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Abstract: The relationship between non-alcoholic fatty liver disease (NAFLD) and triple-negative
breast cancer (TNBC) has been widely recognized, but the underlying mechanisms are still unknown.
The objective of this study was to identify the hub genes associated with NAFLD and TNBC, and to
explore the potential co-pathogenesis and prognostic linkage of these two diseases. We used GEO,
TCGA, STRING, ssGSEA, and Rstudio to investigate the common differentially expressed genes
(DEGs), conduct functional and signaling pathway enrichment analyses, and determine prognostic
value between TNBC and NAFLD. GO and KEGG enrichment analyses of the common DEGs showed
that they were enriched in leukocyte aggregation, migration and adhesion, apoptosis regulation,
and the PPAR signaling pathway. Fourteen candidate hub genes most likely to mediate NAFLD
and TNBC occurrence were identified and validation results in a new cohort showed that ITGB2,
RAC2, ITGAM, and CYBA were upregulated in both diseases. A univariate Cox analysis suggested
that high expression levels of ITGB2, RAC2, ITGAM, and CXCL10 were associated with a good
prognosis in TNBC. Immune infiltration analysis of TNBC samples showed that NCF2, ICAM1, and
CXCL10 were significantly associated with activated CD8 T cells and activated CD4 T cells. NCF2,
CXCL10, and CYBB were correlated with regulatory T cells and myeloid-derived suppressor cells.
This study demonstrated that the redox reactions regulated by the NADPH oxidase (NOX) subunit
genes and the transport and activation of immune cells regulated by integrins may play a central
role in the co-occurrence trend of NAFLD and TNBC. Additionally, ITGB2, RAC2, and ITGAM were
upregulated in both diseases and were prognostic protective factors of TNBC; they may be potential
therapeutic targets for treatment of TNBC patients with NAFLD, but further experimental studies are
still needed.

Keywords: triple-negative breast cancer (TNBC); non-alcoholic fatty liver disease (NAFLD);
non-alcoholic steatohepatitis (NASH); bioinformatics analysis; hub genes; prognostic value

1. Introduction

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer
death among women [1]. Triple-negative breast cancer (TNBC), defined by estrogen
receptor (ER)-negative, progesterone receptor (PR)-negative, and human epidermal growth
factor receptor-2 (HER2)-negative histological presentation, accounts for approximately
20% of all breast cancer cases [2,3]. In contrast to other breast cancer types, TNBC has a
more aggressive expression profile (high p53 and Ki67 and low Bcl-2 expression), large
tumor size, and high histological grade, and is associated with an increased risk of early
relapse and poor prognosis [4]. Many potential risk factors for TNBC have been reported,
including non-modifiable factors such as age, sex, race, genetic mutations, breast tissue
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density, and family history of breast disease, and modifiable factors such as diet, lifestyle,
obesity, and hormone replacement therapy [5–7]. In particular, the increasing proportion
of obesity worldwide has led to a sharp rise in patients with metabolic syndrome and an
increased risk of certain malignancies [8,9]. It has been shown that metabolic syndrome is
positively associated with breast cancer and significantly associated with TNBC [10].

Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease intimately
related to metabolic syndrome and abdominal obesity [11–13]. It is becoming increasingly
evident that NAFLD is not only linked to an increased risk of liver-related mortality or mor-
bidity, but also associated with extrahepatic complications such as cardiovascular disease,
chronic kidney disease, pulmonary insufficiency, and extrahepatic malignancies [14–16].
A retrospective study by Nseir et al. [17] indicated that NAFLD is associated with breast
cancer independent of known risk factors.

In addition, breast cancer patients often develop non-alcoholic fatty liver disease
during the course of disease. Bilici et al. [18] reported a prevalence of NAFLD as high as 63%
and 72% in newly diagnosed and systematically treated breast cancer patients, respectively.
It has also been reported that long-term selective estrogen receptor modulator (SERM)
administration may increase the risk of NAFLD development, with fatty liver reported
in 48.5% of tamoxifen-treated and 50.2% of toremifene-treated breast cancer patients at
60 months [19]. It is of particular note that patients who present with NAFLD have been
reported to have longer disease-free survival (DFS) [20,21], but the underlying mechanisms
associated with improved clinical outcomes have not been thoroughly investigated.

