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Abstract: Insulin gene mutations affect the structure of insulin and are considered a leading cause
of neonatal diabetes and permanent neonatal diabetes mellitus PNDM. These mutations can affect
the production and secretion of insulin, resulting in inadequate insulin levels and subsequent hy-
perglycemia. Early discovery or prediction of PNDM can aid in better management and treatment.
The current study identified potential deleterious non-synonymous single nucleotide polymorphisms
nsSNPs in the INS gene. The analysis of the nsSNPs in the INS gene was conducted using bioinfor-
matics tools by implementing computational algorithms including SIFT, PolyPhen2, SNAP2, SNPs
& GO, PhD-SNP, MutPred2, I-Mutant, MuPro, and HOPE tools to investigate the prediction of the
potential association between nsSNPs in the INS gene and PNDM. Three mutations, C96Y, P52R,
and C96R, were shown to potentially reduce the stability and function of the INS protein. These
mutants were subjected to MDSs for structural analysis. Results suggested that these three potential
pathogenic mutations may affect the stability and functionality of the insulin protein encoded by the
INS gene. Therefore, these changes may influence the development of PNDM. Further researches are
required to fully understand the various effects of mutations in the INS gene on insulin synthesis and
function. These data can aid in genetic testing for PNDM to evaluate its risk and create treatment and
prevention strategies in personalized medicine.

Keywords: non-synonymous single nucleotide polymorphisms; insulin genes; permanent neonatal
diabetes mellitus; genetic variations; computational methods; personalized medicine

1. Introduction

Diabetes mellitus encompasses various metabolic disorders characterized by elevated
blood sugar levels due to impaired insulin secretion or increased insulin resistance [1]. The
dysfunction in the INS gene may contribute to the onset of diabetes mellitus [2]. The INS
gene is located on chromosome 11 in humans. Insulin is the primary name for the gene [3].

The synthesis and production of insulin hormone take place in beta cells in the Langer-
hans islet of the pancreas [4,5]. These two processes begin with the synthesis of a longer
precursor molecule called preproinsulin, the initial result of a translational product from the
INS gene [2,4]. Preproinsulin is a 110-amino-acid polypeptide with a 24-amino-acid signal
peptide. It is then cleaved to form proinsulin, which consists of an A chain, a B chain, and a
connecting peptide (C-peptide). Proinsulin undergoes further cleavage to form mature in-
sulin hormone and C-peptide. The C-peptide is released when insulin hormone is secreted
and serves as a marker for its production [2,6]. The INS gene is transcribed into mRNA,
which serves as a template for synthesizing insulin hormone. The mRNA is translated in
the endoplasmic reticulum, and the nascent preproinsulin undergoes post-translational
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modifications, including signal peptide cleavage [5]. Insulin hormone is packaged into
secretory granules within the pancreatic beta cells. It is released from beta cells in response
to elevated blood glucose levels in the circulation to regulate and maintain the elevated
blood glucose levels [7,8].

Neonatal diabetes typically manifests within the initial six months of life. Infants who
experience the early onset of diabetes frequently possess mutations in one allele of the gene
responsible for producing the insulin hormone [9]. Two types of neonatal diabetes mellitus
have been reported: permanent neonatal diabetes mellitus (PNDM) and transient neonatal
diabetes mellitus (TNDM) [10]. Mutations in the INS gene influence different phases of the
biosynthesis of insulin hormone. These mutations are thought to interfere with either the
cleavage process of the proinsulin chain or the assembly of the (A and B) chains to produce
insulin, resulting in disturbed glucose levels in the blood [11,12]. INS gene mutations were
described as a cause of PNDM [13,14].

As INS gene mutations were considered to affect the structure of insulin hormone and
prescribed as a leading cause of PNDM, prediction of these mutations can lead to the early
discovery or prediction of PNDM and better management and treatment of the disease.
This study was conducted to identify potentially deleterious nsSNPs in the INS gene.

2. Methodology
2.1. Work Plan

This study utilized a computational approach consistent with other previous stud-
ies [15]. Different bioinformatics tools were used in this study to assess the deleterious
effects of non-synonymous single-nucleotide polymorphisms (nsSNPs) in the INS gene.
The nsSNPs considered to have high-risk profiles were analyzed to evaluate their stability,
structural impact, and conservation. The methods used to identify and categorize putative
functional nsSNPs in the INS gene are shown in Figure 1.

