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Abstract: Circulating tumor DNA (ctDNA) holds promise as a biomarker for predicting clinical
responses to therapy in solid tumors, and multiple ctDNA assays are in development. However,
the heterogeneity in ctDNA levels prior to treatment (baseline) across different cancer types and
stages and across ctDNA assays has not been widely studied. Friends of Cancer Research formed a
collaboration across multiple commercial ctDNA assay developers to assess baseline ctDNA levels
across five cancer types in early- and late-stage disease. This retrospective study included eight
commercial ctDNA assay developers providing summary-level de-identified data for patients with
non-small cell lung cancer (NSCLC), bladder, breast, prostate, and head and neck squamous cell
carcinoma following a common analysis protocol. Baseline ctDNA levels across late-stage cancer
types were similarly detected, highlighting the potential use of ctDNA as a biomarker in these cancer
types. Variability was observed in ctDNA levels across assays in early-stage NSCLC, indicative
of the contribution of assay analytical performance and methodology on variability. We identified
key data elements, including assay characteristics and clinicopathological metadata, that need to
be standardized for future meta-analyses across multiple assays. This work facilitates evidence
generation opportunities to support the use of ctDNA as a biomarker for clinical response.
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1. Introduction

The measurement of circulating tumor DNA (ctDNA) has emerged as a promising
surrogate for disease burden and, by extension, a research tool to rapidly evaluate clinical
response across a myriad of therapeutic interventions. Emerging data continue to build
momentum around the various clinical and regulatory applications of ctDNA in oncology,
including predicting a patient’s response to therapy [1-5]. The use of ctDNA to predict
clinical response could enable faster identification and development of more effective drugs
and, importantly, support regulatory decision-making as an early endpoint predicting
long-term clinical outcomes [6-9]. Early endpoints that are “reasonably likely to predict
a clinical benefit” are increasingly important in oncology drug development to shorten
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development timelines and get effective drugs to patients faster [10]. The U.S. Food and
Drug Administration’s (FDA) Draft Guidance on the Use of Circulating Tumor DNA for
Early-Stage Solid Tumor Drug Development highlights the use of c¢tDNA as an early
endpoint in clinical trials; however, it also states that further data are needed to support its
use [11].

Although advancements in technologies are leading to more sensitive and precise
tools for detecting and measuring ctDNA, all technologies have inherent limitations and
variability [12]. Further, ctDNA may not be detected at sufficient levels to allow informative
analysis across all cancer types and stages. Thus, it is important to understand the extent
to which heterogeneity in ctDNA levels across different cancer types and stages stems
from tumor-specific factors, such as tumor shed rates, and technical factors, such as the
dynamic range of the assay for interpreting ctDNA measurement. Several efforts have
assessed the landscape of ctDNA detection across cancer types in large real-world evidence
cohorts [13-15]. However, these data are specific to a single technology, laboratory, or assay
and are focused largely in the advanced or metastatic setting where tumor biology may
be fundamentally different from earlier-stage cancer in which the application of ctDNA
as an early endpoint may be especially valuable. To evaluate the technical and biological
variability across cancer types and assays, a multi-assay study was conducted to investigate
baseline ctDNA levels (ctDNA levels prior to current cancer treatment) in multiple cancer
types and stages. We generated descriptive statistics to compare trends in baseline ctDNA
levels across assays by cancer type and stage through a collaborative effort with multiple
commercial assay developers. While informative, our findings identified key considerations
required to support broad data harmonization efforts to generate evidence for the use of
ctDNA as an early endpoint across assays and clinical settings.

2. Materials and Methods

Each assay developer retrospectively aggregated data from their database follow-
ing a common data analysis protocol, which specified data elements and analyses to
generate summary-level statistics across five cancer types (see Supplementary Materials,
Tables S1-53), with each assay dataset defined as a cohort. Patients included in this analysis
were adult patients, aged 18 or older at the date of ctDNA sample collection, diagnosed
with cancer, and had either not yet initiated anti-cancer therapy or had not received anti-
cancer therapy at the time of baseline sampling (see Supplementary Materials, Section S3).
Non-small cell lung cancer (NSCLC), bladder, breast, prostate, and head and neck squa-
mous cell carcinoma (HNSCC) cancers were analyzed due to the availability of baseline
ctDNA data from at least two assay developers. Patients were included if they had known
early- or late-stage cancer at the time of baseline sampling. Summary-level clinical and
demographic characteristics were reported for each cohort if known.