Recently, advances in sequencing technology and bioinformatics have made it possible
to explore the pathogenesis of diseases and the interactions between different diseases at
the gene level, which is expected to shed new light on the pathogenesis, diagnosis, and
treatment of diseases [22–24]. Here, we investigated the common differentially expressed
genes (DEGs) of NAFLD and TNBC from public RNA-sequencing databases and identified
14 candidate hub genes most likely to mediate NAFLD and TNBC occurrence. Next, the
biological functional pathways of the hub genes were estimated to explore the underlying
mechanisms of both diseases. Finally, validation and prognostic analysis were performed
in a new cohort of TNBC patients.

2. Materials and Methods
2.1. Study Design and Data Collection

Three microarray datasets, GSE63067 and GSE48452 of NAFLD, and GSE38959 of
TNBC, were collected from the GEO (http://www.ncbi.nlm.nih.gov/geo/, accessed on
1 November 2022) database. The nature of the three microarray datasets from the GEO
database is summarized in Table 1. Non-alcoholic steatohepatitis (NASH) is a stage of
NAFLD that is usually associated with a worse prognosis [25] and has a higher prevalence
and more advanced stage of neoplasms compared to steatosis [26]; thus, the NASH samples
were selected as the representatives for analysis in this study. The GSE63067 dataset
included the gene expression profiles of 18 samples, of which 9 were NASH patients and
7 were controls, and the GSE38959 dataset included 47 samples, of which 30 were TNBC
patients and 13 were controls. The GSE48452 dataset consisted of human liver biopsy
samples taken at different phases from control to NASH; 14 controls and 18 NASH samples
were used in this study.

RNAseq profiling in the form of fragments per kilobase million (FPKM) and clin-
icopathological breast cancer data were obtained from the TCGA (https://portal.gdc.
cancer.gov, accessed on 1 November 2022) database (TCGA-BRCA cohort). TNBC samples
were selected according to the status of ER, PR, and HER2 by referring to the method
of Craven et al. [27]. One sample with an unknown ID was excluded, and samples from
132 patients were finally selected for analysis.

http://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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Table 1. The nature of the three microarray datasets from the GEO database.

Series Country Status Platforms Type of Samples Numbers

GSE63067 Sweden Public on 7 November 2014 GPL570
non-alcoholic steatohepatitis 9
steatosis 2
healthy 7

GSE48452 Germany Public on 8 August 2013 GPL11532

non-alcoholic steatohepatitis 18
steatosis 14
healthy obese 27
control 14

GSE38959 Japan Public on 21 December 2012 GPL4133
triple-negative breast cancer 30
normal mammary ductal cells 13
normal human vital organs
including heart, lung, liver,
and kidney

4

2.2. Differentially Expressed Gene (DEG) Selection

DEGs were extracted and analyzed separately using the R package “limma”. The fold
changes (FCs) were calculated for individual gene expression levels. Genes meeting specific
cut-off criteria of p-value < 0.05 and |logFC| > with [mean|logFC|) + 2 × sd(|logFC|)]
were defined as DEGs. The overlapping DEGs between NAFLD and TNBC were delineated
using the R package “ggVennDiagram”. These common DEGs with consistent upregulation
or downregulation trends were retained for subsequent analysis.

2.3. Functional Classification and Pathway Enrichment of DEGs

The above overlapping DEGs were submitted to Gene Ontology (GO) functional
enrichment analysis, which consisted of biological process (BP), cellular component (CC),
and molecular function (MF) analyses, and to Kyoto Encyclopedia of Genes and Genomes
(KEGG) signaling pathway enrichment analysis using the R package “cluster Profiler”. The
enriched GO terms and KEGG pathways with an adjusted p-value < 0.1 were selected.