Figure 1. Flowchart to identify and categorize nsSNPs in the INS gene; each step indicates the tools
used. If one nsSNP is considered deleterious in each step using certain tool it will be directly analyzed
in the following tool or in the next step using another computational tool. In steps 8 and 9, tools are
used to analyze and display structural changes.
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2.2. Data Collection

Data collection involved retrieving the nucleotide and amino acid sequences of the
insulin protein, identified by accession numbers NP_001278826.1 and NG_050578.1, re-
spectively, from the NCBI database in FASTA format. Information regarding single-
nucleotide polymorphisms (SNPs) within the INS gene was obtained from the SNP
database of NCBI via the following URL: http://www.ncbi.nlm.nih.gov/snp/ (accessed
on 26 September 2023). Data of the INS gene and insulin protein were sourced from the
PDB and UniProt databases, accessible using the web address https://www.uniprot.org/
uniprotkb/P01308/entry (accessed on 26 September 2023).

2.3. Investigation of the Impact of nsSNPs on Protein Function

The impact of genetic variation on protein function was investigated using several
tools, including Sorts Intolerant from Tolerant (SIFT), PolyPhen2, and SNAP2. The SIFT
sequences were performed through the website https://sift.bii.a-star.edu.sg/www/SIFT_
seq_submit2.html (accessed on 26 September 2023). SIFT predicts changes in protein
function resulting from amino acid sequence alterations [16]. The website http://genetics.
bwh.harvard.edu/pph2 (accessed on 26 September 2023) was accessed for PolyPhen2.
The PolyPhen2 predicts the potential impact of amino acid substitutions on protein function
and structure [17]. SNAP2 was accessed using https://www.rostlab.org/servces/snap/
(accessed on 26 September 2023). It predicts changes in secondary protein structure due
to nsSNPs [18].

The SIFT, PolyPhen2, and SNAP2 tools were employed to assess the potential effects
of SNPs; each offer unique approaches for classifying nsSNPs and determining confidence
scores using various input criteria. These tools were employed to assess the functional
consequences of non-synonymous single amino acid substitutions, differentiating between
substitutions that are tolerable and those that are detrimental to protein function. SIFT
predicts the impact of an amino acid change on protein function by analyzing sequence ho-
mology and the physical properties of amino acids [16]. A tolerance index score is assigned
by SIFT, with scores below 0.05 indicating deleterious variations [16]. The PolyPhen2
assigns a numerical value ranging from 0 to 1, to forecast the potential effect of an amino
acid substitution on the structure and function of a protein. A value of 0 indicates no
impact, while a value of 1 indicates the most harmful consequence [17]. In contrast, SNAP2
conducts a comparative analysis of genomes to predict potential functional consequences
of single amino acid substitutions at the protein level [18]. Deleterious SNPs identified
through all mentioned servers underwent further computational analysis.

2.4. Prediction of SNP Disease Association

The correlation between filtered SNPs and diseases was assessed using SNPS & GO
and Predictor of human Deleterious Single Nucleotide Polymorphisms (PhD-SNP) [19,20],
accessible at http://snps-and-go.biocomp.unibo.it/snps-and-go/ (accessed on 26 Septem-
ber 2023) and http://snps.biofold.org/phd-snp/phd-snp.html (accessed on 26 September
2023), respectively. SNPS & GO utilizes Support Vector Machine (SVM) computational
methods to detect harmful single amino acid substitutions, incorporating Gene Ontol-
ogy (GO) annotations for classification. Variants scoring above 0.5 are deemed disease-
causing [19]. The PhD-SNP utilizes a support vector machine (SVM) classifier to classify
disease-associated SNPs. During the classification method, the categorization of amino acid
changes as either neutral or disease-associated relies heavily on the exploitation of sequence
and profile data [20]. The sequence profile calculation entails utilizing an input vector
derived from the amino acid frequencies in both the wild-type and mutant sequences, the
number of matched sequences, and the conservation score at the replacement site. If the
PhD-SNP score exceeds 0.5, it indicates the existence of a mutation that is accountable for
the onset of a disease [20]. The SNPs that were found to be responsible for causing disease
and came across all mentioned servers were subjected to further computational analysis.

http://www.ncbi.nlm.nih.gov/snp/
https://www.uniprot.org/uniprotkb/P01308/entry
https://www.uniprot.org/uniprotkb/P01308/entry
https://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html
https://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html
http://genetics.bwh.harvard.edu/pph2
http://genetics.bwh.harvard.edu/pph2
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2.5. Prediction of SNPs on INS Protein Function Related to Pathogenicity

The MutPred2 web server, available at http://mutpred.mutdb.org (accessed on
26 September 2023), is used to classify mutations as either neutral or associated with
disease [21,22]. This tool applies a machine-learning approach to predict the molecu-
lar mechanisms underlying the pathogenicity of amino acid substitutions. By analyzing a
wide array of fifty different protein properties, it evaluates the effects of these substitutions.
A score greater than 0.5 indicates a mutation that may be pathogenic [21].

