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Abstract: Tumoral calcinosis is an extremely rare genetic disease caused by mutations in three genes,
GALNT3, FGF23, and KL, which disrupt phosphorus metabolism. The hallmark of this condition is
the formation of tumors in the soft tissues around the joints. Other phenotypic features of tumoral
calcinosis are dental involvement and brain and vascular calcifications. The clinical case reported
herein presents for the first time to the scientific community the c.202A>G (p.Thr68Ala) mutation of
the FGF23 gene, associated with a hyperphosphatemic variant of tumoral calcinosis and multiple
severe vascular aneurysms. A female patient underwent multiple surgeries for tumor formations in
her soft tissues that first appeared at the age of 12 months. On this occurrence, the patient was found
to have hyperphosphatemia, low phosphate clearance, increased tubular reabsorption with normal
levels of total and ionized calcium, vitamin D3, and parathyroid hormone, and no effect of treatment
with sevelamer hydrochloride and a low-phosphate diet. At the age of 39, the patient underwent
imaging studies due to edema and a pulsating formation in the neck area, which revealed multiple
vascular aneurysms with thrombosis, for which she received operative and interventional treatment.
In this connection, and because of the established phosphorus metabolism disturbance, a genetic
disease was suspected. The sequence analysis and deletion/duplication testing of the 358 genes
performed on this occasion revealed that the woman was homozygous for a variant of the c.202A>G
(p.Thr68Ala) mutation of the FGF23 gene. The established mutation is not present in population
databases. The presented clinical case is the first and only one in the world to demonstrate the role of
this type of FGF23 gene mutation in the development of a hyperphosphatemic variant of tumoral
calcinosis characterized by aggressive formation of multiple vascular aneurysms.

Keywords: hyperphosphatemic tumoral calcinosis; vascular aneurysms; homozygous; new FGF23
mutation variant

1. Introduction

Tumoral calcinosis is a clinical and histopathological syndrome that was first defined in
1943 by Inclan et al. [1]. According to one of the proposed pathogenesis-based classifications,
tumoral calcinosis has two major variants: the primary normophosphatemic subtype,
which has normal calcium and phosphorus levels, and the primary hyperphosphatemic
or familial subtype, which has normal calcium and high phosphorus levels [2]. The latter,
which appears most frequently in the first or second decade of life [3], is an extremely rare
genetic disorder, with fewer than 100 confirmed cases initially reported from Africa and
the Middle East, then later from Europe [4,5].

The disease’s etiology is linked to inactivating mutations in the N-acetylgalactosaminyl
transferase 3 gene (GalNAc transferase 3 gene, GALNT3), mutations in the fibroblast growth
factor-23 (FGF23) gene, and membrane-bound protein Klotho (KL), which are inherited in
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an autosomal recessive manner, resulting in a defect in the function of fibroblast growth
factor-23, a phosphaturic hormone [6,7], and thus a disruption in phosphorus regulation [8].
There is also a secondary variant of tumoral calcinosis, which is most often associated with
chronic renal failure [2]. The main clinical manifestation of the two major variants involves
the deposition of calcium salts in the soft tissues around the joints [9,10], most often in
the upper limbs (shoulder and elbow), hip, foot, and wrist [11]. Tumors develop and
can grow over time [12], sometimes becoming large enough to impair joint function [1,9].
The phosphaturic hormone FGF23, produced by osteoblasts, plays an important role in
mineral metabolism by inhibiting the proximal tubular natrium/inorganic phosphorus-
2a (Na/Pi-2a) and Na/Pi-2c cotransporters [13]. It has been suggested that its effects
are mediated by its co-factor Klotho. Research in FGF23-null and Klotho knockout mice
has found that the mice develop severe vascular calcinosis and hyperphosphatemia and
have a reduced lifespan [14]. Additionally, there are studies demonstrating that there
is a positive correlation between high levels of FGF23 and an increased risk of adverse
cardiovascular events [15]. Moreover, there is even a report in the literature on familial
tumoral calcinosis associated with cerebral and peripheral vascular aneurysms [16]. When
the disease progresses, it may impact the teeth and jawbones [17,18], as well as lead to the
formation of calcifications in various brain structures [19] and blood vessels, including the
aorta, iliac, and carotids, as well as cerebral, coronary, and other vessels [20].

