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Abstract: Background and objective: The symptoms of most neurodegenerative diseases, including
Parkinson’s disease (PD), usually do not occur until substantial neuronal loss occurs. This makes the
process of early diagnosis very challenging. Hence, this research used variant call format (VCF) analy-
sis to detect variants and novel genes that could be used as prognostic indicators in the early diagnosis
of prodromal PD. Materials and Methods: Data were obtained from the Parkinson’s Progression
Markers Initiative (PPMI), and we analyzed prodromal patients with gVCF data collected in the
2021 cohort. A total of 304 participants were included, including 100 healthy controls, 146 prodromal
genetic individuals, 21 prodromal hyposmia individuals, and 37 prodromal individuals with RBD. A
pipeline was developed to process the samples from gVCF to reach variant annotation and pathway
and disease association analysis. Results: Novel variant percentages were detected in the analyzed
prodromal subgroups. The prodromal subgroup analysis revealed novel variations of 1.0%, 1.2%,
0.6%, 0.3%, 0.5%, and 0.4% for the genetic male, genetic female, hyposmia male, hyposmia female,
RBD male, and RBD female groups, respectively. Interestingly, 12 potentially novel loci (MTF2,
PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300, and PPP6R2) that were
recently detected in PD patients were detected in the prodromal stage of PD. Conclusions: Genetic
biomarkers are crucial for the early detection of Parkinson’s disease and its prodromal stage. The
novel PD genes detected in prodromal patients could aid in the use of gene biomarkers for early
diagnosis of the prodromal stage without relying only on phenotypic traits.

Keywords: Parkinson’s disease (PD); the Parkinson’s Progression Markers Initiative (PPMI); VCF;
neurodegenerative diseases

1. Introduction

The early detection of Parkinson’s Disease is an important factor in successful in-
tervention. One of the areas worth studying is the prodromal stage of PD. In this paper,
we studied the Parkinson’s Progression Markers Initiative (PPMI) genetic data, trying to
identify the novel variants that are more prevalent in this stage of the disease. Several new
genes were identified that may be related to the prodromal stage of PD and can help as
early markers of the disease.

Parkinson’s disease (PD) is a neurodegenerative disease that is pathologically defined
as the death of dopaminergic neurons in the midbrain and the inclusion of Lewy bodies in
the brain [1]. It has become obvious that PD has a prodromal stage, which is the period
before the beginning of neurodegeneration without detection of motor signs by classical
diagnosis. The basis of the nonmotor prodromal stage is that the pathological process
cannot yet occur in the substantia nigra pars compacta (SNpc) [2]. The classical diagnosis of
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PD relies on the loss of mesodiencephalic dopaminergic (mdDA) neurons in the substantia
nigra pars compacta (SNpc) and the development of Lewy bodies in some surviving
neurons [3].

Early investigations focused on the role of genetic factors in Parkinson’s disease to
identify rare mutations linked to familial disease [4]. Moreover, the past decade has shown
the great role of genetics in sporadic disease [5]. The identification of novel variants and
genes for the early diagnosis of the prodromal and/or PD stages is receiving increased
amounts of attention [6]. Variant call format (VCF) is becoming a community standard
for reporting variations in genetic data acquired from medical genetic diagnostics and
research [7].

In this study, we analyzed gVCF data acquired from the Parkinson’s Progression
Markers Initiative (PPMI) for healthy participants and prodromal PD patients. The PPMI is
a comprehensive, international, and observational study designed to identify PD progres-
sion biomarkers, initiated by the Michael J. Fox foundation in 2010. All data integrated in
this study can be found at the PPMI official website at www.ppmi-info.org, accessed on
1 April 2024 [8].