2.6. Impact of SNPs on Protein Stability

The I-Mutant algorithm, leveraging Support Vector Machine (SVM) technology, fore-
casts changes in protein stability induced by missense nsSNPs [23]. Its output, known as
the reliability index (RI), is scaled from 0 to 10, where a score of 10 represents the utmost
reliability. I-Mutant is available at http://folding.biofold.org/i-mutant/imutant2.0.html
(accessed on 26 September 2023). It requires the amino acid sequence of the INS protein
and details about the mutating residues, such as their locations, for its analysis. Addi-
tionally, the MuPro tool, accessible at https://mupro.proteomics.ics.uci.edu (accessed on
26 September 2023), is employed for evaluating protein stability [24]. MuPro utilizes ma-
chine learning approaches, including SVM and Neural Networks, to predict how individual
amino acid alterations affect protein stability. These methods were honed on an extensive
database of mutations and validated through a 20-fold cross-validation process, achieving
an accuracy rate of over 84%. Scores range between −1.0 and 1.0 to signify prediction
reliability. A significant benefit of these approaches is their capacity to foresee alterations in
protein stability without needing information on the tertiary structure.

2.7. Analysis of Protein Properties Utilizing the HOPE Tool

The HOPE software tool, which can be accessed at the URL https://www.cmbi.
umcn.nl/hope (accessed on 27 September 2023), is designed to streamline the analysis of
protein mutations [25]. It harnesses data from the UniProt database to assess the effects
of single-nucleotide variations on the structural and functional aspects of proteins. HOPE
produces in-depth reports that encompass textual explanations, graphical representations,
and interactive visualizations, offering a detailed view of the mutation’s consequences.
Mutants identified as deleterious nsSNPs by the previously mentioned tools were chosen
for further scrutiny. These selected mutants underwent Molecular Dynamics Simulation
(MDS) for an enhanced level of analysis.

2.8. Performing of Molecular Dynamics Simulations (MDSs)

To study changes in the structure over time in wild-type and mutant structures,
Molecular Dynamics Simulations (MDSs) were carried out using GROMACS version 2020.6
on a Google Collaboration Pro notebook with substantial RAM. The GROMACS-OPLS-AA
force field was used for initial calculations. Both systems were immersed in cubic boxes
filled halfway with water molecules, with a minimal radius of 1 nm. To balance the
system, 10 sodium ions (Na+) were introduced using the GROMACS genion tool. Energy
minimization was achieved through the steepest descent algorithm, with an energy step
size of 0.01 and a maximum of 50,000 iterations. The system’s stability was preserved at a
Parrinello–Rahman pressure of 1 bar and a Berendsen temperature of 300 K. Electrostatic
interactions were computed using the Partial Mesh Ewald (PME) technique, with a short-
range cut-off for electrostatic and van der Waals interactions set at 1.0 nm. The neighbor list
was updated every 10 ps. The LINCS algorithm, with a time step of 0.002 ps, maintained
all bond constraints, including heavy atom-H bonds. An isothermal compressibility of
4.5 × 10−5 was used, with coupling constants for temperature and pressure set to 0.1 ps
and 2.0 ps, respectively. The system underwent equilibration for 100 ps in both the NPT
(constant number of particles, pressure, and temperature) and NVT (constant number of
particles, volume, and temperature) ensembles, with a Berendsen temperature of 300 K
and a Parrinello–Rahman pressure of 1 bar. Trajectories were recorded every 1 ps during

http://mutpred.mutdb.org
http://folding.biofold.org/i-mutant/imutant2.0.html
https://mupro.proteomics.ics.uci.edu
https://www.cmbi.umcn.nl/hope
https://www.cmbi.umcn.nl/hope
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10 ns of molecular dynamics simulations for both wild-type and mutant structures. Various
analysis tools like g_rms, g_rmsf, g_sasa, g_Rg, and g_density were utilized to assess
parameters such as the RMSD (root-mean-square deviation), RMSF (root-mean-square
fluctuation), SASA (solvent accessible surface area), and Rg (radius of gyration) to compare
structural differences between the wild-type and mutant structures.

