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Abstract: Metabolic dysfunctions linked to obesity carry the risk of co-morbidities such as diabetes,
hepatorenal, and cardiovascular diseases. Coumarins are believed to display several biological effects
on diverse adverse health conditions. This study was conducted to uncover the impact of cichoriin
on high-fat diet (HFD)-induced obese rats. Methods: Obesity was induced in twenty rats by exposure
to an HFD for six weeks. The rats were randomly divided into five groups; group I comprised five
healthy rats and was considered the control one. On the other hand, the HFD-induced rats were
divided into the following (five per each group): group II (the HFD group), groups III (cichoriin
50 mg/kg) and IV (cichoriin 100 mg/kg) as the treatment groups, and group V received atorvastatin
(10 mg/kg) (as a standard). Triglycerides (TG), total cholesterol (TC), high-density lipoprotein choles-
terol (HDL-C), low-density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT), aspartate
transaminase (AST), creatine kinase MB (CK-MB), urea, creatinine, the hepatic and renal malondialde-
hyde (MDA) as well as reduced glutathione (GSH) levels were assessed. Histopathological analysis
of the heart, kidney, and liver tissues was investigated. mRNA and protein expressions of the peroxi-
some proliferator-activated receptor gamma (PPAR-γ) were estimated. Results: The administration
of cichoriin alleviated HFD-induced metabolic dysfunctions and improved the histopathological
characteristics of the heart, kidney, and liver. Additionally, the treatment improved the lipid profile
and hepatic and renal functions, as well as the oxidative balance state. Cichoriin demonstrated an
upregulation of the mRNA and protein expressions of PPAR-γ. Taken together, these findings are the
first report on the beneficial role of cichoriin in alleviating adverse metabolic effects in HFD-induced
obesity and adapting it into an innovative obesity management strategy.

Keywords: cichoriin; obesity; high-fat diet; ALT; urea; creatinine; MDA; PPAR-γ

1. Introduction

Obesity is a pathological condition of immoderate fat accumulation in the body due
to a long-term imbalance between energy intake and expenditure [1]. Besides endocrine
disorders, genetic variations as well as medicinal and nutritional changes can also lead to
the progression of obesity [2]. According to the World Health Organization, nearly one in
three adults is overweight, and more than one in eleven adults has severe obesity [3]. In
the past few years, the prevalence of obesity has been increasing and is becoming a global
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epidemic [4]. Obese patients are susceptible to serious health problems because obesity is
closely associated with metabolic diseases involving dyslipidemia, type 2 diabetes, and
fatty liver, in addition to renal and cardiovascular dysfunction and, therefore, it poses a
huge socio-economic burden [1,5,6]. Obesity also has a considerable impact on the patient’s
social and psychological life, leading to the onset of depression [7]. Furthermore, obesity
can induce oxidative stress through several mechanisms comprising oxidative phosphory-
lation, superoxide generation, and glyceraldehyde auto-oxidation [8]. Consequently, the
antioxidant capacity is reduced, more pro-inflammatory cytokines are produced, and the
cell structures are damaged, triggering cancer initiation and progression [3,9,10].

Currently, many therapeutic strategies are available for the treatment and/or preven-
tion of obesity including lifestyle, nutrition education, physical exercises, and pharma-
cotherapy [11,12]. However, it is reported that conventional weight management through
behavior modifications does not usually produce pronounced results [13]. Moreover, the
potentially harmful adverse effects of most of the approved anti-obesity drugs limit their
use [14–16]. On the other hand, weight-loss surgeries, which are recommended for patients
with severe obesity, can provoke medical complications or recurrent operations [17]. As a
consequence, alternative sources of safe, efficacious, and cost-effective weight reduction
drugs are being explored [18,19]. Many phytogenic herbal products have demonstrated
prominent anti-obesity properties through various mechanisms [1,3,20].

Coumarins are phenolic compounds belonging to the benzopyrone family. They
can be naturally isolated from plants, bacteria, and fungi, and their synthetic analogs
can be readily obtained in the laboratory [21,22]. The broad pharmacological activities
of coumarins have attracted researchers for decades and have been reviewed in many
reports [23–25]. Coumarins and their derivatives showed important therapeutic effects
implicated in vasodilation [26], antioxidant properties [27], anti-inflammatory [28], anti-
cancer [29], lipid-lowering [30], anti-diabetic [31] and anti-obesity [32]. These promising
findings encouraged us to evaluate the anti-obesity activity of the coumarin glucoside,
namely cichoriin (aesculetin 7-glucoside).