The prodromal PD subgroups involved in this study were genetic, RBD, and hyposmia.
Sleep behavior disorder (RBD), a rapid eye movement (REM) disorder, is a parasomnia
condition characterized by complex abnormal motor movements in the REM state during
sleep [9]. RBD is mainly associated with abnormal movement behaviors, nightmares, and
the loss of normal skeletal atonia in the REM state [10]. Moreover, hyposmia is an olfactory
dysfunction that leads to a loss of smell ability and is the most common nonmotor symptom
of PD [11].

This study was based on annotation, biological pathway, and disease association
analyses of prodromal patients with PD. We detected the percentages and types of variation
in each population with their percentile on each chromosome alongside the novel/existing
variants percentages, as shown in Table 1. The gene lists were generated and are presented
as gene-annotation network clusters and bar charts, which enabled us to detect novel
genes with counts in prodromal stages identified recently in PD patients. Furthermore, the
summary of the detected pathways and association disease analysis from DisGeNET and
HPO datasets is illustrated in Table 2.

Table 1. General statistics of the variation analysis results for the healthy control (HC) (male and
female), prodromal PD (genetic male and female), prodromal PD (RBD male and female), and
prodromal PD (hyposmia male and female) populations.

Population
No. of

Samples in
Population

Lines of Input Processed
Variants Novel/Existing Variants Overlapped

Genes
Overlapped
Transcripts

HC_Male 50 18,191,327 18,191,327 168,623 (0.9%)/18,022,704 (99.1%) 61,987 250,277

HC_Female 50 18,387,115 18,387,115 182,458 (1.0%)/18,204,657 (99.0%) 61,663 249,831

Pro_Gen_Male 61 17,763,968 17,763,968 179,814 (1.0%)/17,584,154 (99.0%) 62,009 250,316

Pro_Gen_Female 85 19,371,326 19,371,326 228,369 (1.2%)/19,142,957 (98.8%) 61,655 249,834

Pro_RBD_Male 31 12,264,624 12,264,624 63,331 (0.5%)/12,201,293 (99.5%) 61,898 250,173

Pro_RBD_Female 6 9,568,588 9,568,588 40,093 (0.4%)/9,528,495 (99.6%) 61,542 249,619

Pro_Hypo_Male 14 12,081,647 12,081,647 69,229 (0.6%)/12,012,418 (99.4%) 61,924 250,185

Pro_Hypo_Female 7 9,942,790 9,942,790 29,510 (0.3%)/9,913,280 (99.7%) 61,565 249,627

www.ppmi-info.org
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Table 2. Summary of the pathway and association disease analysis representing the major diseases
detected from datasets of DisGeNET and HPO, along with the number of genes involved for them in
each population.

Population Disease Number of Genes Dataset

HC_Male
Acquired Hypogammaglobulinemia 11 DisGeNET

Hyperinsulinemia 120 HPO

HC_Female
Dermatologic Disorders 75 DisGeNET

Autosomal Dominant Inheritance 1828 HPO

Pro_Gen_Male
Pheochromocytoma 19 DisGeNET

Cerebral Hemorrhage 62 HPO

Pro_Gen_Female
Single Seizure 101 DisGeNET

Autosomal Dominant Inheritance 1828 HPO

Pro_RBD_Male
Cone–Rod Synaptic Disorder (CRSD) 13 DisGeNET

Respiratory Insufficiency Due to Muscle Weakness 79 HPO

Pro_RBD_Female
Autosomal Recessive Primary Microcephaly 22 DisGeNET

Autosomal Dominant Inheritance 1828 HPO

Pro_Hypo_Male
Arthritis; Adjuvant-Induced 40 DisGeNET

Prenatal Maternal Abnormality 23 HPO

Pro_Hypo_Female
Familial Alzheimer’s Disease (FAD) 99 DisGeNET

Autosomal Dominant Inheritance 1828 HPO

2. Materials and Methods
2.1. PPMI—Data Collection

The data were obtained from the Parkinson Progression Markers Initiative (PPMI).
The PPMI is an international, multisite, prospective, and observational study investigating
biomarkers for Parkinson’s disease (PD). The specific study methodology can be found at
www.ppmi-info.org (accessed on 1 April 2024).