2.9. Displaying Three-Dimensional Structural Change Using PyMol Software

A 3D simulation of the wild-type INS protein and putative mutations was performed
to display structural changes using the PyMol software Version 2.0.

3. Results

This study aimed to identify the potential deleterious nsSNPs in the INS gene by
implementing computational algorithms including SIFT, PolyPhen2, SNAP2, SNPs & GO,
PhD-SNP, MutPred2, MuPro, and I-Mutant. These algorithms analyze the influence of
nsSNPs on Insulin protein function, stability, and disease association. Subsequently, the
HOPE software tool was utilized to evaluate the effect of nsSNPs on the structural and
functional properties of the INS gene. The nsSNPs predicted by all utilized algorithms
were analyzed for structural changes over time, in both wild-type and mutant structures,
through MDSs using the GROMACS tool.

3.1. Data Collection

SNPs associated with the INS gene and its corresponding Insulin protein sequence,
identified by UniProt ID P01308, were obtained from the NCBI dbSNP and UniProt Knowl-
edgebase databases. A total of 8,147,365 SNPs were mapped to the INS gene sequence.
Subsequently, 130 nsSNPs were detected in the coding region. These nsSNPs are suspected
to have the potential to cause missense mutations and significantly impact protein struc-
ture and function. The nsSNPs present in the coding sequence of the INS protein were
considered for our analysis.

3.2. Exploring the Influence of SNPs on Protein Function

The analysis in this study focused on predicting nsSNPs deleteriousness on the INS
gene to determine their potential impact on structural and functional properties. Out of
130 nsSNPs, 86 were classified as deleterious by the SIFT tool. Additionally, 67 nsSNPs
were identified as probably damaging and potentially harmful by the PolyPhen2 tool. Con-
firmation of the harmful effect of these nsSNPs was conducted using SNAP2. All identified
nsSNPs using the PolyPhen2 tool were confirmed as deleterious by SNAP2. Thus, a total of
67 nsSNPs were identified as the most deleterious based on the above-mentioned software
(Table 1). These 67 nsSNPs were used for further analysis in the next predicting tools.

Table 1. Functional analysis results using SIFT, PolyPhen-2, and SNAP2 tools. Transcription ID
is ENST00000381330.5.

NCBI DATABASE SIFT PolyPhen-2 SNAP2

Variant ID Allele MAF Mutation Prediction Score Prediction Score Prediction Accuracy %

rs28933985 C|G T = 0./0 R89P deleterious 0.00 Probably 1.00 74/85 85%

rs28933985 C|T T = 0./0 R89H deleterious 0.00 Probably 1.00 68/80 80%

rs80356664 C|G T = 0./0 G32R deleterious 0.00 Probably 1.00 95/95 95%

rs80356664 C|T T = 0./0 G32S deleterious 0.00 Probably 1.00 88//91 91%

rs80356666 A|C C = 0./0 C43G deleterious 0.00 Probably 1.00 86/91 91%

rs80356667 C|A A = 0./0 G47V deleterious 0.00 Probably 1.00 85/91 91%

rs80356668 A|C C = 0./0 F48C deleterious 0.00 Probably 1.00 81/91 91%

rs80356668 A|G C = 0./0 F48S deleterious 0.00 Probably 1.00 89/91 91%

rs80356669 G|A NA R89C deleterious 0.00 Probably 1.00 62/80 80%
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Table 1. Cont.

NCBI DATABASE SIFT PolyPhen-2 SNAP2

Variant ID Allele MAF Mutation Prediction Score Prediction Score Prediction Accuracy %