The clinical case I report presents to the scientific community for the first time the
c.202A>G (p.Thr68Ala) mutation of the FGF23 gene, associated with a hyperphosphatemic
variant of tumoral calcinosis and multiple severe vascular aneurysms with thrombosis.

2. Clinical Case Presentation

A 40-year-old female patient was readmitted to the orthopedics department yet an-
other time due to a tumor formation in her right shoulder that continued to grow and, in
the last week, began to cause pain in her shoulder joint, limiting movement and causing
pain in the forearm. She reported at least 10 prior surgical interventions because of tumors
developing in various areas (the left forearm, the proximal third of the left thigh, and
the right deltoid), which had started as calcium deposits when she was 12 months old.
The laboratory tests performed during these hospitalizations showed that the patient had
a lot of problems with phosphorus metabolism, including hyperphosphatemia, low phos-
phate clearance, and increased tubular reabsorption at normal levels of total and ionized
calcium, vitamin D3, and the parathyroid hormone. In 2011, the patient was admitted to
the endocrinology department for further diagnostic evaluation. Several imaging studies
were performed in search of pathological changes. A native X-ray of the palm and wrist
revealed bone structure with higher density at the border between the distal epiphyses and
the metaphyses of metacarpal bones 2, 3, 4, and 5, as well as a bilateral low-density bone
structure in the carpal bones, the epiphyses of the metacarpal bones, and the phalanges.
Areas of greater density and pseudocystic lucency were observed in the ribs and bodies
of the involved vertebrae, as revealed by computed tomography of the neck and anterior
mediastinum. Although the imaging and biochemical testing revealed some anomalies, no
definitive diagnosis was reached, and the patient was discharged with a prescription for
home therapy with 800 mg of sevelamer hydrochloride three times a day to lower serum
phosphate levels and a diet plan. The treatment failed and was discontinued. The patient
is currently taking no medication.

Upon examination during the patient’s current admission to the orthopedics depart-
ment, a tumor mass was found in the right shoulder region (Figure 1).

Additionally, there was functional, palpable discomfort, along with movement limita-
tions. The general physical status did not show any pathological abnormalities. Biochemical
tests confirmed the previous findings of disturbances in the phosphorus metabolism of
the patient: hyperphosphatemia (2.27 mmol/L, normal range 0.77–1.36 mmol/L), reduced
24 h urinary excretion (9.2 mmol/L, normal range 10.9–32.3 mmol/L), low 24 h phosphate
clearance (0.08 mL/s, normal range 0.140–0.151 mL/s), increased tubular reabsorption
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(94.1%), and normal levels of total calcium (2.41 mmol/L, normal range 2.15–2.5 mmol/L)
and ionized calcium (1.28 mmol/L, normal range 1.16–1.31 mmol/L), 24 h urinary excretion
(3.7 mmol/L, normal range 2.5–7.5 mmol/L), 1.25 (OH) vitamin D3 (57 ng/mL, recom-
mended levels above 50 ng/mL), and parathyroid hormone (31.1 pg/mL, normal range
12–88 pg/mL). An X-ray of the shoulder joint showed calcium deposits in the surrounding
soft tissues (Figure 2A,B).
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A hetero-dense cloud-like lesion measuring 5.22 × 1.87 cm with soft-tissue and
calcium-equivalent densitometric density was seen in the right deltoid muscle at the
level of the clavicle and lateral to the right humeral head, without involving neighboring
bones and structures, according to spiral computed tomography with 3D reconstruction
(Figure 3A,B).
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Figure 3. (A,B) Computed tomography with 3D reconstruction showing cloud-like lesion with
soft-tissue and calcium-equivalent densitometric density in the right deltoid muscle lateral to the
right humeral head and not involving adjacent bones and structures.

The tumor mass was removed surgically under general anesthesia. When viewed
macroscopically, it resembled a cyst with a fibrous capsule containing thick chalky material
that had a yellowish hue (Figure 4).
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Figure 4. Image of the tumor that resembles a cyst with a fibrous capsule packed with thick yellowish
chalky materials.

The biochemical examination found it contained calcium hydroxyapatite, calcium
carbonate, and phosphate.