2.4. Protein–Protein Interaction (PPI) Establishment and Hub Gene Identification

To further explore the interactions among the common genes obtained as described
above, the Search Tool for the Retrieval of Interacting Genes (STRING) (http://string-db.org/,
accessed on 12 November 2022) was used for PPI network construction. Subsequently,
Cytoscape software was used to visualize the PPI network. The Cytoscape plug-in Minimal
Common Oncology Data Elements (MCODE, http://apps.cytoscape.org/apps/mcode,
accessed on 12 November 2022) was used to screen out key protein expression molecules
and multiple topological analysis algorithms in the cytoHubba plug-in (http://hub.iis.
sinica.edu.tw/cytohubba/, accessed on 12 November 2022), such as MCC, MNC, Degree,
and EPC, were used to screen the hub genes in the PPI network.

2.5. Hub Gene Expression Validation and Prognostic Analysis

The expression levels of the identified hub genes were validated in 132 TNBC samples
and 113 controls from the TCGA cohort, and 18 NASH samples and 14 controls from
the GEO database. The Wilcoxon test was used to compare the data between the two
groups, and a two-sided p-value < 0.05 was considered significant. According to the
median expression level for each gene, the TNBC samples were divided into high- or low-
expression groups. Survival analysis was performed using univariate and multivariate Cox
regression hazard analysis, providing hazard ratios (HRs) and 95% confidence intervals
(CIs), and survival curves were derived using Kaplan–Meier (KM) survival analysis with
log-rank tests for comparison.

http://string-db.org/
http://apps.cytoscape.org/apps/mcode
http://hub.iis.sinica.edu.tw/cytohubba/
http://hub.iis.sinica.edu.tw/cytohubba/
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2.6. Immune Infiltration Analysis

The ssGSEA (single-sample gene set enrichment analysis) algorithm is a rank-based
method that defines a score representing the degree of absolute enrichment of a partic-
ular gene set in each sample [28,29]. The ssGSEA score utilized immune-cell-marker-
associated gene sets (http://cis.hku.hk/TISIDB/data/download/CellReports.txt, accessed
on 20 November 2022) to quantify the infiltration of immune cells in TNBC tissue and
determine the level of immune infiltration in each sample. Pearson’s correlation analysis
was used to reveal the relationships between hub genes and immune cells.

3. Results
3.1. DEG Identification in NASH and TNBC

In the NASH and control groups in the GSE63067 dataset, there were 498 up-DEGs
and 163 down-DEGs screened with a logFC threshold of 0.472 (Figure 1A). In the TNBC
and control groups in the GSE38959 dataset, there were 453 up-DEGs and 422 down-
DEGs screened with a logFC threshold of 1.834 (Figure 1B). A Venn diagram was used
to determine the intersection and 42 common DEGs were identified (Figure 1C). After
excluding genes with opposite expression trends, 27 DEGs with the same expression trends
were found, including 19 common upregulated genes and 8 common downregulated genes
(Table S1).

Life 2023, 13, x FOR PEER REVIEW 4 of 17 
 

 

groups, and a two-sided p-value < 0.05 was considered significant. According to the me-
dian expression level for each gene, the TNBC samples were divided into high- or low-
expression groups. Survival analysis was performed using univariate and multivariate 
Cox regression hazard analysis, providing hazard ratios (HRs) and 95% confidence inter-
vals (CIs), and survival curves were derived using Kaplan–Meier (KM) survival analysis 
with log-rank tests for comparison. 

2.6. Immune Infiltration Analysis 
The ssGSEA (single-sample gene set enrichment analysis) algorithm is a rank-based 

method that defines a score representing the degree of absolute enrichment of a particular 
gene set in each sample [28,29]. The ssGSEA score utilized immune-cell-marker-associated 
gene sets (http://cis.hku.hk/TISIDB/data/download/CellReports.txt, accessed on 20 No-
vember 2022) to quantify the infiltration of immune cells in TNBC tissue and determine 
the level of immune infiltration in each sample. Pearson’s correlation analysis was used to 
reveal the relationships between hub genes and immune cells. 