2.2. PPMI—Study Participants

The participants in the PPMI study met these criteria: were at least 30 years of age,
presented two of three cardinal symptoms (bradykinesia, rigidity, or resting tremor), were
diagnosed within 2 years before entering that study, were untreated for PD when enter-
ing that study, and had a deficit in dopamine transporters [12]. On the other hand, the
healthy control participant criteria were the following: having no neurological disorder, no
first-degree relative with PD, and a normal dopamine transporter (DAT) identified through
single-photon emission computed tomography (SPECT) imaging by visual inspection [8].
Written informed consent was obtained from all the participants in the PPMI study, in-
cluding for the genetic research part. The PPMI study was conducted under the ethical
standards of the Helsinki Declaration of 1975.

2.3. Study Design

In this study, we considered the very recent cohort from the PPMI, the April 2021
cohort, which generally represents the prodromal PD population and healthy participants.
A pipeline was developed for this work; gVCF files were used as input, and analyses
were performed to convert gVCF files to VCF files, apply variant quality control, extract
summaries of all variants in each chromosome, merge filtered VCF files and annotating
variants, and finally carry out pathway analysis and disease association, as illustrated in
Figure 1.

www.ppmi-info.org
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Figure 1. Pipeline workflow diagram for the genomic variation analysis. This pipeline takes gVCF 
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pathway analysis, and disease association. 
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card tools, and Variant Effect Predictor (VEP) [16]. These tools were used to perform the 
specified analyses within the pipeline. The BCFtools thresholds for filtering the variants 
were a quality score (QUAL) ≥30 and a read depth (DP) >20.  

These gVCF data consisted of 100 healthy controls (HCs) and 165 prodromal individ-
uals, comprising 146 genetic, 21 with hyposmia, and 37 with RBD. The HCs were divided 
into 50 males and 50 females. The prodromal genetic group included 61 males and 85 
females, the prodromal RBD group included 31 males and 6 females, and the prodromal 
hyposmia group included 14 males and 7 females. The participants were classified based 
on their age, and each age group consisted of 5 years, as shown in Figure 2. 
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Figure 1. Pipeline workflow diagram for the genomic variation analysis. This pipeline takes gVCF
files as input and performs the following analyses: convert gVCF to VCF, variant quality control,
extract summary of all variants in each chromosome, merge VCF filtered files, variant annotation,
pathway analysis, and disease association.

The following bioinformatics tools were installed: Genome Analysis Toolkit (GATK) [13],
Variant Call Format tools (VCFtools) [7], Binary Calling Format tools (BCFtools), Sequence
Alignment/Map tools (SAMtools) [14], Burrows–Wheeler Aligner (BWA) [15], Picard tools,
and Variant Effect Predictor (VEP) [16]. These tools were used to perform the specified
analyses within the pipeline. The BCFtools thresholds for filtering the variants were a
quality score (QUAL) ≥30 and a read depth (DP) >20.

These gVCF data consisted of 100 healthy controls (HCs) and 165 prodromal individu-
als, comprising 146 genetic, 21 with hyposmia, and 37 with RBD. The HCs were divided into
50 males and 50 females. The prodromal genetic group included 61 males and 85 females,
the prodromal RBD group included 31 males and 6 females, and the prodromal hyposmia
group included 14 males and 7 females. The participants were classified based on their age,
and each age group consisted of 5 years, as shown in Figure 2.
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3. High Percentage of Intronic and Intergenic Variants

The Ensembl Variant Effect Predictor (VEP) is a powerful tool for analyzing genomic
variation in coding and noncoding regions. It also provides access to a very extensive
collection of genomic annotations [16].