This study aimed to assess the in vivo anti-obesity activity of cichoriin. Accordingly,
histopathological observations of the heart, liver, and kidneys were carried out, in addition
to the investigation of the governing molecular mechanism.

2. Materials and Methods
2.1. Animals

Male albino Wistar rats were supplied from the National Research Center (Giza, Egypt)
at a weight of 100–150 g and maintained on a 12:12-h light–dark cycle, with free access to a
normal pellet diet and water. All the animals were habituated to laboratory conditions for
one week before the experiment. The study protocol was approved by the Commission
on the Ethics of Scientific Research with the approval number ES26/2020 at the Faculty of
Pharmacy, Minia University, Egypt.

2.2. Induction of Obesity

The rats were fed a self-made high-fat diet (HFD) which provided 58% fat, 25% protein,
and 17% carbohydrates as a percentage of total kcal. The composition of the HFD was
prepared according to other previous studies [33,34], as shown in Table 1. The HFD was
supplied to the rats for six weeks before starting the treatment protocol and continued
during the treatment period.
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Table 1. Composition of the prepared HFD.

Components Amount (g for Total 1 kg Diet)

Normal pellet diet 365
Beef fat 310
Casein 250
Vitamins and minerals mixture 63
Cholesterol 10
Sodium chloride 1
Dried yeast 1

2.3. Design of Study

A total of twenty-five rats were randomized into five groups (each group consisting
of five animals). Group I: the control group fed on a normal pellet diet and 1% carboxy
methyl cellulose (CMC) orally as a vehicle. Group II: the obesity group fed on the HFD
and 1% CMC orally. Group III: the treatment group fed on the HFD and received cichoriin
(Sigma-Aldrich, St. Louis, MO, USA) at 50 mg/kg/day, orally and dissolved in 1% CMC,
for four weeks. Group IV: the treatment group fed on the HFD and received cichoriin at
100 mg/kg/day, orally and dissolved in 1% CMC, for four weeks. The selection of the
doses was based on our preliminary study and a previous study on a similar coumarin
compound [35]. Group V: the standard group fed on the HFD and received atorvastatin
(Sigma-Aldrich, St. Louis, MO, USA) at 10 mg/kg, orally [36] and dissolved in 1% CMC,
for four weeks. The weights of the rats were measured in grams (g) every two weeks and
before scarification. Animal heights were measured from the nose to the anus, and the
body mass index (BMI) was estimated by using the formula [37]: BMI = [Weight (g)/Height
(cm2)].

The body-weight gain was assessed from the difference between final body weight
and initial body weight.

2.4. Collection of Serum and Organ Samples

At the end of the study, the rats were sacrificed under anesthesia after overnight
fasting. Blood samples were collected in centrifuge tubes and kept for 30 min, then the
serum was separated by centrifugation at 3000 rpm for 15 min. The liver, kidneys, heart,
and visceral fat were excised and weighed. Parts of each of the excised tissues were fixed
in 10% buffered formalin and the other parts were stored at −20 ◦C.

2.5. Assessment of Biochemical Parameters

The serum triglycerides (TG) [38], total cholesterol (TC) [39], high-density lipoprotein
cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) [40] were evaluated
using kits (Biodiagnostic, Giza, Egypt). The alanine transaminase (ALT) and aspartate
transaminase (AST), as well as the urea and creatinine concentrations, were determined
in serum according to the manufacturer’s protocols (Biomed, Cairo, Egypt). The creatine
kinase MB (CK-MB) concentration was measured in serum by the kinetic UV method
following the protocol of the commercial kit (Spectrum Diagnostic, Cairo, Egypt) [41].