The patient saw her general practitioner in October 2021 due to swelling in the neck
region and a pulsing lump on the left side of the neck. Following a clinical assessment,
the physician recommended an ultrasound, which showed dilatations of 10 mm in the
right external carotid artery and 12 mm in the left external carotid artery (with aneurysm)
(normal range for women: 5.1 ± 1.0 mm). For these findings, contrast-enhanced brain
computed tomography (CT) and angiography were performed. The results revealed the
following for the extracranial vessels on the right. A dilation of 11.5 cm was seen in the right
subclavian artery (normal 0.7–1.0 cm) (Figure 5A), with a subsequent segment of 30 mm
with parietal thrombosis (Figure 5B) with occlusions and significant stenosis (Figure 5A).
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Figure 5. Contrast-enhanced computed tomography revealing (A) dilated right subclavian artery
(blue arrow) followed by significant stenosis (red arrows); (B) parietal thrombosis in the right
subclavian artery (yellow arrow); (C) aneurismal dilatation of the right external carotid artery (blue
arrow); (D) fusiform dilatation of the right vertebral artery (blue arrow).

The common carotid artery had calcium plaques in the area of bifurcation without
significant stenosis. The internal carotid artery was seen with a calcium plaque in the
ostium without significant stenosis but with diffuse calcium plaques in the cavernous and
petrous segments and significant stenosis in the petrous segment. The external carotid
artery presented postostiumally with an 8.5 to 7.5 mm aneurysmal dilatation (Figure 5C).

In addition, calcium plaques and pathological fusiform dilatations were found in the
vertebral artery (Figure 5D).

Significant pathological deviations were also present in the left extracranial vessels;
the left subclavian artery had parietal thrombosis and a fusiform aneurysmal dilatation of
68 mm after the ostium, with maximum axial dimensions of 50 by 31 mm (Figure 6A).

The CT scan revealed calcium plaques in the bifurcation region of the common carotid
artery, but no discernible stenosis. Calcium plaques also impacted the internal carotid artery,
which resulted in stenosis at the pars petrosa–pars cavernosa transition and intracranial
aneurysmal dilation (Figure 6B).

Immediately after the ostium, an 11.5 to 12.5 mm aneurysmal dilatation was seen in
the external carotid artery. Pathological fusiform dilatation was also seen in the vertebral
artery (Figure 6C).

Calcium changes were also found in the eyeballs and the retrobulbar structures,
including calcifications along the inferior–posterior borders of the eyeballs. The skull bones
exhibited osteosclerosis and growth. Additional alterations were seen in the prominent
calcifications in the falx cerebri.
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Because of the presence of aneurysmal changes and calcium plaques in the extracranial
vessels, the patient’s evaluation further included coronary angiography, which revealed
no stenoses or dilatation. A CT aortography with peripheral angiography of the lower
extremities revealed an aneurysmally dilated lienal artery with axial dimensions of up to
8 mm (normal range 5.92 mm ± 1.2 mm) around the splenic hilus and distal dilatation of
the left renal artery in the hilus to 7.7 mm (normal range in females 6.54 mm ± 0.31 mm).

Based on the imaging results, surgical intervention on the aneurysm of the left sub-
clavian artery was performed, which included resection with a 10 mm prosthesis and
reimplantation of the left vertebral artery. A stent was implanted to treat the left external
carotid artery’s aneurysmal dilatation. At a later stage, the right subclavian artery was
accessed retrogradely via the right common femoral artery using a catheter to pass through
the occlusions and stenoses. However, this procedure was halted because the angiographic
results were deemed inadequate.
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Given the patient’s long history of tumor formation with soft tissue calcifications
caused by disturbances in phosphorus metabolism and necessitating multiple surgical
interventions, as well as the presence of vascular aneurysms, a genetic defect related
to mineral metabolism was assumed. In December 2021, a laboratory in the United
States completed the sequence analysis and deletion/duplication testing on 358 genes
utilizing hybridization-based techniques and Illumina arrays. The investigation revealed
a mutation in the FGF23 gene Exon 1, variant c.202A>G (p.Thr68Ala), and confirmed that
the patient was homozygous. A heterozygous state and mutations were found in eight
more genes—AMER1 variant c.1346C > G (p.Ala449Gly), CDKSRAP2 variant c.3538G > A
(p.Vall180Met), CEP152 variant c.3154G > A (p.Val1052lle), MMP14 variant c.1549G > C
(p.Gly517Arg), PIK3C2A variant c1910C > G (p.Pro637Arg), POP1 variant c.74G > A
(p.Gly25Asp), TBX5 variant c.1343C > T (p.Pro448Leu), and WNT3A variant c.580-14C > T
(Intronic). There were no mutations in GALNT3 or KL, both of which have been linked to
tumoral calcinosis.