3. Results 
3.1. DEG Identification in NASH and TNBC 

In the NASH and control groups in the GSE63067 dataset, there were 498 up-DEGs 
and 163 down-DEGs screened with a logFC threshold of 0.472 (Figure 1A). In the TNBC 
and control groups in the GSE38959 dataset, there were 453 up-DEGs and 422 down-DEGs 
screened with a logFC threshold of 1.834 (Figure 1B). A Venn diagram was used to deter-
mine the intersection and 42 common DEGs were identified (Figure 1C). After excluding 
genes with opposite expression trends, 27 DEGs with the same expression trends were 
found, including 19 common upregulated genes and 8 common downregulated genes (Ta-
ble S1). 

 
Figure 1. Characterization of the DEGs in NASH and TNBC. (A) Volcano map of DEGs between 
NASH samples and normal samples in GSE63067; (B) volcano map of DEGs between TNBC samples 

Figure 1. Characterization of the DEGs in NASH and TNBC. (A) Volcano map of DEGs between
NASH samples and normal samples in GSE63067; (B) volcano map of DEGs between TNBC samples
and normal samples in GSE38959; (C) Venn diagram of the common DEGS between the two upregu-
lation and two downregulation modules in NAFLD and TNBC. DEGs, differentially expressed genes;
NASH, non-alcoholic steatohepatitis; TNBC, triple-negative breast cancer.
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3.2. GO and KEGG Enrichment Pathway Analysis of DEGs

To better understand the biological functions of the identified DEGs, GO and KEGG
pathway enrichment analyses were performed. After screening with the threshold of
adjusted p < 0.1, significantly enriched GO terms and KEGG terms were selected.

As shown in Figure 2, in the BP category, DEGs were mainly enriched in maintenance
of location, leukocyte cell–cell adhesion, leukocyte aggregation, leukocyte migration in-
volved in inflammatory response, protein nitrosylation, peptidyl-cysteine S-nitrosylation,
and regulation of apoptotic signaling pathway. In the CC category, DEGs were princi-
pally associated with secretory granule lumen, cytoplasmic vesicle lumen, vesicle lumen,
immunological synapse, collagen-containing extracellular matrix, and nuclear inner mem-
brane. The analysis of the MF category indicated that DEGs were enriched in toll-like
receptor binding, fatty acid derivative binding, fatty acid binding, monocarboxylic acid
binding, microtubule binding, integrin binding, and tubulin binding. Furthermore, two
KEGG pathways with significant enrichment were the peroxisome proliferator-activated
receptor (PPAR) signaling pathway and the IL-17 signaling pathway.
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process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes
and Genomes.

3.3. PPI Network Construction and Hub Gene Identification

To determine the interactions among the DEGs and identify hub genes, the PPI network
of the DEGs was generated using STRING. With the aim of preventing important hub
genes being missed, we modified the PPI settings to have a minimum required interaction
score of medium confidence (0.400) and a maximum number of interactions of no more
than 20 interactors to increase the maximum number of interactions and the number of
proteins directly related to the input proteins. Then, a PPI with 47 nodes and 122 edges,
with a PPI enrichment p value < 1.0 × 10−16, was obtained and imported into Cytoscape
software v3.9.1 for visualization (Figure 3A, Table S2).
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Figure 3. Construction of the PPI network and module analysis. (A) The visualization results
of the PPI network of the common DEGs obtained from Cytoscape software v3.9.1; (B–D) three
crucial clustering modules extracted by MCODE. PPI, protein–protein interaction; DEG, differentially
expressed genes; STRING, Search Tool for the Retrieval of Interacting Genes; MCODE, Minimal
Common Oncology Data Elements.

The MCODE plug-in was used to conduct module analysis to detect crucial clustering
modules. Three modules were retrieved from the PPI network. The criteria were set as
follows: Degree Cutoff = 2, Node Score Cutoff = 0.2, K-Core = 2, and Max. Depth = 100.
Module 1 included 10 nodes and 84 edges with a cluster score (density times the number
of members) of 9.333. Module 2 and module 3 had 6 nodes and 20 edges and 3 nodes and
6 edges, respectively, and the scores were 4.000 and 3.000, respectively (Figure 3B–D).