2.6. Measurement of Antioxidant and Oxidative Stress Parameters

Liver and kidney homogenates (1:5 w/v) were prepared in z 0.1 mM PBS buffer (pH
7.4), and the supernatants after centrifugation were used for the estimation of hepatic
and renal lipid peroxidation (malondialdehyde (MDA) level) and reduced glutathione
(GSH). The levels of MDA, as a marker for lipid peroxidation, were determined chemically
as thiobarbituric acid reactive substances (TBARS) according to the prescribed method
by Khalil et al. [42] and expressed as nmol of TBARS/g tissue. The GSH was assessed
following the procedures of the manufacturer (Biodiagnostic, Giza, Egypt) and expressed
as mg/g tissue.
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2.7. Histopathological Examination

Briefly, the cardiac, renal, and hepatic tissues were sliced to 3–4 mm thick, fixed in
10% neutral buffered formalin, dehydrated in graded concentrations of ethanol, cleared in
xylene, and embedded in paraffin. The paraffin blocks were sectioned with a microtome at
(4–6µm) thickness and dyed with Hematoxylin and Eosin (H&E) stain to study the general
tissue structure [43]. The H&E-stained sections were examined using a Leica microscope
(Leica Microsystems, Heerbrugg, Switzerland).

2.8. RT-PCR of PPAR-γ in Adipose Tissue

A nucleic acid extraction kit (Nucleospin, Macherey-Nagel GmbH & Co. Düren,
Germany) was used for the extraction of the total RNA from homogenized adipose
tissues. Then, the quantification and purity of the RNA samples were measured spec-
trophotometrically. RNA was used for the synthesis of complementary DNA (cDNA)
followed by RT-RCR according to the manufacturer’s instructions for the kit (Bioline,
London, UK). The primers sequence for the peroxisome proliferator-activated receptor
gamma (PPAR-γ) gene was forward 5′CGAGTGCCGAGTCTGTGGGGATAA3′ and reverse
5′ATGGTGATTTGTCTGTTGTCTTTC3′, and the glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) housekeeping gene was forward 5′CCTCGTCTCATAGACAAGATGGT3′

and reverse 5′GGGTAGAGTCATACTGGAACATG3′. The prepared reaction mixtures were
applied in a StepOne instrument (Step One Applied Biosystem, Foster City, CA, USA).
The thermal profile cycling was as follows: 10 min at 45 ◦C for reverse transcription and
2 min at 95 ◦C for polymerase activation, followed by 40 cycles of 5 s at 95 ◦C, 10 s at 60 ◦C,
and 5 s at 72 ◦C for the amplification step. Relative expression was determined by the
Comparative Cycle threshold (2-∆∆Ct) Method and normalized to the GAPDH gene [42].

2.9. Western Blot Analysis of PPAR-γ Protein Expression in Adipose Tissue

The mouse monoclonal PPAR-γ antibody (Santa Cruz Biotechnology, CA, USA) was
used. Briefly, the adipose tissue was homogenized, and then the protein was extracted and
quantified by the Bradford method. Twenty µg of protein was denaturated by 5 min of
boiling with an equal volume of a 2× Laemmli sample buffer containing 4% SDS, 10% 2-
mercaptoethanol, 20% glycerol, 0.004% bromophenol blue, and 0.125 M Tris HCl, with a pH
of 6.8. Samples were loaded for 10% SDS–PAGE for separation of the protein. The separated
protein bands were electro-blotted on a PVDF membrane. The membrane was blocked in a
Tris-buffered saline-Tween 20 (TBS-T) buffer with 3% bovine serum albumin. Incubation
with the primary antibody was conducted overnight at 4 ◦C, followed by 3 times washing
with TBS-T. Incubation with the HRP-conjugated secondary antibody was conducted for 1
h at room temperature, followed by 3 times washing with TBS-T. The chemiluminescent
substrate (Bio-Rad, CA, USA) was used for the visualization of the protein bands. The band
intensity of the target protein was analyzed against β-actin (Cell Signaling Technology,
Beverly, MA, USA) on Image J software [44].

2.10. Statistical Analysis

Results were presented as means ± SEM. A one-way analysis of variance followed by
a Tukey–Kramer post hoc test was used to compare the groups. Statistical significance was
set as p < 0.05. GraphPad prism (version 7) was used for the statistical analysis.

3. Results
3.1. Effect of Cichoriin on Body Weight, BMI, and Organ Weight of Obese Rats

As summarized in Table 2, the rats fed with the HFD significantly increased in body-
weight gain and BMI when compared to that of the control rats. Also, the rats’ organs and
visceral fat weights were significantly increased in the HFD rats. Interestingly, cichoriin
administration, especially a high dose of 100 mg/kg, could significantly decrease all of
the aforementioned weight parameters compared to that of the HFD group. There was a
non-significant difference between the cichoriin (100 mg/kg) and atorvastatin groups.
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Table 2. Effect of cichoriin on body weight, BMI, and organ weight of obese rats.