Five months after genetic testing, surgeries, and interventional procedures (in May
2022), the patient discovered that a pulsating formation in the right inguinal region had
begun to grow. Following a consultation and examination by a physician, the patient
had an ultrasound. The results showed that the right femoral artery aneurysm measured
2.17 by 2.12 cm, with parietal thrombosis of the lumen that was approximately ¼ of the
diameter. Surgical treatment ensued, during which parietal thrombosis of the right iliac
artery was discovered and thromboendarterectomy (TEA) and aneurysm resection of the
right common femoral artery were performed.

In addition, there was pathological involvement of the teeth in the patient. The pulp
calcifications and obliteration of the pulp cavity revealed through radiography during
an in vitro procedure (Figure 7A) made treatment of the asymptomatic granulomas im-
possible, and five teeth were extracted. The imaging study also revealed the spongy bone
structure (Figure 7B) and some cystic masses (Figure 7C).

Life 2024, 14, x FOR PEER REVIEW 9 of 16 
 

 

  
(A) (B) 

 

(C)  

Figure 7. Radiography revealing (A) pulp calcifications and obliteration of the pulp cavity; (B) 
spongy bone structure; (C) some cystic masses. 

3. Discussion 
Hyperphosphatemic familial tumoral calcinosis (HFTC) is an extremely rare, hetero-

geneous genetic disorder inherited in an autosomal recessive pattern. It occurs as a result 
of mutations in three genes—the fibroblast growth factor-23 (FGF23), coding for a potent 
phosphaturic protein, KL encoding Klotho, which serves as a co-receptor for FGF23, and 
GALNT3, which encodes a glycosyltransferase (UDP-N-acetyl-α-D-galactosamine-poly-
peptide N-acetylgalactosaminyltransferase-3 (ppGalNacT3) responsible for FGF23 O-gly-
cosylation [4]. This process occurs in the Golgi complex, where a mutation results in a lack 
of glycolysis (An Online Catalog of Human Genes and Genetic Disorders, OMIM:211900), 
allowing FGF23 to be cleaved by a proprotein convertase, most likely furin, into inactive 
C- and N-terminal fragments [21]. 

More than ten types of GALNT3 mutations have been reported, all of which result in 
loss of ppGalNacT3 function [22] and are associated with at least one other syndrome 
known as hyperostosis–hyperphosphatemia syndrome [23]. Furthermore, differences in 
HFTC severity and clinical manifestations are due to phenotypic heterogeneity [24]. 

Mutations in FGF23 (OMIM:617993) cause increased cleavage and decreased circu-
lating intact FGF23, which is retained in the Golgi complex and secreted only as the C-
terminal fragment. Affected patients have been found to have elevated levels of the C-
terminal fragment [7]. Recessive variants in the KL gene (OMIM:617994) develop HFTC 
due to FGF23 resistance [25]. 

Fibroblast growth factor 23 is a peptide that is produced by osteoblasts, osteocytes 
[26,27], and erythroid precursor cells of the bone marrow [28]. It binds to the FGF receptor 
1 (FGFR1) and its co-receptor Klotho in the proximal tubule of the kidney, where it regu-
lates phosphorus exchange and has a phosphaturic effect. Furthermore, by stimulating 

Figure 7. Radiography revealing (A) pulp calcifications and obliteration of the pulp cavity; (B) spongy
bone structure; (C) some cystic masses.



Life 2024, 14, 613 8 of 14

3. Discussion

Hyperphosphatemic familial tumoral calcinosis (HFTC) is an extremely rare, heteroge-
neous genetic disorder inherited in an autosomal recessive pattern. It occurs as a result of
mutations in three genes—the fibroblast growth factor-23 (FGF23), coding for a potent
phosphaturic protein, KL encoding Klotho, which serves as a co-receptor for FGF23,
and GALNT3, which encodes a glycosyltransferase (UDP-N-acetyl-α-D-galactosamine-
polypeptide N-acetylgalactosaminyltransferase-3 (ppGalNacT3) responsible for FGF23
O-glycosylation [4]. This process occurs in the Golgi complex, where a mutation re-
sults in a lack of glycolysis (An Online Catalog of Human Genes and Genetic Disorders,
OMIM:211900), allowing FGF23 to be cleaved by a proprotein convertase, most likely furin,
into inactive C- and N-terminal fragments [21].