rs80356670 C|A A = 0./0 G90C deleterious 0.00 Probably 1.00 65//80 80%

rs80356671 C|G T = 0./0 C96S deleterious 0.01 Probably 0.995 81/91 91%

rs80356671 C|T T = 0./0 C96Y deleterious 0.00 Probably 1.00 87/91 91%

rs80356672 T|C C = 0./0 Y108C deleterious 0.00 Probably 1.00 78/85 85%

rs121908261 G|A A = 0./0 R55C deleterious 0.00 Probably 1.00 61/80 80%

rs121908272 G|C NA H29D deleterious 0.01 Probably 1.00 78/85 85%

rs121908273 A|G T = 0./0 L35P deleterious 0.00 Probably 1.00 96/95 95%

rs121908273 A|T T = 0./0 L35Q deleterious 0.00 Probably 1.00 91/95 95%

rs121908276 G|C NA S101C deleterious 0.00 Probably 1.00 54/75 75%

rs121908277 T|C NA Y103C deleterious 0.02 Probably 1.00 55/75 75%

rs121918102 C|A NA V92L deleterious 0.00 Probably 1.00 77/85 85%

rs145038693 G|A C = 0./0 P52L deleterious 0.00 Probably 1.00 73/85 85%

rs145038693 G|C C = 0./0 P52R deleterious 0.00 Probably 0.998 77/85 85%

rs145038693 G|T C = 0./0 P52H deleterious 0.00 Probably 1.00 75/85 85%

rs148685531 G|C A = 0.000142/2 F49L deleterious 0.00 Probably 0.994 81/91 91%

rs397515521 C|A NA M1I deleterious 0.00 Probably 0.981 77/85 85%

rs397515521 C|T NA M1I deleterious 0.00 Probably 0.981 77/85 85%

rs765512575 C|T T = 0.000105/2 G44R deleterious 0.00 Probably 0.996 86/91 91%

rs1057524907 T|C NA E93G deleterious 0.01 Probably 0.979 77/85 85%

rs1252051752 T|A NA S98C deleterious 0.04 Probably 0.996 37/66 66%

rs1278232284 G|A A = 0.000004/1 L35V deleterious 0.00 Probably 1.00 75/85 85%

rs1278232284 G|C A = 0.000004/1 L35M deleterious 0.00 Probably 1.00 77/85 85%

rs1564912274 T|C C = 0.000004/1 H34R deleterious 0.00 Probably 0.997 64/80 80%

rs1564912274 T|G C = 0.000004/1 H34P deleterious 0.00 Probably 0.999 82/91 91%

rs1845839718 A|G NA C96R deleterious 0.00 Probably 1.00 90/95 95%

rs2133672742 C|A NA C109F deleterious 0.00 Probably 1.00 83//91 91%

rs2133672778 A|C NA Y108D deleterious 0.00 Probably 1.00 90/95 95%

rs2133676660 G|A NA L39F deleterious 0.00 Probably 1.00 72/85 85%

rs2133676747 C|A NA G32V deleterious 0.00 Probably 1.00 88/91 91%

rs2133676771 A|C NA C31G deleterious 0.00 Probably 1.00 90//95 95%

rs28933985 C|T T = 0./0 R89H deleterious 0.00 Probably 1.00 68/80 80%

rs80356664 C|G T = 0./0 G32R deleterious 0.00 Probably 1.00 95/95 95%

rs80356664 C|T T = 0./0 G32S deleterious 0.00 Probably 1.00 88/91 91%

rs80356666 A|C C = 0./0 C43G deleterious 0.00 Probably 1.00 86//91 91%

rs80356667 C|A A = 0./0 G47V deleterious 0.00 Probably 1.00 85/91 91%

rs80356668 A|C C = 0./0 F48C deleterious 0.00 Probably 1.00 78/85 85%

rs80356668 A|G C = 0./0 F48S deleterious 0.00 Probably 1.00 77/85 85%

rs80356669 G|A NA R89C deleterious 0.00 Probably 1.00 62/80 80%

rs80356670 C|A A = 0./0 G90C deleterious 0.00 Probably 1.00 65/80 80%

rs80356671 C|G T = 0./0 C96S deleterious 0.01 Probably 0.995 81/91 91%

rs80356672 T|C C = 0./0 Y108C deleterious 0.00 Probably 1.00 78/85 85%

rs11557614 G|A A = 0./0 A38V deleterious 0.01 Probably 0.991 70/85 85%

rs144093133 C|A T = 0.000061/6 G75V deleterious 0.00 Probably 0.999 38/66 66%

rs202244834 T|G G = 0./0 K53T deleterious 0.02 Probably 0.963 54/75 75%
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Table 1. Cont.