In this study, the VEP was used for annotation analyses and the detection of genomic
variations and their associations. The highest two percentages of variation were detected for
intronic and intergenic variants, as illustrated in Figure 3A. Similarly, 51.5% and 35.3% of the
healthy control male and female populations, respectively, exhibited the same percentages
of intron variants and intergenic variants. Among those in the prodromal genetic male
population, 51.3% had intron variants and 35.6% had intergenic variants, while among
those in the prodromal genetic female population, 51.2% had intron variants and 35.7%
had intergenic variants. The prodromal RBD males and females had the same percentages
of intron variants and intergenic variants (52% and 34.8%, respectively). Among the males
with prodromal hyposmia, 51.8% had intron variants and 35% had intergenic variants;
moreover, among the females with prodromal hyposmia, 51.9% had intron variants and
34.9% had intergenic variants.

The detection of variants in the intronic and intergenic regions is common across the
entire human genome, as these noncoding regions make up half of the human noncoding
genome and can play important regulatory roles [17]. The presence of intronic and inter-
genic variants in the studied healthy population and prodromal populations suggests that
these variants are not specifically associated with prodromal PD. However, these findings
likely represent background genetic variation.

A single-nucleotide variant (SNV), also called a single-nucleotide polymorphism
(SNP), is a variant of a specific single nucleotide and occurs at a specific position in
the genome. Moreover, SNVs are the most common type of genetic variation [18].
This clearly explains the high percentages of SNVs detected in all the healthy and
prodromal populations presented in Figure 3B. All of the detected SNVs were ≥82% in
all populations.

Deletion mutations were detected as the second highest number of elements after
SNVs. The two highest percentages of deletions were detected in the RBD females and hy-
posmia females (7.9% and 7.8%, respectively). These deletion mutations may be associated
with genetic factors involved in the development of hyposmia and RBD in individuals,
specifically females. Moreover, these deletions could contain genes or regulatory regions
relevant to olfactory function and sleep regulation. A sex difference could be related to the
association between high deletion percentages and prodromal symptoms in females [19].
This could suggest potential sex-specific genetic risk factors for PD. Consequently, the two
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most common insertion mutations were detected in 7.9% of the RBD females and 7.8%
of the hyposmia females, as shown in Figure 2B. The detection of insertions in the RBD
and hyposmia populations suggested genetic variability within these groups. These high
percentages of insertions could be associated with disease susceptibility or progression.
Additionally, depending on their location within the genome, these insertions can have
various functional consequences.
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Figure 3. (A) Pie chart visualization of the most severe variant consequences, (B) pie chart visu-
alization of the variant classes, and (C) bar plot visualization of variants by chromosome for each
population. Pie charts and bar plots were generated using the ensemble VEP tool.
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Chromosomes 1 and 2 are among the largest chromosomes in the human genome and
contain a large number of genes and regulatory elements [20]. Therefore, these genes may
represent a greater number of variants simply because of their size and gene density. High
percentages of variants were detected in all the analyzed samples, including those of the
healthy controls. The healthy control males had variant counts of 1,500,086 on chr1 and
1,423,662 on chr2, while the healthy control females had variant counts of 1,509,369 on chr1
and 1,441,362 on chr2 (Figure 3C). Consequently, it could be normal to find these variants
in prodromal populations. However, chromosomes 1 and 2 may influence the biological
processes relevant to PD, such as mitochondrial function, protein aggregation, the oxidative
stress response, and neuroinflammation. Understanding how variants in these genomic
regions affect the molecular pathways associated with PD is crucial for providing insights
into disease mechanisms. Gene-annotation network cluster and pathway analyses are
shown in Figures 4–6.

