanggushan-Xiniushan
overturned anticline, and the ore body primarily occurs within the northwest interlayer
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fracture zone located within the northern side of the Xiaojiawan-Xingjiawan syncline, as
shown in Figure 2. The outcrop rocks in the orefield primarily consist of the lower Permian,
middle Carboniferous, and middle Silurian strata, with the Devonian and Ordovician strata
absent due to tectonic activity. The Silurian strata is primarily comprised of shale and
sandstone (Fentou group, S1f ). The upper part of Carboniferous strata (Huanglong Group,
C2h) consists of limestone that gradually evolves into dolomite, which was subsequently
deformed into breccia and is considered an ideal place for mineralization. The Permian
strata is composed of the Qixia Group (P1q) of carbonaceous limestone and quartz sand-
stone, and the Maokou Group (P1m) of limestone. The granite porphyry is common but is
primarily found in dykes (Figure 3). Chemical analyses show that the granite porphyry
dykes have >0.2% Pb + Zn content near the ore body, but only ~150 ppm Pb and 200 ppm
Zn far from the ore body (Edong Geological Survey, 1995).
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1—Granodiorite; 2—Granodiorite porphyry; 3—main fault; 4—secondary fault; 5—1st member of 
the middle to upper Cambrian strata; 6—2nd member of the middle to upper Cambrian strata; 7—
3rd member of the middle to upper Cambrian strata; 8—lower Ordovician strata; 9—Xintan Group 
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Figure 2. Schematic regional geological map of the Yinshan Pb-Zn-Ag deposit (modified from [10]).
1—Granodiorite; 2—Granodiorite porphyry; 3—main fault; 4—secondary fault; 5—1st member of the
middle to upper Cambrian strata; 6—2nd member of the middle to upper Cambrian strata; 7—3rd
member of the middle to upper Cambrian strata; 8—lower Ordovician strata; 9—Xintan Group of
lower Silurian strata; 10—Fentou Group of middle Silurian strata; 11—Huanglong Group of middle
Carboniferous strata; 12—Maokou Group of the lower Permian strata; 13—Qixia Group of the lower
Permian strata; 14—Longtan Group of the middle Permian strata; 15—4th member of the Jialingjiang
Group in the lower Triassic strata; 16—3rd member of the Jialingjiang Group in the lower Triassic
strata; 17—2nd member of the Jialingjiang Group in the lower Triassic strata; 18—1st member of
the Jialingjiang Group in the lower Triassic strata; 19—3rd member of the Daye Group in the lower
Triassic strata; 20—2nd member of the Daye Group in the lower Triassic strata; 21—1st member of
the Daye Group in the lower Triassic strata; 22—Quaternary strata; 23-Pb-Zn-Ag ore body.