The pre-analytic cell free DNA (cfDNA) minimal technical data elements (MTDEs) [16]
proposed by the Blood Profiling Atlas in Cancer (BloodPAC) Consortium were used to
ensure that pre-analytical variability was similarly controlled across cohorts to reduce the
impact of pre-analytical factors. Assay characteristics were reported and aggregated across
developers. No patient-level identifiers and, thus, no protected health information were
revealed or exchanged in this process.

Summary-level data on baseline ctDNA levels for specific cancer types and stages
were reported by cohort. Following the ctDNA to Monitor Treatment Response (ctMoniTR)
project [9], summary-level statistics of sample size, median, mean, standard deviation (SD),
Interquartile Range (IQR), minimum and maximum for each of the median variant allele
frequency (VAF), maximum VAF, and mean VAF were reported for baseline ctDNA levels.
Descriptive statistics were used.
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3. Results
3.1. Assay Characteristics

Eight commercial assays measuring baseline ctDNA were blinded and included in the
analysis (labeled Cohort A-I). Five assays (62.5%) were tumor-informed (i.e., mutations
identified in the primary tumor tissue that are tracked in the plasma), and three (37.5%)
were tumor-naive (i.e., mutations were detected de novo from the plasma). All but one
assay (87.5%) used next-generation sequencing (NGS); the remaining assay used droplet
digital PCR (ddPCR). Half (4/8) of the assays did not conduct clonal hematopoiesis of
indeterminate potential (CHIP) filtering, three (37.5%) used bioinformatic methods, and
one (12.5%) used germline sequencing methods to filter for CHIP variants. All assays
assessed single nucleotide variants (SNVs) with a median limit of detection (LOD) of 0.2%
VAF (range, 0.0011-0.5%).

3.2. Sample Characteristics

Across the eight cohorts, data from early- and late-stage samples were provided for
NSCLC, with 2357 early-stage and 62,994 late-stage samples and 87,209 total samples across
all five late-stage cancer types (Table 1). Most cohorts did not have data available for AJCC
staging, prior anti-cancer treatments, recurrence or progression status, and the type of
recurrence. The timing of ctDNA sampling relative to diagnosis varied across cohorts, with
long durations observed in late-stage cancers.
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Table 1. Clinicopathological characteristics and baseline ctDNA VAFs by assay cohort !.
A: Early- and Late-Stage Non-Small Cell Lung Cancer (NSCLC)
NSCLC
Early Stage Late Stage
Cohort A B D E I A B C D F G
N (samples) 245 1873 679 78 131 1232 31,889 23,157 2452 264 4000
Age (median, years) 70 70 70 Unkn 63 69 67 68 Unkn 70 73
Gender (% female) 48 49 49 49 35 49 50 52 49 52 53
Clinical Stage
I 19 15 53 48 0 0 0 0 0
1I 15 17 28 17 0 0 0 0 0
1T 11 29 68 19 35 5 1 0 0 15 0
v 0 0 0 13 7 0 100 82 0
Unknown 82 37 0 82 92 100 0 3 100
Prior Anti-Cancer Treatments
Known Tx 18 21 0 0 0 18 3 0 0 0 0
None 1 42 0 0 100 11 0 0 0 0
Unknown 81 37 100 100 0 71 91 100 100 100 100
Recurrence/Progression Status
No prior cancer 2 11 0 0 100 0 1 0 0 0 0
Unknown 95 86 100 100 0 97 98 100 100 100 100
Timing of Sampling, days from
diagngSis to f’fQ%;f‘g' (I};‘edia“ gt .‘é?’s’ (16, %%4.3) (132,236) <B4 a 1 1 (332%'550.8) (13,23?1.8) (7,122) (9,137>6) <84 Unkn
Frequency of ctDNA Detected in 232 3.1 89.7 513 85.5 37.6 79 924 924 77.3 99.6
ples (%)
Median VAF (IQR) (071,'%_3) 16092 (a0 144) 0.09 4((2)502' 0‘00})'(2%-001' wdhe (172,'65_8) 0532 1.33 42%75' 3.49 (2.67,8.21) 13(0.6,32)
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Table 1. Cont.
B: Late-Stage Breast, Bladder, Prostate, and HNSCC Cancers
Late Stage
Breast Bladder Prostate HNSCC
Cohort C D G C D G C D G C D G
N (samples) 2572 1020 6940 500 282 577 1100 633 9502 274 136 546
Age (median, years) 62 61 64 72 71 73 70 68 74 64 62 64
Gender (% female) 98 100 99 29 26 25 0 0 0 22 24 23
Clinical Stage
I 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0
1T 0 0 0 0 0 0 0 0 0 0 0
v 0 100 0 0 100 0 0 100 0 0 100 0
Unknown 100 0 100 100 0 100 100 0 100 100 0 100
Prior Anti-Cancer Treatments
Known Tx 0 0 0 0 0 0 0 0 0 0 0 0
None 0 0 0 0 0 0 0 0 0 0 0 0
Unknown 100 100 100 100 100 100 100 100 100 100 100 100
Recurrence/Progression Status
No prior cancer 0 0 0 0 0 0 0 0 0 0 0 0
Unknown 100 100 100 100 100 100 100 100 100 100 100 100
Timing of Sampling, days from
diagnosis to (SISQHI‘QP;?“% (median (16,2%20) (203,575) Unkn (11,7g57) (352,47141) Unkn (9,1121%8.5) (21,412255) Unkn (9,9772'3.5) (24?1135) Unkn
Frequency of ctDNA Detected in 89.6 921 99.5 93 90.1 99.3 845 86.3 99.6 88.3 87.5 99.4
ples (%)
Median VAF (IQR) (05?,’%.4) 1'3;.1(8579' (0.731,'45.22) (0.2,'3.5) 2'165.3%44' (0.&[2.4) (0.3(&)3',62.2) 1'021(2556' (0.71,'%1.8) (o.i’,‘?.m O'718.5(£;:)526' (o.sg,'i.w)