All the input lines of the variants were processed, and the number of filtered variants
was zero in all the populations. We used the filtered VCF file that we produced during
the pipeline after the QC step. That table showed that novel variation percentages were
detected in all the tested populations. The detection of novel genetic variations in healthy
populations is a natural consequence of genetic diversity and the complexity of the human
genome. As a result, the novel variation detected in the tested population may be natural
compared to the percentage of healthy controls. However, the chromosomal location and
type of variant, whether Indels or SNVs, could provide a deeper justification of whether
these variants could be potentially related to prodromal PD or whether they are just
natural variants.
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Figure 4. Network cluster connections based on gene pathway for the disease-gene network (Dis-
GeNET). (A) Healthy Control male (HC_Male), (B) Healthy Control female (HC_Female), (C) Prodro-
mal Genetic Male (Pro_Gen_Male), (D) Prodromal Genetic Female (Pro_Gen_Female), (E) Prodromal
RBD Male (Pro_RBD_Male), (F) Prodromal RBD Female (Pro_RBD_Female), (G) Prodromal Hypos-
mia Male (Pro_Hypo_Male), and (H) Prodromal Hyposmia Female (Pro_Hypo_Female). Networks
were generated with GeneCodis.4.
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Figure 5. Network cluster connections based on gene pathways for the Human Phenotype Ontology
(HPO). (A) Healthy Control male (HC_Male), (B) Healthy Control female (HC_Female), (C) Prodromal
Genetic Male (Pro_Gen_Male), (D) Prodromal Genetic Female (Pro_Gen_Female), (E) Prodromal RBD
Male (Pro_RBD_Male), (F) Prodromal RBD Female (Pro_RBD_Female), (G) Prodromal Hyposmia
Male (Pro_Hypo_Male), and (H) Prodromal Hyposmia Female (Pro_Hypo_Female). Networks were
generated with GeneCodis.4.
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Figure 6. Network cluster connections based on gene pathways for Online Mendelian In-
heritance in Man (OMIM). (A) Healthy Control male (HC_Male), (B) Healthy Control fe-
male (HC_Female), (C) Prodromal Genetic Male (Pro_Gen_Male), (D) Prodromal Genetic Fe-
male (Pro_Gen_Female), (E) Prodromal RBD Male (Pro_RBD_Male), (F) Prodromal RBD Female
(Pro_RBD_Female), (G) Prodromal Hyposmia Male (Pro_Hypo_Male), and (H) Prodromal Hyposmia
Female (Pro_Hypo_Female). Networks were generated with GeneCodis.4.

4. Disease–Gene Network (DisGeNET) Detection in Prodromal PD Populations

The disease–gene network, known as DisGeNET, is a comprehensive knowledge base
that integrates information on human disease-associated genes and variants from multiple
sources [21]. This database was accessed through the GeneCodis website, and annotation
was carried out through this tool [22]. Acquired hypogammaglobulinemia was detected in
the heathy male population, in which 11 genes were associated with this disease. Acquired
hypogammaglobulinemia is also known as secondary hypogammaglobulinemia and is a
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condition characterized by low levels of immunoglobulins (antibodies) in the blood. This
condition can increase the risk of infections and can occur due to various factors, such
as certain medications, underlying medical conditions, or environmental exposures [23].
Therefore, the detection of this disease in the healthy male population could be due to the
age of the participants, as 49 of the participants were aged ≥45 years, as shown in Figure 4.
On the other hand, 75 genes were detected to be related to dermatological disorders in the
healthy female population. Many dermatological disorders, including eczema, psoriasis,
acne, and others, involve multiple genes and have complex genetic architectures. Variations
in these genes can influence susceptibility to these conditions, and the involvement of
75 genes may indicate a polygenic inheritance pattern. Each gene may have a small effect
on the overall risk of developing dermatological disorders. Environmental factors also
contribute to disease susceptibility, and exposures to allergens, irritants, pollutants, UV
radiation, and microbial agents can interact with genetic predispositions to trigger or
exacerbate skin conditions.