The Yinshan deposit is comprised of five ore bodies, with the first ore body being
the largest. The first ore body is located within the interlayer fracture zone between the
Huanglong Group (C2h) and the Fentou Group (S1f ), bound by F1 and F2 (Figure 4). As a
result of post-mineralization tectonic activity, the ore body was uplifted and oxidated. This
study specifically focuses on the sulfide minerals.
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The sulfide mineralization at the Yinshan Pb-Zn-Ag deposit can be divided into
two epochs: the pre-mineralization pyrite epoch and the hydrothermal mineralization
epoch. The former primarily consists of colloform and massive pyrite, accompanied by
minor marcasite (Figure 5a). Colloform pyrite exhibits varying amounts of non-sulfide
minerals, displaying either a dirty or clean surface in polished thin sections (Figure 5b,c).
These non-sulfide minerals may comprise detrital and authigenic minerals, including
quartz, illite, dolomite and organic matter. Colloform pyrite has undergone replacement by
massive pyrite, and both have been subsequently replaced by marcasite (Figure 5d,f). The
sulfide minerals from the pre-mineralization epoch have undergone deformation, forming
breccia and being cemented by sulfide minerals and gangue minerals from the hydrother-
mal epoch (Figure 5c,e,f). The hydrothermal mineralization epoch can be further divided
into three stages: (1) The pyrite-arsenopyrite stage, characterized by the replacement of
colloform and massive pyrite by euhedral pyrite and arsenopyrite along fractures; (2) The
galena-sphalerite stage, in which galena and sphalerite formed in relatively open spaces
compared to the pyrite-arsenopyrite stage, serving primarily as cement within the breccia.
Polished sections reveal the progression of euhedral pyrite and arsenopyrite being replaced
by galena, followed by subsequent replacement of galena by sphalerite (Figure 5g); (3) The
vein pyrite stage, where straight pyrite veins cut across all preceding minerals (Figure 5h),
exhibiting distinct and straight boundaries (Figure 5i).
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Figure 5. (a) Colloform and massive pyrite ores; Reflected light photomicrographs shown that
(b) Colloform pyrite containing non-sulfide minerals was cut by sphalerite veins; (c) Colloform pyrite
with little non-sulfide minerals was replaced by sphalerite; (d) Colloform pyrite was replaced by
massive pyrite, and they were both replaced by marcasite. Euhedral pyrite and arsenopyrite veins
cut all the above minerals; (e) Hand specimen of breccia ores, with massive pyrite and host rock
as breccia, and cemented by hydrothermal minerals, such sphalerite, galena, and so on; Reflected
light photomicrographs show that (f) the massive pyrite breccia were replaced by marcasite, and
cemented by sphalerite; (g) The euhedral pyrite was replaced by galena and then sphalerite; (h) The
hand specimen of the pyrite vein cut the early sulfide minerals, such as galena and arsenopyrite;
(i) The pyrite vein cut through arsenopyrite and sphalerite in reflected light photomicrographs. The
read scale bars represent 500 µm in (b,c,f,g,i) and 100 µm in (d). Apy—Arsenopyrite, Gn—Galena,
Mrc—Marcasite, Py—Pyrite, Sp—Sphalerite.
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Figure 6 provides a summary of the metallogenic epochs and stage, incorporating
findings from previous studies. The mineralogy of the supergene epochs were referenced
from Yan (2013) [10].
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3. Samples and Analytical Methods

To conduct the in-situ sulfur isotope study, we collected samples from different epochs
and selected sulfide minerals from various stages for analysis. The selected samples with
the least oxidation were divided into polished sections (~200 µm). Through detailed
microscopic examination, sulfide minerals representing different stages were chosen for
in-situ sulfur isotope analysis.

The sulfur isotope analysis was performed using in-situ methods at the State Key
Laboratory of Geological Processes and Mineral Resources (GPMR, China University of
Geosciences, Wuhan, China). The Nu Plasma II MC-ICP-MS was employed, equipped with
a Resonetics-S155 excimer ArF laser ablation system. The laser beam had a diameter of
33 µm and operated at a repetition rate of 10 Hz, with each ablation process lasting 40 s. To
determine the δ34S values, we employed the standard-sample bracketing (SSB) technique
throughout the MC-ICP-MS analytical sessions [38]. Instrumental mass bias correction
was carried out by linearly interpolating the biases calculated from two adjacent standard
analyses, enabling accurate calculation of the true sulfur isotope values. The isotope data
are reported in delta notation (‰) relative to Vienna Cañon Diablo Troilite (V-CDT):

δ34SV-CDT = [((34S/32S)sample/(34S/32S)V-CDT) − 1] × 103

where (34S/32S)sample is the measured 34S/32S ratio in the sample and (34S/32S)V-CDT is
defined as 0.044163 [39]. The analytical precision (2σ) was estimated to be ±0.2 per mil.