! Tx: treatment, Unkn: unknown, IQR: Interquartile Range.
values from all somatic tumor-derived variants.

Cohorts in red are tumor-informed assays, and cohorts in black are tumor-naive assays. Median VAF—the median of VAF
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3.3. Baseline ctDNA Levels

In comparing early- versus late-stage NSCLC, the frequency of ctDNA detection
varied across cohorts, with late-stage NSCLC having a higher proportion of samples with
detected ctDNA than early-stage in data from assays that had both early- and late-stage data
available (Table 1, Figure 1). For those samples with detected ctDNA, late-stage NSCLC
samples generally appeared to have higher levels as compared to early-stage samples, with
cohort variability observed. Across the late-stage cancer types evaluated, baseline ctDNA
was similarly detected across most samples across cohorts (Table 1, Figure 2). For the three
assays with data available across all five late-stage cancer types, baseline ctDNA levels
were similar across cancer types and assays.
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Figure 1. NSCLC baseline ctDNA levels for samples with detected ctDNA. Median VAF (IQR) ctDNA
levels for samples with detected ctDNA by cohort, with the proportion of total cohort samples
with detected ctDNA shown below the graph. Cohorts in red are tumor-informed assays, and
cohorts in black are tumor-naive assays. Median VAF—the median of VAF values from all somatic
tumor-derived variants.
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Figure 2. Late-Stage baseline ctDNA levels for samples with detected ctDNA. Median (IQR) VAF
ctDNA levels for samples with detected ctDNA by cohort, with the proportion of total cohort samples
with detected ctDNA shown below the graph. Colored points highlight the different cancer types.
Cohorts in red are tumor-informed assays, and cohorts in black are tumor-naive assays. Median
VAF—the median of VAF values from all somatic tumor-derived variants.



Diagnostics 2024, 14,912

7 of 9

4. Discussion

This collaborative effort evaluated baseline ctDNA levels by cancer type and stage
across different assays to identify overall trends and considerations to support future data
harmonization efforts to generate evidence for the use of ctDNA as an early endpoint.
Overall, baseline ctDNA levels across late-stage NSCLC, breast, bladder, prostate, and
HNSCC cancers were similarly detected, suggesting the potential opportunity to use ctDNA
as a clinical biomarker in these cancer types. Conversely, more variability in ctDNA levels
across assays was observed in early-stage NSCLC than in late-stage disease, highlighting
the critical need to consider factors such as assay analytical performance and methodology
for evaluating ctDNA in this setting [17].