More than ten types of GALNT3 mutations have been reported, all of which result
in loss of ppGalNacT3 function [22] and are associated with at least one other syndrome
known as hyperostosis–hyperphosphatemia syndrome [23]. Furthermore, differences in
HFTC severity and clinical manifestations are due to phenotypic heterogeneity [24].

Mutations in FGF23 (OMIM:617993) cause increased cleavage and decreased circulat-
ing intact FGF23, which is retained in the Golgi complex and secreted only as the C-terminal
fragment. Affected patients have been found to have elevated levels of the C-terminal
fragment [7]. Recessive variants in the KL gene (OMIM:617994) develop HFTC due to
FGF23 resistance [25].

Fibroblast growth factor 23 is a peptide that is produced by osteoblasts, osteocytes [26,27],
and erythroid precursor cells of the bone marrow [28]. It binds to the FGF receptor 1 (FGFR1)
and its co-receptor Klotho in the proximal tubule of the kidney, where it regulates phosphorus
exchange and has a phosphaturic effect. Furthermore, by stimulating 25-vitamin D-24 hydrox-
ylase, it reduces the active form of vitamin D, 1,25-(OH)2-vitamin D (1,25D), whose role in
phosphorus metabolism is to increase intestinal absorption [29]. FGF23 also negatively regu-
lates parathyroid hormone secretion [30]. Mutations cause biochemical abnormalities such
as hyperphosphatemia due to increased tubular reabsorption and inappropriately normal or
elevated levels of 1,25D [31]. Patients with tumoral calcinosis and GLANT3 or FGF23 muta-
tions have elevated C-terminal FGF23 fragments with low or normal FGF23 levels, whereas
patients with KL mutations have elevated serum levels of both the C-terminal fragment of
FGF23 and intact FGF23 [32]. Other changes that may occur as a result of the secondary high
levels of 1,25D and increased calcium reabsorption include elevated blood calcium and low
parathyroid hormone levels.

The disease typically manifests in the first or second decade of life [3], but in the
current clinical case, it occurred at the age of 12 months. The main clinical sign is ectopic
calcifications in the soft tissues around the joints [9,10], most commonly on the upper
limb (shoulder and elbow), hip, foot, and wrist [11], which form tumors and sometimes
necessitate surgical removal due to the involvement of joint function, as in the described
case. It has been proposed that repeated microtraumas [33] or chronic pressure [34] initiate
the process of forming the characteristic lesions, which begin with small hemorrhages in
the periarticular tissue and initiate a foamy histiocytic response [33], which is supported
by detected hemosiderin in the neighborhood [35]. As a result of the initiated healing
process and the frictional forces, a neo-bursa forms, leading to the transformation of
foamy histiocytes into cystic cavities via collagenolysis. Calcification gradually occurs as
a result of hyperphosphatemia and hypervitaminosis D, causing the cavities to fill, become
surrounded by fibrous tissue, ossify, and become relatively immobile [36].

The removed formations were biochemically analyzed, and the analysis showed that
they contained primarily calcium hydroxyapatite, as well as amorphous calcium carbonate
and phosphate [37]. The findings of a radiographic study included cystic periarticular
lobulated formations with no bone erosion or destruction [11,38,39]. When surgical removal
of the formations is imminent, computed tomography can identify “sedimentation signs”,
which are defined as calcium layering with the formation of liquid–liquid levels in the
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cysts [39]. This is because computed tomography is primarily used to evaluate the extent
of involvement of the surrounding structures [40].

Another potential phenotypic manifestation of the disease is tooth involvement, as
evidenced by short, abnormal roots, pulp calcifications, and pulp cavity obliteration on
a panoramic radiograph [18,41].

The progression of ectopic calcification can lead to hyperostosis, typically in the di-
aphyseal regions of long bones [42], involvement of skull bones, brain structures [19],
eyes–eyelids and/or conjunctiva [43], the cornea [44], the retina [45], aorta, coronary arter-
ies, and peripheral arteries [20], and the appearance of complications with the appropriate
clinical picture. The literature has described a case of a family with tumoral calcinosis
that required the amputation of fingers below and above the knee due to vascular calci-
fication. The family had a proven mutation in the FGF23 gene and no other risk factors.
Histological examination of the material showed calcification of the internal elastic lam-
ina and involvement of the media. The osteocyte marker osteonectin was used, which
stains capillaries, arterioles, and larger arteries [20]. Furthermore, high serum phospho-
rus levels are associated with an increased risk of coronary calcification in patients with
normal renal function [46], and they are correlated with aortic and coronary artery calci-
fication in patients with moderate chronic kidney disease [47], while FGF23 may shield
dialysis patients from vascular calcification [48]. Additionally, messenger ribonucleic acid
[mRNA] was detected in experimental settings in rats following subtotal nephrectomy and
a phosphorus-rich diet, which is in line with the emergence of an osteoblast phenotype
in aortic tissues [49]. The human aorta and vessels become less elastic due to calcification,
which is linked to higher rates of morbidity and mortality and can be used as a separate
indicator of cardiovascular morbidity and death [50].