The laboratory’s internal standards were calibrated using international standards,
including a sphalerite standard (NBS-123) and two pyrite standards (WS-1 and WS-2). NBS-
123 served as the reference standard for sphalerite and yielded a δ34S value of +17.1± 0.1‰.
WS-1 and WS-2 were natural pyrite samples collected from the Wenshan polymetallic skarn
deposit in Yunnan Province, China. WS-1 was utilized as the reference standard for pyrite,
galena, marcasite and arsenopyrite, while WS-2 served as the monitor standard. The δ34S
values for WS-1 and WS-2 were determined at GPMR, China University of Geosciences,
and were found to be +0.9‰ and +2.0‰, respectively.

4. Results

The detailed sulfur isotope data are shown in Table 1 and Figure 7.
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Table 1. The in-situ sulfur isotope data of sulfide minerals in Yinshan Pb-Zn-Ag deposit.

Epoch Stage Sulfide Mineral δ34S Value
(‰)

Comment

The
pre-mineralization

pyrite

Colloform pyrite

Pyrite −0.5 Grain 1, spot 1
Pyrite 0.5 Grain 1, spot 2
Pyrite −0.4 Grain 1, spot 3
Pyrite 1.8 Grain 1, spot 4
Pyrite 2.3 Grain 1, spot 5
Pyrite 2.7 Grain 2, spot 1
Pyrite 2.3 Grain 2, spot 2
Pyrite 3.2 Grain 2, spot 3
Pyrite 3.0 Grain 2, spot 4
Pyrite 4.8 Grain 2, spot 5

Massive pyrite

Pyrite 1.0
Pyrite 1.8
Pyrite 2.2
Pyrite 2.2
Pyrite 2.5
Pyrite 2.5
Pyrite 2.6
Pyrite 2.7
Pyrite 2.9
Pyrite 3.0
Pyrite 3.0
Pyrite 3.0
Pyrite 3.0
Pyrite 3.1
Pyrite 3.1
Pyrite 3.3
Pyrite 3.4
Pyrite 3.6
Pyrite 3.7
Pyrite 3.7

Marcasite

Marcasite 1.9
Marcasite 2.5
Marcasite 3.1
Marcasite 3.6

The hydrothermal
mineralization

The euhedral
pyrite and

arsenopyrite

Arsenopyrite 2.2
Arsenopyrite 2.4
Arsenopyrite 2.6
Arsenopyrite 4.8
Arsenopyrite 6.3
Arsenopyrite 3.1
Arsenopyrite 3.5
Arsenopyrite 2.7
Arsenopyrite 3.4
Arsenopyrite 4.3
Arsenopyrite 3.7
Arsenopyrite 4.2
Arsenopyrite 3.5
Arsenopyrite 4.5
Arsenopyrite 4.5
Arsenopyrite 4.9
Arsenopyrite 4.2
Arsenopyrite 4.2

Pyrite 3.7
Pyrite 3.3
Pyrite 2.7
Pyrite 3.1
Pyrite 2.6
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Table 1. Cont.

Epoch Stage Sulfide Mineral δ34S Value
(‰)

Comment

The Galena-
Sphalerite

Sphalerite 4.5
Sphalerite 4.4
Sphalerite 5.2
Sphalerite 4.7
Sphalerite 4.2
Sphalerite 4.8
Sphalerite 6.5
Sphalerite 6.5
Sphalerite 6.2
Sphalerite 4.4
Sphalerite 4.6
Sphalerite 4.3
Sphalerite 2.9
Sphalerite 4.5
Sphalerite 4.4

Galena 3.0
Galena 4.6
Galena 7.1
Galena 5.7
Galena 5.9
Galena 5.0
Galena 5.4
Galena 2.6
Galena 2.0
Galena 2.5
Galena 2.6
Galena 2.0
Galena 1.1