Groups Control HFD HFD + cichoriin
50 mg/kg

HFD + cichoriin
100 mg/kg

HFD + Ator
10 mg/kg

Body-weight gain (g) 106 ± 8 202 ± 8 * 142 ± 118 *# 123 ± 8 # 145 ± 7 *#

BMI (g/cm2) 0.53 ± 0.01 0.71 ± 0.004 * 0.58 ± 0.02 *# 0.55 ± 0.002 # 0.58 ± 0.01 *#

Liver (g) 6.8 ± 0.4 8.5 ± 0.4 * 7.0 ± 0.2 # 6.7 ± 0.4 # 6.8 ± 0.3 #

Kidney (g) 1.3 ± 0.1 1.7 ± 0.1 * 1.5 ± 0.1 1.2 ± 0.04 #$ 1.4 ± 0.1 #

Heart (g) 0.9 ± 0.04 1.2 ±0.1 * 1.1 ± 0.1 0.9 ± 0.04 #$ 1.0 ± 0.05
Visceral fat (g) 2.2 ± 0.3 7.1 ± 0.4 * 4.7 ± 0.7 *# 3.1 ± 0.2 # 4.3 ± 0.5 *#

Data are presented as means ± SEM (n = 5). *, #, and $ indicate significant difference from the (control), (HFD),
and (HFD + cichorin 50 mg/kg) groups, respectively, at (p < 0.05). High-fat diet (HFD); atorvastatin (Ator); body
mass index (BMI).

3.2. Effect of Cichoriin on Lipid Profile of Obese Rats

The HFD caused a significant elevation of the serum TC, TG, LDL-C levels, and LDL-
C/HDL-C ratio with a significant decrease in HDL-C as compared to that of the control
group. However, the administration of cichoriin with the HFD could significantly improve
the lipid profile parameters and returned them to that of the control rats. A high dose of
cichoriin (100 mg/kg) showed better improvement in the lipid profile than the low dose
(50 mg/kg) and was equivalent to the effect of atorvastatin administration (Table 3).

Table 3. Effect of cichoriin on biochemical parameters in the rats.

Groups Control HFD HFD + cichoriin
50 mg/kg

HFD + cichoriin
100 mg/kg

HFD + Ator
10 mg/kg

TC (mg/dL) 103 ± 9 168 ± 12 * 125 ± 6 # 85 ± 5 #$ 86 ± 4 #$

TG (mg/dL) 36 ± 2 68 ± 4 * 48 ± 1 *# 40 ± 2 # 38 ± 2 #

LDL-C (mg/dL) 69 ± 8 138 ± 12 * 93 ± 7 # 44 ± 4 #$ 44 ± 4 #$

HDL-C (mg/dl) 27 ± 1.5 16 ± 1.4 * 23 ± 1.4 # 33 ± 1.8 #$ 34 ± 2.2 *#$

LDL-C/HDL-C 2.6 ± 0.2 8.9 ± 1.1 * 4.2 ± 0.5 # 1.4 ± 0.1 #$ 1.3 ± 0.2 #$

Data are presented as means ± SEM (n = 5). *, #, and $ indicate significant difference from the (control), (HFD),
and (HFD + cichorin 50 mg/kg) groups, respectively, at (p < 0.05). High-fat diet (HFD); atorvastatin (Ator);
total cholesterol (TC); triglycerides (TG); low-density lipoprotein cholesterol (LDL-C); high-density lipoprotein
cholesterol (HDL-C).

3.3. Effect of Cichoriin on Biochemical Parameters of Obese Rats

The liver function enzymes, ALT and AST (Figure 1A,B, respectively), as well as
the renal function tests and the urea and creatinine (Figure 1C,D, respectively), were
significantly elevated in the serum of the HFD group compared to the control. Additionally,
the HFD significantly increased the cardiac isoenzyme and the CK-MB (Figure 1E) serum
level compared to the control. Although the low dose of cichorin (50 mg/kg) could not
significantly normalize the elevated serum levels of the hepatic and renal functions, the
high dose (100 mg/kg) showed a significant decrease in the affected parameters compared
to the HFD group.