NCBI DATABASE SIFT PolyPhen-2 SNAP2

Variant ID Allele MAF Mutation Prediction Score Prediction Score Prediction Accuracy %

rs760425445 C|T T = 0.000004/1 G90D deleterious 0.00 Probably 0.987 80/91 91%

rs781016664 G|A A = 0.000012/3 R56W deleterious 0.00 Probably 1.00 76/85 85%

rs983508038 C|T T = 0.000004/1 R56Q deleterious 0.00 Probably 1.00 57/75 75%

rs1182567488 T|G G = 0.000071/1 Q28H deleterious 0.00 Probably 0.995 58/75 75%

rs1184417816 C|T T = 0.000111/1 R55H deleterious 0.02 Probably 1.00 60/80 80%

rs1213888316 A|G G = 0./0 L11P deleterious 0.00 Probably 0.994 61/80 80%

rs1313322794 C|G G = 0.000004/1 G47R deleterious 0.00 Probably 1.00 91/95 95%

rs1313490068 A|G G = 0.000224/1 L13P deleterious 0.00 Probably 0.997 83/91 91%

rs1460766978 G|A A = 0./0 P52S deleterious 0.00 Probably 1.00 64/80 80%

rs1460766978 G|T A = 0./0 P52T deleterious 0.00 Probably 1.00 67/80 80%

rs1845838687 T|C C = 0./0 Q104R deleterious 0.02 Probably 0.976 59/75 75%

rs1845873763 C|T T = 0.00005/1 E59K deleterious 0.02 Probably 0.986 35/66 66%

rs1845879949 A|T T = 0./0 L14Q deleterious 0.00 Probably 1.00 61/80 80%

rs2133677126 A|T T = 0.00007/2 M1K deleterious 0.00 Probably 0.995 94/95 95%

NA = not available.

3.3. Prediction of SNP–Disease Association

A combined approach utilizing the SNP & GO and PhD-SNP tools was used to
analyze the 67 nsSNPs for disease susceptibility. Results of SNP & GO suggested that
all 67 nsSNPs were considered to have the potential to be associated with disease, with
scores ranging from 9 to 10. However, PhD-SNP analysis identified only 12 nsSNPs out of
the 67 as significantly correlated with disease. The remaining 55 nsSNPs showed neutral
effects (Table 2). These 12 variants were subjected to additional analysis to obtain their
potential impact.

Table 2. Pathogenicity analysis results using SNP & GO and PhD-SNP tools.

NCBI DATABASE SNPs & GO PhD-SNP.

Variant ID Allele Mutation Prediction SCORE Prediction SCORE

rs28933985 C|G R89P DISESASE 10 DISESASE 2

rs80356671 C|T C96Y DISESASE 10 DISESASE 1

rs121908273 A|G L35P DISESASE 10 DISESASE 3

rs145038693 G|A P52L DISESASE 10 DISESASE 1

rs145038693 G|C P52R DISESASE 10 DISESASE 2

rs145038693 G|T P52H DISESASE 9 DISESASE 1

rs765512575 C|T G44R DISESASE 10 DISESASE 0

rs1564912274 T|C H34R DISESASE 10 DISESASE 2

rs1564912274 T|G H34P DISESASE 10 DISESASE 1

rs1845839718 A|G C96R DISESASE 10 DISESASE 5

rs1460766978 G|A P52S DISESASE 10 DISESASE 0

rs1845879949 A|T L14Q DISESASE 9 DISESASE 5

3.4. Prediction of SNPs on INS Protein Function Related to Pathogenicity

This study examines the genetic pathways that cause disease and presents the prob-
ability ratings obtained from analyzing 12 different nsSNPs using the MutPred2 server.
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MutPred2 analysis categorized 8 out of the 12 examined nsSNPs as variants associated with
pathological conditions, indicating alterations in the protein’s structure (Table 3). Changes
included a loss of helix, disulfide linkage, and loop, and altered transmembrane protein,
signal peptide, ordered interface, and metal binding. However, MutPred2 predicted a
neutral impact on protein function for four mutants.

Table 3. Pathogenicity analysis results using MutPred2 tools.

NCBI DATABASE MUTPRED2

Variant ID Allele Mutation EFFECT SCORE

rs28933985 C|G R89P Affect 0.791

rs80356671 C|T C96Y Affect 0.860

rs121908273 A|G L35P Affect 0.925

rs145038693 G|C P52R Affect 0.570

rs765512575 C|T G44R Affect 0.716

rs1564912274 T|G H34P Affect 0.663

rs1845839718 A|G C96R Affect 0.910

rs1845879949 A|T L14Q Affect 0.627

3.5. Predicting the Impact of SNPs on Protein Stability

I-Mutant2.0 and MuPro software were used to investigate the impact of predicted
deleterious mutations on INS protein stability. Findings derived from I-Mutant2.0 exhibited
coherence, indicating that seven nsSNPs were anticipated to diminish the protein’s stability
in a decreasing manner. However, only one nsSNP was found to increase protein stability.
However, findings derived from MuPro indicated that four nsSNPs out of the seven were
anticipated to diminish the protein’s stability. Three nsSNPs were found to increase protein
stability (Table 4).