The vein pyrite

Pyrite 2.1
Pyrite 2.1
Pyrite 2.4
Pyrite 3.2
Pyrite 3.4
Pyrite 3.5
Pyrite 3.8

Regarding the pre-mineralization sulfide minerals, it is noteworthy that the colloform
pyrite exhibits a gradual increase in δ34S values towards the edge of the grain, with values
ranging from −0.5 to 2.3‰ and 2.7 to 4.8‰, respectively. Similarly, the massive pyrite
shows a narrow range of δ34S values, ranging from 1.0 to 3.7‰, with the majority falling
between 2.5 and 3.7‰. The marcasite also displays similar δ34S values, ranging from 1.9 to
3.6‰ (Figure 7a). In contrast, the hydrothermal sulfide minerals exhibit larger variations
in δ34S values compared to the pre-mineralization sulfide minerals (Figure 7). The δ34S
values of the euhedral pyrite-arsenopyrite stage range from 2.2 to 4.9‰, with one exception
of 6.3‰ (Figure 7b). The δ34S values of the galena-sphalerite stage exhibit a bimodal
distribution, with a range of 1.1–3.0‰ and 4.2–7.1‰, respectively (Figure 7c). Finally, the
vein pyrite stage displays the lowest δ34S values, ranging from 2.1 to 3.8‰ (Figure 7d).
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Figure 7. Histograms of sulfur isotopes for sulfide minerals from different epochs and stages.
(a) The pre-mineralization pyrite epoch, followed by (b) the pyrite-arsenopyrite stage, (c) the galena-
sphalerite stage, and (d) the vein pyrite stage during the hydrothermal mineralization epoch.
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5. Discussion
5.1. Source of Sulfur

The δ34S values of both colloform and massive pyrite in this study range from −0.5
to 4.8‰ (Figure 7a), which is similar to the observations in the Qixiashan Pb-Zn-Ag
polymetallic deposit [24]. The presence of detrital and authigenic minerals, such as quartz,
illite, dolomite and organic matter in colloform pyrite ores suggests their formation under
euxinic marine sedimentary conditions during the Hercynian period [40].

During the hydrothermal epoch, the narrow range of sulfur isotope values at all stages
suggests an equilibrium between sulfide minerals and the hydrothermal fluid. The absence
of sulfate minerals indicates that the sulfur in the hydrothermal fluid was mainly in the
form HnSn−2 [41–43]. The sulfur isotope composition of sulfide minerals can represent the
composition of the hydrothermal fluid [44,45]. Within the same stage, paired sulfide miner-
als were analyzed, but the equilibrium composition was not determined. Euhedral pyrite
and arsenopyrite represent the initial sulfide mineral precipitation during mineralization,
followed by the formation of breccia during the transition to the galena-sphalerite stage,
which coincided with fluid boiling. The alternating characteristics of Hercynian sulfide
minerals are limited in extent and distribution, and there is no significant deposition of
sulfide minerals after the pyrite-arsenopyrite stage. This suggests the Hercynian sulfide
minerals contribute minor amounts of sulfur, insufficient to precipitate significant sulfur
minerals. Although organic matter may also provide some reduced sulfur during alter-
nation [44], the significantly lower abundance compared to sulfide minerals diminishes
its importance in the process of mineral precipitation. Despite significant overlap, the
sulfur isotope values of pyrite and arsenopyrite (stage 1) are relatively higher than those of
Hercynian sulfide minerals (Figure 7a,b). The decrease in sulfur isotope values (Figure 7b)
could be attributed to both the assimilation of Hercynian sulfur and Rayleigh fractionation
of pyrite and arsenopyrite, but properly evaluating the relative importance of these factors
is challenging.