3.4. Effect of Cichoriin on Hepatic and Renal Oxidative Stress Markers of Obese Rats

The rats fed with the HFD exhibited an imbalance of the oxidative state as there
was a significant increase in MDA, the lipid peroxidation marker, with a decrease of the
antioxidant GSH level in both the hepatic and renal tissues compared to that of the control
rats. Alternatively, both doses of cichoriin (50 and 100 mg/kg) significantly returned the
oxidative balance compared to the HFD group but was still significant from the control.
The high dose of the cichoriin and atorvastatin groups showed a significant improvement
in the oxidative parameters than the low cichoriin dose (Table 4).
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Figure 1. Effect of cichoriin on serum biochemical parameters of obese rats. ALT (A), AST (B),
urea (C), creatinine (D), and CK-MB (E). Data are presented as means ± SEM (n = 5). *, #, and $

indicate significant difference from the (control), (HFD), and (HFD + cichorin 50 mg/kg) groups,
respectively, at (p < 0.05). High-fat diet (HFD); atorvastatin (Ator); alanine transaminase (ALT);
aspartate transaminase (AST); creatine kinase MB (CK-MB).

Table 4. Effect of cichoriin on oxidative stress markers.

Groups Control HFD HFD + cichoriin
50 mg/kg

HFD + cichoriin
100 mg/kg

HFD + Ator
10 mg/kg

Hepatic MDA (nmol/g tissue) 82.9 ± 3.6 136.5 ± 2.3 * 107.2 ± 1.8 *# 96.9 ± 3.4 *# 96.2± 3.7 *#

Renal MDA (nmol/g tissue) 67.0 ± 1.4 118.8 ± 2.6 * 78.4 ± 3.0 *# 64.3 ± 3.0 #$ 66.2 ± 1.9 #$

Hepatic GSH (mg/g tissue) 634 ± 20 202 ± 9 * 271 ± 8 *# 325 ± 3 *#$ 328 ± 6 *#$

Renal GSH (mg/g tissue) 556 ± 5 180 ± 13 * 286 ± 12 *# 339 ± 19 *#$ 336 ± 6 *#

Data are presented as means ± SEM (n = 5). *, #, and $ indicate significant difference from the (control), (HFD),
and (HFD + cichorin 50 mg/kg) groups, respectively, at (p < 0.05). High-fat diet (HFD); atorvastatin (Ator);
malondialdehyde (MDA); reduced glutathione (GSH).

3.5. Histopathological Analysis
3.5.1. Examination of Heart Tissue

The control group (Figure 2A) demonstrated the normal histological architecture of
cardiomyocytes. They appear elongated, branched, and cross-striated with large oval
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central nuclei (the thick arrow) and narrow slit-like interstices (the arrowhead) in between.
The HFD group (Figure 2B–D) showed severe histological alterations including severe
vascular congestion (the star) and hemorrhage (the arrowhead) at the interstices between
the cardiac myofibers, excessive lipid deposition (the thick arrow), distinct interstitial edema
(the circle), and marked inflammatory cell infiltration (the cube) in addition to vacuolar
degeneration of the cardiomyocytes (the thin arrow). The cichoriin-treated (50 mg/kg)
group (Figure 2E) exhibited a moderate myocardial injury manifested by apparently normal
cardiomyocytes (the wave arrow), moderate vascular congestion (the star), hemorrhage (the
arrowhead), the few lipids deposition (the thick arrow), and interstitial edema (the circle).
The cichoriin-treated (100 mg/kg) group (Figure 2F) revealed a marked improvement
evidenced by nearly normal cardiac myocytes (the wave arrow), mild congestion (the
star), and hemorrhage (the arrowhead), in addition to less lipid deposition (the thick
arrow). The atorvastatin-treated group (Figure 2G) displayed moderate degenerative
changes, including mild to moderate vascular congestion (the star) and hemorrhage (the
arrowhead). Furthermore, the cardiomyocytes appeared nearly normal (the wave arrow),
and the interstitial edema (the circle) was reduced to a great extent.
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Figure 2. Photomicrograph sections of the control and HFD heart tissue of rats with or without
treatments. Group I (control) (A) showed elongated, branched, and cross-striated cardiomyocytes
with large oval central nuclei (thick arrow) and narrow slit-like interstices (arrowhead), group II
(HFD) (B–D) showed vascular congestion (star), hemorrhage (arrowhead), excessive lipid deposition
(thick arrow), distinct interstitial edema (circle), marked inflammatory cell infiltration (cube) and
vacuolar degeneration of the cardiomyocytes (thin arrow), group III (HFD + 50 mg/kg of cichoriin)
(E) showed normal cardiomyocytes (wave arrow), moderate vascular congestion (star), hemorrhage
(arrowhead), few lipids deposition (thick arrow) and interstitial edema (circle), group IV (HFD
+ 100 mg/kg of cichoriin) (F) showed normal cardiac myocytes (wave arrow), mild congestion
(star), hemorrhage (arrowhead) and less lipid deposition (thick arrow) and group V (10 mg/kg of
atorvastatin) (G) showed mild to moderate vascular congestion (star), hemorrhage (arrowhead),
normal cardiomyocytes (wave arrow) and interstitial edema (circle). High-fat diet (HFD). Scale bar,
50 µm.