The mechanisms by which structural changes in the vascular wall are reached—and
consequently, arterial stiffness, which plays a crucial role in subsequent organ damage—are
fragmentation and the subsequent degradation of elastin [51]. In turn, elastin fibers in
smooth muscle cells may also be harmed by calcium deposits, which results in increased
peak wall shear stress (WSS) [52]. Furthermore, a study suggests that high flow and shear
stress may cause endothelial cells and smooth muscle cells to express matrix metallopro-
teinases 2 and 9, ultimately leading to the cell basement membrane and internal elastic lam-
ina degradation of the arterial wall and arterial enlargement. In addition, a disproportional
increase in membrane type-1- metalloproteinase and tissue inhibitor of metalloproteinase-2
was observed, which in turn might lead to matrix metalloproteinase 2 activation, caus-
ing sequential alterations [53]. Research on abdominal aortic aneurysms [54,55] provides
evidence in favor of this conclusion.

Rat studies have shown that in healthy cerebral arteries, the formation of aneurysms is
more likely to be caused by focal high-wall shear stress than by focal mechanical stress [56].
In this regard, it is worth noting the findings of studies that show that vascular smooth
muscle cells (VSMCs) can undergo a phenotypic transition to osteoblastic, chondrocyte,
and osteocyte cells, ultimately leading to calcinosis, with phosphorus hastening the process.
Smooth muscle markers are lost during this transformation, and osteoblastic character-
istics emerge, such as the expression of tissue-nonspecific alkaline phosphatase (Pit-1),
osteocalcin, osteopontin, and osteocyte markers, including sclerostin [57,58].

In experimental studies, aortic VSMCs were extracted from mice and cultured in
a growth medium containing high inorganic phosphorus (Pi). The increased Pi concen-
tration resulted in a considerable increase in VSMC calcium deposits, as assessed using
hydrochloric acid (HCL) leaching. Moreover, the VSMCs were treated with recombinant
FGF23, which resulted in a significant reduction in calcium deposits and mRNA expres-
sion of osteogenic markers. In addition, VSMCs were treated with FGFR1 and FGFR3
inhibitors, which caused significant increases in calcification. Therefore, FGF-23 protects
against VSMC calcification [59], and the physical association of Klotho, FGFR1, and FGFR3
is an important mechanism for preventing crucial vascular calcification [60]. These findings
could serve as the foundation for a novel therapeutic strategy [59].
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The woman in the presented case has a proven mutation in the FGF23 gene, which
reduces FGF23 and eliminates its protective effects, and which, combined with the negative
influence of hyperphosphatemia with subsequent calcinosis, results in vascular wall elastin
degradation, increased arterial stiffness, and shear stress, which in turn cause expression
of metalloproteinases and further destructive effects. These pathogenic mechanisms con-
tribute significantly to structural alterations in the arterial wall, which most likely resulted
in the development of multiple aneurysms. Furthermore, tumoral calcinosis is associated
with cerebral and peripheral aneurysms, with only one case in a sibling found in the litera-
ture: the boy had arterial aneurysms of the brachial, iliofemoral, and coeliac axes treated
surgically but died after rupture of a subclavian artery aneurysm, and the girl had carotid
dysplasia and a left ophthalmic segment aneurysm that could not be treated [16].

There have been no randomized clinical trials on the treatment because the disease is
extremely rare. FGF23 replacement or gene therapy is not feasible at this point in medical
science. Currently, published single clinical cases or series are the primary source of
data regarding the efficacy of conservative treatment [61]. Individual results vary, and
assessment measures include reduced serum phosphorus levels, increased phosphate
excretion, decreased tumor size, and resolution [62] achieved through limited phosphorus
intake and reabsorption [63,64].