During the galena and sphalerite stage, the boiling of hydrothermal fluids resulted
in the degassing of H2 and H2S, thereby increasing the f O2 and decreasing the f S2 in the
residual liquid [46]. This process efficiently fractionated elements due to the segregation of
vapor and liquid phases. The δ34H2S composition of the fluid (and coexisting vapor) likely
decreased due to the preferential oxidation of H2

34S during boiling [46,47]. As a result, some
sphalerite and galena exhibit lower sulfur isotope values [48,49] compared to the euhedral
pyrite-arsenopyrite stage (Figure 7b,c). During the crystallization of sphalerite and galena,
the δ34S values increased, likely due to Rayleigh fractionation of galena, which preferentially
incorporates lighter 32S [43], or due to the assimilation of sulfur from massive pyrite. Galena
formed relatively earlier than sphalerite, consistent with Rayleigh fractionation. Both pyrite
and sphalerite prefer heavier 34S than H2S, but pyrite has a higher preference [43]. The
decrease in δ34S values from the galena-sphalerite stage to the vein pyrite stage may be
attributed to the Rayleigh fractionation of sphalerite, which removes the heavier 34S.

The δ34S values exhibit variation among different geological reservoirs: (1) meteorites
typically show values near 0‰, (2) igneous rocks range from −2‰ to 8‰, (3) modern and
ancient biogenic pyrite display values between −20‰ and +20‰ [43], and (4) anhydrite
in MYRB demonstrates values from +21.1‰ to +34.4‰ [50–52]. The δ34S value of the
ore-forming fluid is estimated to be around 0–5‰, indicating a likely origin from magma,
as magmatic sulfur shares similar δ34S values. This finding aligns with the conclusions
drawn from trace element data of sulfide minerals [10]. However, it is plausible that sulfide
minerals formed during the Hercynian period also made some contribution.

5.2. Contribution of Colloform and Massive Pyrite to Mineralization

In the Yangtze River Metallogenic belt, it is expected that Pb-Zn-Ag deposits in the
other districts share similar metallogenic processes with the Yinshan
deposit [2,3,5,6,11–19,21–25]. Comparisons to other deposits can provide insights into
the controlling factors influencing Pb-Zn mineralization. Overprinting of Hercynian
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stratabound sulfides is only reported in the Baiyangfan Pb-Zn-Ag deposit in the Jiurui
district [21,22] and the Qixiashan Pb-Zn-Ag deposit in Ningzhen district [23–25]. However,
in most other deposits, Pb-Zn ore bodies typically develop in weak zones of the host rock,
such as the interlayer fracture zone between clastic and carbonate rocks, as observed in
the Huangshanling Pb-Zn-Ag-Mo deposit in Anqing-Guichi district [11–13], the Qixiashan
Pb-Zn deposit in the Ningzhen district [23–25], or in volcanic sedimentary rock, as seen
in the Yueshan Ag-Pb-Zn deposit [14,16,17]. Another example of this development can be
found in fault zones, as seen in the Hehuashan Pb-Zn deposit [6]. The absence of a prefer-
ence for a specific stratum indicates that the alternation of Hercynian stratabound sulfide,
i.e., colloform and massive pyrite, may contribute in part to the ore-forming element and
promote the precipitation of sulfide minerals, but these sulfide materials are not the deci-
sive factor. In fact, the ore bodies of the Yinshan Pb-Zn-Ag deposit are also located at the
interface of Carbonaceous clastic rock and Carbonaceous-Permian carbonate rock, where
the interlayer fracture zone is an ideal site for Pb-Zn mineralization due to the discrepancy
in lithology. Sphalerite and galena crystallize following fluid boiling, rather than during
the initial alternation of colloform and massive pyrite. This suggests that the alternation of
colloform and massive pyrite does not play a prominent role in controlling mineralization.

5.3. Possible Parental Magma of Pb-Zn Mineralization in Yinshan Deposit

The previous understanding of the Yinshan Pb-Zn deposit suggested it was a distal
skarn Pb-Zn associated with the Ruanjiawan Cu-W skarn deposit [10]. However, recent
in-situ sulfur studies conducted for the Ruanjiawan Cu-W skarn deposit have revealed
an increase in sulfur isotopes from ~0‰ to ~15‰ towards the host rock, suggesting the
assimilation of evaporite [53]. If the Ruanjiawan intrusion were the parent rock of the
Yinshan deposit, its sulfur isotope signature would be significantly higher than what
was observed in this study. Additionally, the granodiorite porphyry in the orefield has
undergone alteration by Pb-Zn hydrothermal fluids, as evidenced by the higher Pb and Zn
content (>0.2% Pb + Zn) in dykes closer to the ore body, eliminating the possibility of it
being the parental magma source. Therefore, it is reasonable to assume the presence of a
hidden magma body beneath the Yinshan deposit.