The CytoHubba plug-in was used to identify hub genes. Based on the MCC, MNC,
Degree, and EPC algorithms, the top 15 important hub genes in the PPI networks were
predicted. The intersection of these 15 genes from the four algorithms revealed 14 candidate
hub genes: TLR4, CYBB, NCF1, NCF2, S100A8, S100A9, ITGB2, RAC2, ITGAM, CYBA,
ICAM1, CXCL10, CXCR3, and ITGAL.

Combined with the logFC values of the hub genes in the GSE38959 dataset, the GO and
KEGG enrichment pathways were analyzed. The top 10 GO terms and KEGG pathways
are shown in Figure 4. In the BP category, nine hub genes including CYBB, NCF1, NCF2,
ITGB2, RAC2, ITGAM, CYBA, ICAM1, and TLR4 were enriched in reactive oxygen species
metabolic process. Furthermore, S100A8, S100A9, ITGB2, RAC2, ITGAM, ICAM1, CXCL10,
and CXCR3 were enriched in leukocyte migration. Enriched CC and MF were related to
redox reactions like NADPH oxidase complex, superoxide-generating NADPH oxidase
activity, and oxidoreductase activity. KEGG enrichment analyses showed that leukocyte
transendothelial migration was highly correlated with these genes.

3.4. Hub Gene Expression Validation and Prognostic Analysis

Validation was performed in the TCGA-BRCA cohort for TNBC and the GSE48452
dataset for NASH. For TNBC, the differences in the expression levels of all hub genes
between normal tissues and TNBC samples were statistically significant (Figure 5A). Com-
pared with normal tissues, 13 hub genes were upregulated, including CYBB, NCF1, NCF2,
S100A8, S100A9, ITGB2, RAC2, ITGAM, CYBA, ICAM1, CXCL10, CXCR3, and ITGAL,
and TLR4 was downregulated. For NASH, the expressions of hub genes ITGB2, RAC2,
ITGAM, and CYBA were upregulated, and the changes in other genes’ expressions were
not statistically significant (Figure 5B).
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cohort (A) and control group and NASH samples in the GSE48452 dataset (B). TNBC, triple-negative
breast cancer; TCGA, The Cancer Genome Atlas; BRCA, breast cancer; NASH, non-alcoholic steato-
hepatitis; TNBC, triple-negative breast cancer.
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To evaluate the clinical relevance of hub gene expression, the TNBC samples were
divided into a high-expression group and a low-expression group according to the median
expression level of each gene for prognostic analysis. Univariate Cox analysis suggested
that high expression of ITGB2, RAC2, ITGAM, and CXCL10 was associated with better
overall survival (OS) (Table 2). The corresponding KM survival curves are shown in
Figure 6. In addition, two prognostic factors associated with worse OS were identified
in terms of clinicopathological features, namely black or African American and Asian
ethnicity, and N stage. All variables significant upon univariate Cox regression analysis
(p ≤ 0.05) were subjected to multivariate Cox regression analysis, and it was found that the
N stage was an independent risk factor for overall survival and the remaining factors were
not significant.

Table 2. The Cox regression analysis results of the hub genes and clinicopathological variables in the
TCGA-BRCA group.