Table 4. Results of the impact of SNPs on protein stability analysis using I-MUTANT and MuPro tool.

NCBI DATABASE I-MUTANT MuPro

Variant ID Allele Mutation Stability Reliability Index EFFECT Confidence Score

rs28933985 C|G R89P DECREASE 5 Increase 0.078515012

rs80356671 C|T C96Y DECREASE 4 Decrease −0.080856117

rs121908273 A|G L35P DECREASE 4 Increase 0.065423903

rs145038693 G|C P52R DECREASE 0 Decrease −1.0

rs765512575 C|T G44R DECREASE 1 Increase 0.49104088

rs1845839718 A|G C96R DECREASE 8 Decrease −0.574683230494305

rs1845879949 A|T L14Q DECREASE 8 Decrease −0.62610731178958

3.6. Analysis of Protein Properties

The HOPE tool analysis revealed that three nsSNPs were predicted to damage protein
structure. However, L14Q was found not to affect the protein structure (Table 5). From the
HOPE report, the mutations (P52R) Proline into Arginine at position 52, (C96Y) Cysteine
into Tyrosine at position 96, and (C96R) Cysteine into Arginine at position 96 showed
that the mutant residue was bigger than the wild-type residue in all mutations. And the
Wild-type residue was more hydrophobic than the mutant residue. However, the Wild-type
residue charge was NEUTRAL and the Mutant residue charge was POSITIVE in mutations
(P52R and C96R), with no charge change in mutation (C96Y). The Mutant and the wild-type
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residues were not very similar in all mutants (P52R, C96Y, and C96R). All three mutations
were considered probably damaging to the protein.

Table 5. Summary of HOPE results for the different amino acid mutations of the INS gene.

Variant ID rs145038693 rs80356671 rs1845839718 rs1845879949

Mutations P52R C96Y C96R L14Q

Proline into Arginine at
position 52

Cysteine into Tyrosine
at position 96

Cysteine into Arginine
at position 96

Leucine into Glutamine
at position 14

Allele G|C C|T A|G A|T

Amino Acids
Properties

Size
The mutant residue is
bigger than the
wild-type residue.

The mutant residue is
bigger than the
wild-type residue.

The mutant residue is
bigger than the
wild-type residue

The mutant residue is
bigger than the
wild-type residue.

Hydrophobicity value
Wild-type residue is
more hydrophobic than
the mutant residue.

Wild-type residue is
more hydrophobic than
the mutant residue.

Wild-type residue is
more hydrophobic than
the mutant residue

Wild-type residue is
more hydrophobic than
the mutant residue.

Charge

Wild-type residue
charge was NEUTRAL No change Wild-type residue

charge was NEUTRAL No change

Mutant residue charge
was POSITIVE --- Mutant residue charge

was POSITIVE. ----

Variant’s score 0.90322566 0.9947578 0.9939898 0.8815106

Conservation

Mutant and wild-type
residues were not
very similar

Wild-type residue was
very conserved

Wild-type residue was
very conserved

Wild-type residue was
very conserved

The mutant residue
was located near
a highly
conserved position

The mutant residue
was located near
a highly
conserved position

Mutant residue was
located near a highly
conserved position

Effect of mutation
on protein

Probably damaging to
the protein.

Probably damaging to
the protein.

Probably damaging to
the protein.

Mutation occurs
without damaging
the protein

--- = No change (mutant residue charge); ---- = blank (conservation).