Although no absolute radiogenic age was determined in this study, the relative rock-
and ore-forming age can be inferred based on geological evidence. The inference relies on
the understanding that the rocks and minerals with different origins or closure tempera-
tures can record geological processes of different ages. The Ruanjiawan granodiorite and
Xiniushan granodiorite porphyry, located north of the Yinshan deposit (Figure 3), have
zircon U-Pb ages of 143 ± 1 Ma and 147 ± 1 Ma, respectively [54]. Since the granodiorite
porphyry dykes in the Yinshan orefield resemble the Ruanjiawan and Xiniushan magmatic
rocks, it is likely that the mineralization age of the Yinshan deposit is later than 147 Ma.
Notably, the titanite in the Ruanjiawan granodiorite measures a U-Pb age of 132 ± 1 Ma,
which is more than 10 Ma later than the zircon U-Pb age and titanite U-Pb age in the skarn
(142 ± 2 Ma). This age difference suggests a thermal overprinting event associated with
diabase dyke emplacement (Zircon U-Pb age of 133 ± 1 Ma) [55]. Therefore, magmatic
activity around ~133 Ma is present in the Ruanjiawan-Yinshan area. However, since there
is no exposed felsic magma body in the Yinshan deposit at ~133 Ma, the parental magma
characteristics can only be evaluated by comparing them with the Pb-Zn deposit in the
MYRB, assuming that all of these Pb-Zn deposits share a similar origin.

Isotopic and trace element studies conducted on sulfide minerals in other Pb-Zn de-
posits within the MYRB consistently indicate a significant contribution from magmatic
fluid [2,3,5–8,11–17,19,21–25]. The Huangshanling and Yaojialing deposits, with well-
exposed ore bodies and magmatic rocks, serve as ideal examples for examining the parental
magma of Pb-Zn mineralization. The Huangshanling Pb-Zn-Ag-Mo deposit in the Anqing-
Guichi district shares geological characteristics with the Yinshan deposit. Quartz diorite
porphyry dykes were found at shallow depths replacing skarn minerals [12], while deeper
granite porphyries with A-type granite characters were also discovered. The diorite por-
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phyry dykes exhibit zircon U-Pb ages of 144 ± 1.4 Ma [12] or 137 ± 1.5 Ma [13], whereas
the granite porphyry has a zircon U-Pb age over 10 million years younger, at 125 ± 1.2 Ma.
The molybdenite Re-Os age of 127.5 Ma suggests a relationship between mineralization and
the deep granite porphyry [11]. Pb-Zn-Ag mineralization develops in the shallow interlay
fracture zone between clastic and carbonate rocks [12,13], while Mo mineralization takes
place at greater depths near the granite porphyry.