Factor

Univariate Cox
Regression Analysis

Multivariate Cox
Regression Analysis

HR (95%CI) p-Value HR (95%CI) p-Value

TLR4 0.640 (0.237–1.728) 0.378

CYBB 0.509 (0.183–1.411) 0.194

NCF1 0.431 (0.155–1.200) 0.107

NCF2 0.622 (0.228–1.694) 0.352

S100A8 0.810 (0.295–2.226) 0.683

S100A9 0.523 (0.181–1.507) 0.230

ITGB2 0.157 (0.044–0.556) 0.004 0.213 (0.033–1.376) 0.104

RAC2 0.341 (0.118–0.984) 0.047 1.067 (0.282–4.036) 0.924

ITGAM 0.282 (0.094–0.842) 0.023 1.392 (0.318–6.100) 0.661

CYBA 1.750 (0.632–4.847) 0.282

ICAM1 0.676 (0.250–1.828) 0.440

CXCL10 0.244 (0.082–0.725) 0.011 0.430 (0.108–1.718) 0.232

CXCR3 0.419 (0.152–1.156) 0.093

ITGAL 0.413 (0.148–1.151) 0.091

Age 0.773 (0.249–2.406) 0.657

Race 2.830 (1.019–7.860) 0.046 2.090 (0.631–6.922) 0.227

T stage

(T2 vs. T1,
T3/T4 vs. T1)

1.717 (0.471–6.255)
0.194

4.427 (0.858–22.838)

N stage

(N1/N2/N3
vs. N0) 5.641 (1.815–17.534) 0.003 4.681 (1.452–15.089) 0.010



Life 2023, 13, 998 9 of 15

Life 2023, 13, x FOR PEER REVIEW 9 of 17 
 

 

Table 2. The Cox regression analysis results of the hub genes and clinicopathological variables in 
the TCGA-BRCA group. 

Factor 
Univariate Cox Regression Anal-

ysis 
Multivariate Cox Regression 

Analysis 
HR (95%CI) p-Value HR (95%CI) p-Value 

TLR4 0.640 (0.237–1.728) 0.378   
CYBB 0.509 (0.183–1.411) 0.194   
NCF1 0.431 (0.155–1.200) 0.107   
NCF2 0.622 (0.228–1.694) 0.352   

S100A8 0.810 (0.295–2.226) 0.683   
S100A9 0.523 (0.181–1.507) 0.230   
ITGB2 0.157 (0.044–0.556) 0.004 0.213 (0.033–1.376) 0.104 
RAC2 0.341 (0.118–0.984) 0.047 1.067 (0.282–4.036) 0.924 

ITGAM 0.282 (0.094–0.842) 0.023 1.392 (0.318–6.100) 0.661 
CYBA 1.750 (0.632–4.847) 0.282   

ICAM1 0.676 (0.250–1.828) 0.440   
CXCL10 0.244 (0.082–0.725) 0.011 0.430 (0.108–1.718) 0.232 
CXCR3 0.419 (0.152–1.156) 0.093   
ITGAL 0.413 (0.148–1.151) 0.091   

Age 0.773 (0.249–2.406) 0.657   
Race 2.830 (1.019–7.860) 0.046 2.090 (0.631–6.922) 0.227 

T stage     
(T2 vs. T1,  

T3/T4 vs. T1) 
1.717 (0.471–6.255) 

0.194   
4.427 (0.858–22.838) 

N stage     
(N1/N2/N3  

vs. N0) 5.641 (1.815–17.534) 0.003 4.681 (1.452–15.089) 0.010 

 
Figure 6. Kaplan–Meier survival curves of association between the expression levels of hub genes 
and the OS of TNBC patients (group cutoff = median). OS, overall survival; TNBC, triple-negative 
breast cancer. 

Figure 6. Kaplan–Meier survival curves of association between the expression levels of hub genes
and the OS of TNBC patients (group cutoff = median). OS, overall survival; TNBC, triple-negative
breast cancer.