3.5.2. Examination of Kidney Tissue

The control group (Figure 3A) demonstrated the normal histological structure of the
renal cortex containing the renal corpuscle (the circle) and proximal (the thick arrow)
and distal (the wave arrow) convoluted tubules. The HFD group (Figure 3B–D) showed
severe renal damage, including severe vascular congestion (the black star), as well as
congestion of the renal corpuscle (the circle), severe interstitial hemorrhage (the triangle),
and inflammatory cells infiltration (the thick arrow). Furthermore, some renal tubules
displayed degeneration with the desquamation of the epithelial lining (the arrowheads),
while others showed cytoplasmic vacuolization with the pyknotic nuclei of the lining
epithelium (the wave arrow). The cichorin-treated (50 mg/kg) group (Figure 3E) exhibited
a significant tissue recovery manifested by a nearly normal renal corpuscle with mild
congestion (the circle) and renal tubules with an intact lining epithelium (the arrowheads).
However, mild vascular congestion (the star) and a few renal tubules showing desquamated
epithelial cells with pyknotic nuclei (the thick arrows) were still observed. The cichorin-
treated (100 mg/kg) group (Figure 3F) and atorvastatin-treated group (Figure 3G) markedly
decreased the renal damage observed in the positive control group. Both groups revealed
a restoration of most of the histological structure of the renal cortex; however, tubular
degeneration (the arrowhead) and pyknosis of the lining epithelium (the thick arrow),
as well as mild hemorrhage interstitial between the renal tubules (the wave arrow) and
congestion inside the renal corpuscle (circle) were still noticed but less so in severity than
the positive control group.
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Figure 3. Photomicrograph sections of the control and HFD kidney tissue of rats with or without
treatments. Group I (control) (A) showed the renal corpuscle (circle) and proximal (thick arrow) and
distal (wave arrow) convoluted tubules, group II (HFD) (B–D) showed severe vascular congestion
(black star), congestion of the renal corpuscle (circle), severe interstitial hemorrhage (triangle), inflam-
matory cells infiltration (thick arrow), degeneration with the desquamation of the epithelial lining
(arrowheads) and cytoplasmic vacuolization with the pyknotic nuclei of the lining epithelium (wave
arrow), group III (HFD + 50 mg/kg of cichoriin) (E) showed renal corpuscle with mild congestion
(circle), renal tubules with an intact lining epithelium (arrowheads), mild vascular congestion (star)
and a few renal tubules showing desquamated epithelial cells with pyknotic nuclei (thick arrows),
group IV (HFD + 100 mg/kg of cichoriin) (F) and group V (10 mg/kg of atorvastatin) (G) showed
tubular degeneration (arrowhead), pyknosis of the lining epithelium (thick arrow), mild hemorrhage
interstitial between the renal tubules (wave arrow) and congestion inside the renal corpuscle (circle).
High-fat diet (HFD). Scale bar, 50 µm.
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3.5.3. Examination of Liver Tissue