Pheochromocytoma and hypertriglyceridemia were detected in the prodromal genetic
male population, with 19 and 15 genes, respectively. Pheochromocytoma (PCC) is a rare
neuroendocrine tumor that arises from the adrenal glands and can also occur elsewhere in
the sympathetic nervous system. It is characterized by the excessive production of cate-
cholamines, such as noradrenaline and adrenaline, which can cause a variety of symptoms,
including palpitations, hypertension, headache, anxiety, and sweating [24]. The detection
of pheochromocytoma in the prodromal genetic PD population is rare and unusual but
possible. While there is no known direct genetic link between PCC and PD, it is important
to note that both conditions can be influenced by genetic predispositions, environmental
factors, and complex interactions between various biological pathways. Additionally, sev-
eral genes associated with PD may have other roles in different cellular processes beyond
the central nervous system.

Hypertriglyceridemia is an elevated level of triglycerides in the blood and is a lipid
abnormality associated with an increased risk of cardiovascular disease [25]. Hypertriglyc-
eridemia is primarily influenced by lifestyle factors such as physical activity, diet, and
obesity. Genetic factors can also play a role in lipid metabolism and contribute to elevated
triglyceride levels. Investigating potential shared genetic predispositions between HTG
and PD may provide insights into overlapping biological pathways or susceptibility genes.
Furthermore, the dysregulation of lipid metabolism and glucose homeostasis has been
implicated in the pathogenesis of PD. Emerging evidence suggests potential links between
metabolic dysfunction, insulin resistance, and neurodegeneration in PD patients. Detecting
hypertriglyceridemia in individuals with prodromal genetic PD in the male population
may raise questions about underlying metabolic disturbances and their implications about
disease progression.

Among the prodromal genetic female population, single seizures were detected, with
101 genes. These seizures can be triggered by fever (febrile seizures), head injury, metabolic
disturbances, sleep deprivation, stress, alcohol, or drug withdrawal [26]. While PD primar-
ily affects dopaminergic neurons in the brain, there is evidence to suggest that individuals
with PD or in the prodromal stage may have an increased susceptibility to seizures com-
pared to the general population. Genetic factors, including mutations in genes associated
with both PD and epilepsy, could contribute to this increased risk. The involvement of
101 genes may indicate a polygenic or multifactorial basis for the seizure phenotype, with
variations in multiple genes contributing to the risk of seizures.

Cone–rod synaptic disorder (CRSD) was detected in 13 genes of the prodromal RBD
male population. CRSD is a rare genetic disorder characterized by dysfunction of the
synaptic connections between the cone and rod photoreceptor cells in the retina. This
leads to visual impairment, particularly affecting color vision, central vision, and visual
acuity [27]. Additionally, RBD is a rapid eye movement behavior disorder characterized by
the loss of muscle atonia during REM sleep, leading to the enactment of dreams through
vocalizations and movements. While CRSD primarily affects the retina, several genes



Diagnostics 2024, 14, 929 14 of 18

associated with retinal function may have broader roles in neuronal health and function.
Variants in these genes could contribute to neurodegenerative processes in conditions such
as PD.

Autosomal recessive primary microcephaly (MCPH) was detected in the prodromal
RBD female population, with 22 genes. MCPH is a rare neurodevelopmental disorder
characterized by significantly reduced head size (microcephaly) and intellectual disability.
It is inherited in an autosomal recessive manner, meaning that both copies of the affected
gene (one from each parent) must be mutated for the condition to manifest [28]. While
MCPH primarily affects brain development, several genes associated with neurodevel-
opmental disorders may have broader roles in neuronal health and function. Genetic
variations in these genes may contribute to neurodegenerative processes in conditions such
as prodromal RBD.