In the Yaojialing deposit, the Pb-Zn ore body is closely situated to granodiorite por-
phyry, similar to the formation of Cu-Au mineralization [2,3,5,7,8]. Previous studies have
proposed a connection between Pb-Zn mineralization and granodiorite porphyry based
on the similarity of granite zircon U-Pb ages (~141 Ma [2,7,8]) and molybdenite Re-Os
ages (~142 Ma [2,5]) in the Yaojialing Pb-Zn deposit. However, this conclusion assumes
that Pb-Zn and Cu-Au mineralization occurred simultaneously. The proximity of the
Pb-Zn ore body to the parental magmatic rock only occurs when the granite exhibits a
high concentration of F, which lowers the solidus temperature of magma, resulting in the
formation of low-temperature hydrothermal fluid. These fluids need to have a sufficiently
low temperature for Pb-Zn to exhibit low solubility and precipitate, as observed in the
Empire Cu-Zn Mine in Idaho [56,57]. However, the granodiorite porphyry in Yaojialing
does not display elevated F levels, and it is evident that numerous Pb-Zn veins cut through
the granodiorite rock [3]. Therefore, it is likely that the Pb-Zn mineralization in Yaojialing
is associated with a later magmatic-hydrothermal event. Furthermore, in addition to the
~141 Ma granodiorite, late-stage granodiorite porphyry dykes with an age of 130.3± 1.5 Ma
have also been reported [4], resembling the situation in the Huangshanling Pb-Zn-Ag-Mo
deposit. The Pb-Zn mineralization in Yaojialing may be related to the ~130 Ma magmatism.

Based on the aforementioned findings, it can be inferred that the Pb-Zn (Ag) deposit
in the Yangtze River Metallogenic belt is associated with a magmatic event that took place
approximately 133 Ma ago.

5.4. Ore Genesis and Its Implications for Exploration Strategies

Based on the preceding discussion, we propose a revised model for the ore genesis
of the Yinshan Pb-Zn-Ag deposit. Our model suggests that the mineralization can be
divided into two distinct stages: the sedimentary stage and the hydrothermal stage, each
characterized by different processes. During the Hercynian period, colloform and massive
pyrite formed in the sedimentary stage [40]. In the early Cretaceous period, a granite
intrusion was emplaced at a deep level, around 130 Ma. This intrusion released ore-forming
fluid, leading to the formation of Mo mineralization in close proximity to the magma
rock. These hydrothermal fluids, originating from the deep magma, were likely enriched
in oxidized sulfur species, primarily composed of SO2. However, during retrograde
alteration, magnetite formation occurred, reducing the fluid’s oxygen fugacity (f O2) and
transforming SO2 into H2S. This process provided the necessary reduced level of sulfur
for Mo mineralization. As Mo has a higher depositional temperature compared to Pb-Zn,
the fluid still retained significant concentrations of Pb-Zn after Mo mineralization. As
the remaining hydrothermal fluid ascended and reached the interface between carbonate
and shale rocks, boiling of the fluid occurred, resulting in its cooling. This decrease in
temperature led to a significant drop in the solubility of Pb-Zn, causing the precipitation
of galena and sphalerite. It is important to note that the alternation of colloform and
massive pyrite may contribute to the content of reduced sulfur in the fluid and promote
the crystallization of sphalerite and galena.

The genetic relationship between distal epithermal Pb-Zn mineralization and prox-
imal Mo or other mineralization is widely recognized in other deposits [58–62]. Pb-Zn
mineralization can serve as a useful indicator for the presence of proximal mineralization.
In the case of the Yinshan deposit, the occurrence of shallow Pb-Zn-Ag mineralization
suggests the potential presence of deeper Mo mineralization. However, the exploration
target for deep Mo mineralization has been narrowed down by the surface occurrence of
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Pb-Zn mineralization. Geophysical prospecting techniques, therefore, play a crucial role in
identifying hidden magmatic rocks and expanding exploration targets.

6. Conclusions

After a thorough analysis of the Yinshan Pb-Zn-Ag deposit, we have concluded that
the sulfide isotope composition of the deposit indicates a magmatic origin. Furthermore,
the geological features suggest that the mineralization is associated with a ~130 Ma granite.
Although the colloform and massive pyrite formed during the Hercynian period, they may
still have contributed to the mineralization and are not the primary controlling factors.
Our findings suggest that there is likely Mo mineralization at a deeper level, which is
consistent with the presence of Pb-Zn mineralization in the Yangtze River Metallogenic
belt. Overall, our research provides valuable insights into the mineralization process of the
Yinshan Pb-Zn-Ag deposit and sheds light on the potential for further exploration of Mo
mineralization in the area.
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