3.5. Association between the Hub Genes and Immune Infiltration

Figure 7 shows the relationships between 14 hub genes and 27 immune cells (results
for central memory CD4 T cells unavailable) according to the results of ssGSEA analysis.
For TNBC samples from the GSE38959 dataset, NCF2, ICAM1, and CXCL10 were signif-
icantly associated with activated CD8 T cells (NCF2, r = 0.764, p = 2.42 × 10−9; ICAM1,
r = 0.705, p = 1.32 × 10−7; CXCL10, r = 0.802, p = 1.03 × 10−10) and activated CD4 T cells
(NCF2, r = 0.715, p = 7.16 × 10−8; ICAM1, r = 0.804, p = 8.70 × 10−11; CXCL10, r = 0.785,
p = 4.72 × 10−10). Specifically, NCF2, CXCL10, and CYBB were correlated with regula-
tory T cells (NCF2, r = 0.773, p = 1.22 × 10−9; CXCL10, r = 0.730, p = 2.86 × 10−8; CYBB,
r = 0.718, p = 6.02 × 10−8), and myeloid-derived suppressor cells (MDSCs) (NCF2, r = 0.743,
p = 1.19 × 10−8; CXCL10, r = 0.79, p = 4.24 × 10−10; CYBB, r = 0.733, p = 2.29 × 10−8). In
addition, ITGB2 was associated with activated B cells (r = 0.766, p = 2.22 × 10−9) and
immature B cells (r = 0.733, p = 2.36 × 10−8).
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4. Discussion

In recent years, the relationship between NAFLD and breast cancer has become a
research hotspot, and an increasing number of studies have confirmed the correlation.
Some studies have reported that breast cancer is a common extrahepatic complication of
NAFLD [16,30]. Simultaneously, it also has been suggested that patients with breast cancer,
especially those receiving endocrine therapy, present an increased risk of NAFLD [31,32].
Based on these combined results, NAFLD may be related to the occurrence and progression
of breast cancer. In addition, it has been proposed that liver metastasis in the diagnosis
of fatty liver patients with breast cancer is significantly lower than that of patients with
normal liver histology, further revealing the correlation between the two events in clinical
practice [33]. However, these studies have been mostly observational, and the mechanism
connecting NAFLD and TNBC remains unclear to date. Therefore, exploring the molec-
ular mechanisms to enable early identification and intervention is undoubtedly of great
clinical significance.

In this study, we explored common DEGs of NASH and TNBC datasets in public
databases through bioinformatics analysis and observed the biological processes and
signaling pathways in which they jointly participate. GO and KEGG enrichment analyses of
the common DEGs showed enrichment in leukocyte aggregation, migration and adhesion,
apoptosis regulation, and the PPAR signaling pathway, suggesting that TNBC in NAFLD
patients was likely due to enhanced leukocyte recruitment in the inflammatory response
and abnormal apoptosis. Interestingly, the PPAR signaling pathway not only controls
the expression of genes encoding proteins of lipid metabolism, but is also involved in
anti-cancer responses [34]. One of the mechanisms by which PPARs act to control cancer
progression is to affect the NF-κB signaling pathway, or its upstream pathways, such as the
Toll-like receptor 4 (TLR4) signaling pathway [35,36]. PPAR γ agonists have been found to
induce apoptosis in TNBC cells and inhibit melanoma progression in mice [37,38].

A total of 14 candidate hub genes most likely to mediate NASH and TNBC occurrence
were identified, including TLR4, CYBB, NCF1, NCF2, S100A8, S100A9, ITGB2, RAC2,
ITGAM, CYBA, ICAM1, CXCL10, CXCR3, and ITGAL.

CYBB, CYBA, NCF1, NCF2, and RAC2 are NADPH oxidase (NOX) subunit genes and
are associated with inflammation and fibrosis in multiple organs, such as the liver [39,40],
lungs [41], and kidneys [42], as well as with various types of cancer [43]. NOX can produce
reactive oxygen species (ROS) that cause changes in cellular redox status, leading to chronic
liver injury and fibrosis, which is critical for alcoholic steatohepatitis and NASH [44,45].
The analysis of the TCGA cohort showed that NOX-related genes were expressed more
highly in tumor cells than in normal tissues of the same tissue origin, which suggested
that the abnormal expression and regulation of NOX may be related to tumorigenesis
and the increase of ROS in tumor cells [46], which probably contributes to the increased
susceptibility of TNBC patients to NAFLD compared to the healthy population. In addition,
RAC2 was strongly associated with OS in patients. RAC2 is a 21 kDa RAS superfamily of
GTPases that stabilize the cytoskeleton structure of actin [47,48]. Chen et al. [49] found the
high expression of RAC2 can inhibit the proliferation of breast cancer cells.