Adjuvant arthritis was detected in the prodromal hyposmia male population, with
40 genes. In humans, a type of reactive arthritis occurs when the immune system reacts to a
triggering event, such as an infection or exposure to certain substances. It typically presents
with joint pain, swelling, and stiffness, similar to other forms of inflammatory arthritis.
PD and autoimmune disorders such as rheumatoid arthritis (RA) have distinct etiologies,
and there is a growing recognition of shared genetic susceptibility and environmental
factors that may contribute to both conditions. However, when arthritis was detected, the
adjuvant-induced arthritis in the male population with prodromal hyposmia, involving
40 genes, suggested a complex interplay of genetic and environmental factors. More
importantly, this arthritis occurs at older ages, and all the hyposmic male patients were
aged ≥60 years. On the other hand, familial Alzheimer’s disease (FAD) was detected
in 99 prodromal hyposmia females. FAD is associated with mutations in specific genes,
including the amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2
(PSEN2) [29]. These mutations are typically inherited in an autosomal dominant manner,
meaning that a single copy of the mutated gene is sufficient to cause the disease. While
some genetic mutations may be associated with both Alzheimer’s disease and Parkinson’s
disease, detecting FAD in a prodromal hyposmia female population involving 99 genes
would need further in-depth investigations.

5. Detection of Human Phenotype Ontology (HPO) Data in Prodromal PD Populations

The HPO dataset is the Human Phenotype Ontology, which consists of phenotypic
abnormalities encountered in human disease [30].

Hyperinsulinemia was detected in the healthy male population, with 120 genes. Hy-
perinsulinemia is a condition characterized by higher-than-normal levels of insulin in
the blood. Insulin is a hormone, produced by pancreatic bet cells, that helps regulate
glucose levels by facilitating the uptake of glucose into cells for energy or storage [31].
The detection of hyperinsulinemia in the male population of HCs may suggest underlying
metabolic abnormalities or insulin resistance. Moreover, hyperinsulinemia can occur as a
compensatory response to insulin resistance and can be influenced by various factors, such
as diet, physical activity, genetics, and medications. This could also be justified by the older
ages of the healthy male population, as they were ≥45 years old.

The HPO results revealed that all the female populations, including the healthy popu-
lation, had the same gene network of autosomal dominant inheritance, with 1828 genes
being involved. Autosomal dominant inheritance is a pattern of inheritance for a trait or
disorder determined by genes located on autosomal chromosomes (non-sex chromosomes).
In other words, a single copy of the mutated gene, inherited from one parent, is sufficient
to express the trait or disorder. This means that individuals who inherit the mutated gene
from either parent will exhibit the trait or disorder. Examples of disorders with autosomal
dominant inheritance include Parkinson’s disease, Huntington’s disease, familial hyper-
cholesterolemia, Marfan syndrome, neurofibromatosis type 1, and some other forms of
familial Alzheimer’s disease [32].



Diagnostics 2024, 14, 929 15 of 18

Cerebral hemorrhage was detected in the prodromal genetic male population, with
62 genes. Cerebral hemorrhage is a medical condition characterized by bleeding within
brain tissues. It occurs when a blood vessel within the brain ruptures, leading to the
leakage of blood into the surrounding brain tissue. This bleeding can cause damage to
brain cells and disrupt normal brain function [33]. In general, cerebral hemorrhage is not
a common feature of prodromal PD. However, its detection in the prodromal genetic PD
male population suggests a potential overlap or interaction between the genetic factors
predisposing patients to PD and cerebrovascular events.

Respiratory insufficiency due to muscle weakness was detected in 79 genes in the
prodromal RBD male population. In this condition, the muscles involved in breathing
are unable to adequately perform their function, leading to impaired respiratory function.
This can occur because of various underlying causes, including neurological conditions,
neuromuscular disorders, or muscular dystrophies [34]. Detecting respiratory insufficiency
due to muscle weakness in the prodromal RBD PD male population, with 79 genes, may
suggest genetic predispositions or variants associated with neuromuscular or respiratory
function. Moreover, respiratory insufficiency in PD patients is more commonly associ-
ated with factors such as upper airway obstruction, aspiration pneumonia, or respiratory
muscle rigidity.