Assay characteristics, including the intended use, features assessed, and analytical
performance, were variable, leading to difficulties in interpreting aggregated data. The
development of common data standards could help allow more robust comparisons across
assay datasets [18]. The heterogeneity in approaches to identifying SNVs (e.g., tumor-
informed or naive) and CHIP filtering can cause variability between assays for samples
determined to have detected ctDNA. For example, our study explored mean, median, and
maximum VAF (median reported herein) and observed biases in mean and maximum
VAF values in some cohorts due to conflation by high VAF values derived from suspected
germline variants. However, median VAF may also misrepresent data when ctDNA levels
are low (e.g., in the stochastic range) and bias against the lower range of detection. There-
fore, setting standards for how ctDNA levels are reported across assays as well as a clear
understanding of the methodology for obtaining ctDNA values are critical.

Real-world data are a valuable source of data for analyses but provide challenges
in meta-analyses due to data missingness and heterogeneity [19]. The availability of
clinicopathological data was generally lacking across cohorts in this study. Each developer
could confidently categorize their samples as either early- or late-stage disease. Many
could not provide the AJCC clinical staging, which may impact observed ctDNA levels
given differences in tumor shedding by stage, and data on prior anti-cancer treatments
and recurrence or progression status were mostly unknown. The lack of available clinical
data was not surprising given that assay developers included in this analysis were clinical
laboratories providing testing as a service to health systems and may not have routine
access to comprehensive clinical data for each sample tested. However, an understanding
of prior treatment is critical to define baselines, as samples may be included from patients
who are treatment-naive, as well as patients who have received prior anti-cancer treatment
and subsequently recurred or progressed. Due to unknown clinicopathological factors,
treatment or surgical intervention status, and sample collection timing from diagnosis,
significant cohort heterogeneity may complicate comparisons across cohorts.

The timing from diagnosis to sampling was heterogeneous, especially in late-stage
cancers, which could be affected by the intended use of the test when ctDNA analysis
is conducted during the patient journey. This variability, along with other anti-cancer
treatments or modalities that could impact ctDNA levels, highlights the importance of
defining minimal criteria for the length of time between diagnosis and sampling. This
may potentially avoid variability surrounding long timeframes. As a result, it is important
to identify and standardize key data elements, including assay characteristics and clini-
copathological data, to facilitate robust evidence generation to support the use of ctDNA
as an early endpoint, leading to more harmonized and effective use of ctDNA in future
clinical research and care.

5. Conclusions

To support the future use of ctDNA as an early endpoint, meta-analyses across assays,
supported by appropriate clinicopathological metadata, are needed for multiple cancer
types and stages. This collaborative effort has enabled the evaluation of baseline ctDNA
levels by cancer type and stage across different assays to identify overall trends and
considerations. This effort supports future data harmonization efforts to validate the use
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of ctDNA as an early endpoint, highlighting the potential opportunity to use ctDNA as
a clinical biomarker in late-stage NSCLC, breast, bladder, prostate, and HNSCC cancers
due to the similar detection of baseline ctDNA levels across these cancer types. However,
more variability in ctDNA levels across assays was observed in early-stage NSCLC than in
late-stage types, underscoring the importance of evaluating factors such as assay analytical
performance and methodology in this setting.

Given the heterogeneity of data from real-world sources, routine collection and analy-
sis of ctDNA from patients in oncology clinical trials may provide more comprehensive
and standardized clinical data and assure within-cohort control over technical variability.
The development of common data standards and an understanding of assay technological
features and key performance characteristics can improve the poolability of data gener-
ated using different assays. The learnings from this study, such as the need to address
the heterogeneity in approaches to identifying SNVs and the challenges posed by assay
characteristic variability, underscore the complexity of interpreting aggregated data and the
importance of developing methodological approaches to combine data from different trials
and assays. These highlighted data needs can facilitate future pooled analyses to generate
robust evidence to support the use of ctDNA as a biomarker and early endpoint, setting
the stage for a more harmonized and effective approach to oncology drug development
and patient care.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/diagnostics14090912 /s1: Supplementary Protocol: Introduction, Ob-
jective, Study Cohort, Data Collection, Statistical Considerations, Data Dictionary and Table S1: Study
variable definitions; Table S2: Pre-analytic technical specification elements; Table S3: ctDNA results.
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