ITGAM, ITGB2, and ITGAL are involved in the most common integrins expressed
on leukocytes, including Mac-1 (αMβ2 or CD11b/CD18) and leukocyte function-related
antigen 1 (LFA-1 or αLβ2) [50,51]. Activated integrins play a crucial role in trafficking
immune cells into tissues, activating and promoting the proliferation of effector cells,
and inducing the formation of immune synapses between cells [52,53]. Clinically, Mac-1
expression is increased in patients with metabolic syndrome [54]. It has also been confirmed
that Mac-1 is required for pro-inflammatory gene expression by macrophages in adipose
tissue inflammation and is related to recruiting monocytes from bone marrow and inducing
them to transform into M1-like macrophages (pro-inflammatory and usually anti-tumor)
to express cytotoxic factors to engulf and destroy tumor cells [55–57]. Rojas et al. [51]
demonstrated that an integrin marker composed of ITGA4, ITGB2, ITGAX, ITGB7, ITGAM,
ITGAL, and ITGA8 had the potential to recognize basal-like breast cancers with immune-
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infiltrating and favorable prognosis. Our results are similar to this finding, with ITGAM
and ITGB2 highly expressed in both diseases and associated with a better prognosis in
TNBC. Further analysis of immune infiltration showed a positive correlation between
integrin genes and activated B cells and immature B cells.

CXCL10 and its homologous receptor CXCR3 are critical in the development of specific
features of the NAFLD phenotype, wherein they are mainly involved in the induction
of inflammation, regulation of adipogenesis and oxidative stress, and other related pro-
cesses [58,59]. In the process of tumor progression, studies have shown that CXCL10 has a
dual role. It can not only promote tumor progression by increasing cell proliferation and
metastasis, but also exert an anti-malignancy function by inhibiting angiogenesis and influ-
encing the tumor microenvironment [60–62]. Sun et al. [63] found that CXCL10 expression
was significantly upregulated in mice with melanoma and that CXCL10 promoted the pro-
liferation of monocyte-like MDSCs, leading to an immunosuppressive microenvironment.
On the other hand, it has also been demonstrated that tumor-cell-derived CXCL9/CXCL10
regulates the recruitment of T cells in various tumors [64–66]. Our study suggested that
CXCL10 is positively correlated with MDCSs and activated T cells, and TNBC patients with
high CXCL10 expression obtained a better prognosis. Therefore, in the context of NAFLD,
CXCL10 may play an anti-tumor role in TNBC, but more in-depth experimental research is
still needed.

Although many studies have linked metabolic syndrome to the development of cancer
and poor prognosis, it may be a symptom of a general metabolic disorder. Our study
explored the relationship between NAFLD and TNBC at the genetic level for the first
time, and found that the hub genes ITGB2, RAC2, and ITGAM were upregulated in both
diseases and were prognostic protective factors in TNBC. This is inconsistent with our
understanding of risk factors such as obesity, a high-fat diet, and NAFLD that promote
the occurrence and progression of breast cancer. Therefore, further experimental studies
will be of great significance and are expected to find new targets for diagnosis, prognostic
assessment, and treatment of TNBC.

The study had several limitations. First, although the role of these genes has been
elucidated in multiple studies, the key pathways and hub genes identified have not been
validated in experiments. Second, due to the lack of a dataset, the validation of the hub gene
was performed in patients with only NAFLD or TNBC, but not in patients with NAFLD
combined with TNBC. Third, the relationship between the hub genes and the prognosis of
TNBC patients needs to be confirmed by prospective clinical studies.

5. Conclusions

In conclusion, this study explored the hub genes of NAFLD and TNBC and illustrated
the possible mechanisms for the co-occurrence trend of these two diseases. Redox reactions
regulated by the NOX subunit genes and the transport and activation of immune cells
regulated by integrins may play a central role in the development of NAFLD and TNBC.
Additionally, the expressions of ITGB2, RAC2, ITGAM, and CXCL10 were significantly
correlated with a good prognosis in TNBC and may be potential therapeutic targets for the
development of gene therapies for TNBC patients with NAFLD.
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