In addition to diet, phosphate-binding chelating drugs like oral aluminum hydrox-
ide can help reduce phosphorus [64–66]. The combination with acetazolamide may po-
tentially be beneficial by increasing phosphaturia [67]. In one small trial, researchers
found a significant clinical and radiographic decrease in ectopic calcifications following
5 months of topical sodium thiosulfate administration [68]. When treated with ketocona-
zole, the authors observed a decrease in 1,25-D levels, followed by a decrease in phosphate
levels [67,69]. There is no evidence that other types of agents or therapies, such as non-
steroidal anti-inflammatory drugs, calcitonin, bisphosphonates, and radiation, have any
relevant effect [2].

The treatment for lesions that interfere with joint function or cause pain and discomfort
is surgical removal of the tumor mass [70]. It appears macroscopically as a cyst filled
with a yellowish-white substance comprised of calcium hydroxyapatite crystals, calcium
carbonate, and calcium phosphate [33]. Partial removal has been associated with a higher
rate of recurrences than extreme removal [71,72].

A hypervascular area beyond the formation’s capsule has been found angiographically;
wider excision has been suggested to cause fewer recurrences [73]. Based on scientific
evidence, some authors advocate for a combination therapy strategy that includes a rigorous
low-phosphate diet, medicine, and surgery [74].

The patient’s genetic testing revealed a sequence change that replaces threonine,
which is neutral and polar, with alanine, which is neutral and non-polar, at codon 68 of the
FGF23 protein. This variant does not appear in population datasets (Genome Aggregation
Database, gnomAD, no frequency) [75]. Furthermore, this variant has not been described in
the literature among persons suffering from FGF23-related disorders. Moreover, algorithms
designed to predict the impact of missense changes on protein structure and function
(SIFT, PolyPhen-2, and Align-GVGD) all indicate that this variant is likely to be disruptive,
according to the laboratory. Given that this hitherto unknown mutation impacts the FGF
23 gene, it is highly probable that it will cause similar abnormalities linked to its function
through a mechanism found in other mutations of the same gene. In this regard, the
presented clinical case draws attention and provides an opportunity for new scientific
research and the conducting of experiments to prove the exact mechanisms associated with
the reported mutation c.202A>G (p.Thr68Ala).

The documented clinical case is the first and only one in the world to demonstrate the
potential function of this sort of mutation in the FGF23 gene in the formation of a disease
state, namely the hyperphosphatemic variety of tumor calcinosis. Furthermore, I predict
that this homozygous mutation is connected with the disease’s aggressive course and the
creation of several life-threatening arterial aneurysms. Such difficulties could theoretically
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be linked to any of the other eight mutations discovered in the woman, although this
should be the subject of substantial genetic research. After examining the patient’s parents’
family history and origins, it was discovered that they both came from a relatively small
village with around 300 persons in 1920, located about 5 km from the Greek border in
the Rhodope Mountains. Most of the population of the village are Bulgarian Muslims or
Bulgarian-Mohammedans. Islamization of this area occurred in the seventeenth century
during the time of the Ottoman Empire. I hypothesize that variant c.202A>G (p.Thr68Ala)
of the FGF23 gene mutation may have entered the village via genetic material originating
from Middle Easterners, the region from which the first reports of tumoral calcinosis cases
originated. Because of the isolated lifestyle of the village’s small population, I believe
there is a possibility of genetic fusion between blood relations bearing the mutation (the
patient’s mother and father), resulting in a homozygous state and disease manifestation in
the woman.

4. Conclusions

The presented case is unique in that it is the first time that a pathogenic mutation
variant c.202A>G (p.Thr68Ala) of the FGF23 gene has been reported, highly likely resulting
in the development of the extremely rare disease hyperphosphatemic tumoral calcinosis,
complicated by multiple vascular life-threatening aneurysms. Furthermore, an explanation
for its connection to an area where the disease has been shown to be prevalent is put
forth. It also serves as a foundation for further research on this kind of mutation, including
its spread throughout Europe. In this sense, the contemporary migrant movement of
individuals from the Middle East to the continent may raise the possibility of an increase
in the disease’s incidence and outward presentation in tight social communities, an issue
that will be the focus of future studies. The case study illustrates the necessity for further
scientific investigation into genetics to find a viable cure for this uncommon, debilitating
illness. The material also serves as an appeal to the global scientific community to spark
interest in the one and only instance of this kind of mutation, which could alter the course
of a young woman and mother’s life.
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