Prenatal maternal abnormalities were detected in the prodromal hyposmia male popu-
lation, with 23 genes. Prenatal maternal abnormalities are not linked to maternal health, but
they may also occur because of genetic conditions or mutations carried by the father, which
can be transmitted to the fetus and influence prenatal development and health outcomes.
Epigenetic modifications, such as DNA methylation patterns or histone modifications, can
reflect prenatal environmental exposures or maternal health conditions [35]. Epigenetic
changes could influence gene expression and neurodevelopmental processes relevant to
the PD risk.

6. Online Mendelian Inheritance in Man (OMIM) Detection in Prodromal
PD Populations

The OMIM database contains Mendelian Inheritance in Man. It is a comprehensive and
authoritative compendium of human genes, genetic disorders, syndromes, and traits [36].

The Online Mendelian Inheritance in Man was the third phenotypic dataset to be
used in this study to obtain a wider view of the whole of the three available phenotypic
databases. Notably, none of the populations exhibited significant pathway or significant
gene-network cluster annotations. However, one to four genes were detected from each
detected pathway. In the HC male population, idiopathic pulmonary fibrosis (IPF) was
detected, with four genes. IPF is a chronic and progressive lung disease characterized by
scarring (fibrosis) of the lungs, leading to impaired lung function and difficulty breathing.
The exact cause of IPF is unknown; however, IPF is believed to result from a combination
of environmental factors, genetic predispositions, and abnormal wound healing processes
in the lungs [37]. This could also be explained by the older age of the HC male population,
as mentioned previously.

The reason why there was no significant pathway or gene network detected could
be justified due to the rare Mendelian forms of PD. The known Mendelian forms of PD
include certain monogenic forms caused by mutations in genes such as PARK2, SNCA, and
LRRK2; these forms represent a small proportion of all PD cases, particularly those in the
prodromal stage [38].

7. Novel Gene Detection in Prodromal PD Populations

Interestingly, 12 potentially novel PD loci, recently detected by Kim [1], were found to
be present in prodromal populations. The 12 potentially novel loci were MTF2, PIK3CA,
ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300, and PPP6R2. Table 3 shows
the 12 novel genes and their counts in each prodromal population. This detection could
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lead to the use of these genes as potential genetic biomarkers for the early detection of
prodromal PD patients.

Table 3. Recently, 12 potentially novel PD genes were detected in the populations with prodromal PD
(genetic male and female), prodromal PD (adolescent and female), and prodromal PD (hyposmia
male and female).

Gene Name

Population Pro_Gen_Male
Gene Count

Pro_Gen_Female
Gene Count

Pro_RBD_Male
Gene Count

Pro_RBD_Female
Gene Count

Pro_Hypo_Male
Gene Count

Pro_Hypo_Female
Gene Count

MTF2 2985 3458 3065 1397 2035 1606

ADD1 9095 10,457 5535 3471 4404 3722

PIK3CA 2958 3072 1874 1390 1606 1830

SYBU 13,897 15,607 7991 5943 8012 6030

IRS2 237 291 192 138 210 147

USP8 5997 6524 4432 3358 4953 1953

PIGL 8277 9021 4350 2819 3902 2923

FASN 1184 1224 691 552 775 593

MYLK2 265 296 183 132 111 107

USP25 4081 4952 2672 753 2796 534

EP300 3146 3510 1704 1256 1790 1398

PPP6R2 5652 6393 3090 2693 3723 2561

8. Conclusions

Genetic composition plays a crucial role in the development of Parkinson’s disease and
its prodromal stage subgroups. The novel PD genes detected in prodromal patients could
aid in the use of gene biomarkers for early diagnosis of the prodromal stage without relying
only on phenotypic traits. The network clusters of the prodromal populations showed how
prodromal PD subgroups may be linked to a wide range of diseases and complications.
This is mainly because PD-related genetic factors may have other functions beyond the
nervous system that can result in other complications and illnesses throughout the human
body. However, further clinical research is needed to provide in-depth information about
the representative genetic results.
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