The control group (Figure 4A,B) showed the normal architecture of the central vein (the
circle), blood sinusoids (the arrowhead), and hepatic cords containing large hepatocytes
(the thick arrow) with central, spherical, and vesicular nuclei. The portal triad displayed a
normal portal vein (the wave arrow), hepatic artery (the cube), and bile canaliculi (the thin
arrow) (Figure 2B). The HFD group (Figure 4C–E) exhibited severe hepatic injury, including
severe congestion of the central vein (the circle) and blood sinusoids (the arrowhead),
hepatocellular degeneration (the arrow), micro-vesicular steatosis (the cube), inflammatory
cells infiltration (the wave arrow), severe congestion, and dilatation of the portal vein (the
star). The cichoriin-treated (50 mg/kg) group (Figure 4F,G) demonstrated a lesser hepatic
injury than the positive control group, evidenced by the mild congestion of the central vein
(the circle) and blood sinusoids (the arrowhead) and moderate hepatocellular degeneration
with the cytoplasmic vacuolation and pyknotic nuclei (the arrow), as well as dilatation
and congestion of the portal vein (the star). The cichoriin-treated (100 mg/kg) group
(Figure 4H,I) revealed a marked improvement in the tissue architecture manifested by a
normal central vein (the circle) and regular hepatic cords with nearly normal hepatocytes
(the thin arrow) and portal area (Figure 4I). However, mild congestion of the blood sinusoids
(the arrowhead) and portal vein (the star), in addition to mild hepatocellular degeneration
(the thick arrow), were still noticed. The atorvastatin-treated group (Figure 4J,K) presented
a remarkable recovery, evidenced by apparently normal hepatocytes (the thin arrow) with
vesicular nuclei and prominent nucleoli, mild sinusoidal dilatation, and congestion (the
arrowhead), whereas the central vein (the circle) showed severe congestion. The portal
triad exhibited mild congestion of the portal vein (the star) with mild inflammatory cell
infiltration (the wave arrow).
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Figure 4. Photomicrograph sections of the control and HFD liver tissue of rats with or without treat-
ments. Group I (control) (A,B) showed the hepatic central vein (circle), blood sinusoids (arrowhead),
hepatic cords containing large hepatocytes (thick arrow), normal portal vein (wave arrow), hepatic
artery (cube) and bile canaliculi (thin arrow), group II (HFD) (C–E) showed severe congestion of
the central vein (circle), blood sinusoids (arrowhead), hepatocellular degeneration (arrow), micro-
vesicular steatosis (cube), inflammatory cells infiltration (wave arrow)and severe congestion and
dilatation of the portal vein (star), group III (HFD + 50 mg/kg of cichoriin) (F,G) showed mild conges-
tion of the central vein (circle), blood sinusoids (arrowhead), moderate hepatocellular degeneration
with the cytoplasmic vacuolation and pyknotic nuclei (arrow) and dilatation and congestion of the
portal vein (star), group IV (HFD + 100 mg/kg of cichoriin) (H,I) showed a normal hepatic central
vein (circle), regular hepatic cords with nearly normal hepatocytes (thin arrow), mild congestion of
the blood sinusoids (arrowhead), portal vein (star) and mild hepatocellular degeneration (thick arrow)
and group V (10 mg/kg of atorvastatin) (J,K) showed normal hepatocytes (thin arrow), congestion
(arrowhead), congested hepatic central vein (circle), mild congestion of the portal vein (star), mild
inflammatory cell infiltration (wave arrow). High-fat diet (HFD). Scale bar, 50 µm.

3.6. Effect of Cichoriin on Gene and Protein Expressions in Adipose Tissue

As shown in Figure 5, the PPAR-γ expression was significantly inhibited by the HFD
in both the gene and protein levels compared to that of the control. The rats treated
with cichoriin displayed a significant upregulation of the PPAR-γ expression in a dose-
dependent manner. The high dose of cichoriin (100 mg/kg) was non-significantly different
in the PPAR-γ expression from that of the atorvastatin group.
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Figure 5. mRNA (A) and protein expressions (B,C) of PPAR-γ in adipose tissue of different groups.
Data are presented as means ± SEM (n = 3). *, #, and $ indicate significant difference from the
(control), (HFD), and (HFD + cichoriin 50 mg/kg) groups, respectively, at (p < 0.05). Group I (control);
group II (HFD); group III (HFD + 50 mg/kg, cichoriin); group IV (HFD + 100 mg/kg, cichoriin);
group V (10 mg/kg, atorvastatin); torvastatin (Ator); peroxisome proliferator-activated receptor
gamma (PPAR-γ).

4. Discussion

Obesity is a growing worldwide problem of an accumulation of or excess of unhealthy
body fats and is associated with various metabolic diseases. There is a positive correlation
between daily fat intake and the incidence of obesity in humans, as well as in animals [45].
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A plethora of herbs and phytocompounds demonstrated promising results in the preven-
tion and treatment of obesity [4,46]. Cichorium intybus and its contents of coumarins are an
antioxidant traditional herbal supplement with anti-diabetic and weight-reducing activ-
ities [47–49]. Hence, screening of coumarins and their derivatives as anti-obesity agents
emphasized the importance of these molecules as lead compounds for developing potent
drugs for the treatment of obesity and related disorders. In this study, the potential thera-
peutic effect of cichoriin, a coumarin derivative, in HFD-induced obesity was evaluated,
as well as its ability to reduce the associated obesity complications on the liver, kidneys,
and heart. Daily supplementation of cichoriin (50 or 100 mg/kg) for one month not only
reduced the HFD-induced overweight, BMI, and visceral fat content but also improved the
serum lipid profile in a dose-dependent manner, which is in concordance with the reported
effect of the coumarins on the reduction of weight gain and abdominal fat mass in labora-
tory animals, as well as the total lipids and cholesterol levels [50]. Additionally, Cichoriin
significantly reduced the elevated LDL-C/HDL-C ratio in the HFD rats, indicating the
prevention of the risk of coronary vascular diseases associated with obesity [51]. Notably, a
high dose of cichoriin was similar to the effect of atorvastatin, the commercially used statin
drug, in the treatment of obesity.

Moreover, the cichoriin supplement significantly decreased the weight and lipid
accumulation in the hepatic, renal, and cardiac tissues compared to the HFD-fed rats. It
improved hepatic, cardiac, and renal dysfunction, as indicated by significantly lowered
serum levels of ALT, AST, and CK-MB, as well as of urea and creatinine levels. Furthermore,
steatosis and inflammatory cellular infiltrate, induced by the hepatic, cardiac, and renal
lipotoxicity, were significantly inhibited by the cichoriin treatment. These findings are
consistent with the reduction of serum and hepatic TG, TC, and LDL-C, as well as of the
AST and ALT levels and the elevation of HDL-C by coumarin-rich Grifola frondose fungus
ethanol extract administration in the high-fat diet rats [52] and the effect of coumarin
derivatives (esculetin and coumarin dihydro-quinazolinone) [32,53–55].

Based on previous studies, HFD-induced obesity caused oxidative stress as the over-
production in lipid peroxidation and decreased antioxidant capacity [56,57]. Cichoriin
ameliorated the oxidative stress induced by the HFD. As it decreased the lipid peroxidation
product (MDA) content, it increased the antioxidant GSH level in the hepatic and renal
tissues of HFD-induced obesity in rats. The administration of osthol (a coumarin derivative)
prohibited kidney damage and renal lipotoxicity induced by a high-fat/high-sugar Western
diet via preventing oxidative stress [58]. Therefore, the observed hepatorenal protective
effect of cichoriin may be attributed to its antioxidant activity.

To understand the underlying molecular mechanism by which cichoriin impacts anti-
obesity activity, the gene and protein expression of PPAR-γ in adipose tissues were mea-
sured. PPAR-γ is a nuclear receptor that regulates inflammation and the lipid/carbohydrate
metabolism and, therefore, implicates therapeutic potential in various diseases, including
obesity [59]. The results show that cichoriin upregulated PPAR-γ in both the mRNA and
protein levels.

Numerous natural derivatives act as ligands of lipid-sensing nuclear receptors and
regulate their activities [60]. Auraptene, a coumarin compound abundant in citrus, has been
identified as a PPAR-γ agonist in adipocytes [61]. Subsequently, it reduces inflammation
and fat mobilization in the liver [62]. Also, osthol activates PPAR-γ to modulate lipogenesis
in oleic acid or HFD-induced-hepatic steatosis [63,64]. To our knowledge, this is the first
study that has uncovered the molecular mechanism of the anti-obesity activity of cichoriin.

5. Conclusions

In the current study, cichoriin treatments suppressed the body-weight gain and serum
lipids profile. Additionally, it restored the oxidative balance, structure, and function of
the hepatic, as well as renal, tissues. Furthermore, cichoriin inhibited fat accumulation
and lipotoxicity in cardiac tissue. The notable curative effect of cichoriin may be attributed
to the upregulation of PPAR-γ. The results are that cichoriin is an interesting candidate
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that can be developed for the management of obesity and the improvement of its related
metabolic complications. The study recommends further clinical studies on cichoriin to
establish its possible application as a new strategy against obesity.
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