3.7. Molecular Dynamics Simulation (MDS) Results

Figure 2 displays a Root-Mean-Square Deviation (RMSD) analysis of proteins through-
out molecular dynamics simulations (MDSs). The RMSD graphic demonstrates the con-
formational stability of a wild-type protein in comparison to its three variations, C96R,
C96Y, and P52R, throughout a 1000 ps simulation period. Each variety is represented by a
distinct colored line, whereas the wild type is displayed in black. The path of the wild-type
protein is used as a standard to evaluate how mutations affect protein stability. Upon
initial examination, all protein variations, including the wild-type, exhibited a rise in RMSD
values as the simulation advances, a common occurrence as the protein navigates through
different conformations. The wild-type stabilized at about 0.6 nm, showing a plateau after
initial fluctuations. The C96R mutation, highlighted in red, showed a comparable level of
stabilization, indicating that this mutation does not greatly affect the protein’s structural
stability. The C96Y variant, shown in green, displayed a slightly greater RMSD, reaching
approximately 0.7 nm, suggesting a potential minor increase in structural flexibility or a
departure from the original structure. The P52R mutation, highlighted in blue, exhibited a
consistent rise in RMSD, peaking at about 1.5nm, indicating significant structural alterations
or instability caused by this mutation. The RMSD study shows that the P52 R mutation has
a large effect on the protein’s structural stability, whereas the C96R mutation has a minimal
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influence, and the C96Y mutation causes a minor increase in flexibility. These results sug-
gest that the mutation at position 52 causes a greater departure from the protein’s original
structure compared to mutations at position 96. None of the variants exhibited symptoms
of reaching a plateau within the 1000 ps duration. The wild-type protein remained stable
for around 200 ps, serving as a reference point for studying the characteristics of its many
forms. The RMSD analysis data are crucial for comprehending the structural consequences
of these mutations and their possible influence on the protein’s function.

Figure 2. A Root-Mean-Square Deviation (RMSD) analysis of proteins throughout molecular dynam-
ics (MD) simulations.

Concerning the results presented in Figure 3, the graph displays the Root-Mean-
Square fluctuation (RMSF) of individual atoms in a protein throughout the MD simulation.
The RMSF quantifies the degree of atomic movement from their mean position, indicating
the variability in flexibility across various regions of the protein structure. The RMSF
graph illustrates the flexibility of a wild-type protein and its variations, C96R, C96Y, and
P52R, spanning approximately 2000 atoms. A line graph illustrates the flexibility of each
protein variant, with distinct colors representing each variant, including the wild-type
one. Fluctuations are quantified in nanometers (nm), with the vertical axis indicating the
extent of fluctuation and the horizontal axis indicating the atom’s position in the protein.
Upon analysis, it is clear that the wild-type protein displayed a fluctuation pattern that
acts as a reference for comparing with the mutations. All variations exhibited regions
with high and low fluctuation, indicating sections of the protein that are either more
flexible or stiffer. The C96R variant (in red) typically aligned with the behavior of the
wild type, indicating that the mutation does not significantly alter the protein’s flexibility.
The C96Y variant (in green) and P52R variant (in blue) exhibited higher fluctuation in certain
places, suggesting probable areas of enhanced flexibility or disorder perhaps caused by the
mutations. The P52R variant displayed prominent peaks, indicating potential structural
changes or increased mobility in certain protein areas relative to the wild-type and other
variants. The data show that the P52R mutation caused significant variation in atomic
locations, which could impact the structural integrity and function of the protein. The C96Y
mutation enhanced flexibility to a lesser extent than P52R. The C96R mutation had little
effect on flexibility, closely approaching the behavior of the wild-type protein. Fluctuations
in RMSF are important for comprehending the functional impacts of mutations. Areas with
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increased fluctuations may indicate active or binding sites, or structural domains crucial
for protein stability.

Figure 3. The Root-Mean-Square fluctuation (RMSF) of individual atoms in a protein throughout the
MD simulation.

In Figure 4, the radius of gyration (Rg) of a wild-type protein and its three variations,
C96R, C96Y, and P52R, as a function of time throughout a simulation duration of 1000
ps is shown. The Rg quantifies the compactness of a protein and the distribution of its
mass relative to an axis. The figure illustrates the difference in compactness between the
wild-type protein and its variations during the MD simulation. The radius is quantified in
nanometers (nm) and monitors alterations in the protein’s morphology and dimensions
over time. The graph displays the average distance of the protein’s atoms from its center of
mass, with each line representing a different version indicated by different colors. A larger
radius of gyration indicates a less compact protein structure, whereas a smaller number
suggests a more compact structure.

During the simulation, all protein structures displayed variations in their radius of
gyration, suggesting alterations in compactness and tertiary structure as time progressed.
The wild-type protein exhibited varying levels of compactness, with the radius of gyration
values oscillating between around 2.5 nm and 2.9 nm. The C96R variation (red line)
displayed comparable fluctuations, indicating that this mutation does not substantially
change the overall compactness of the protein. The C96Y variant (green line) showed
a somewhat larger radius of gyration across most of the simulation, suggesting a less
dense structure compared to the wild type. The P52R variant showed a unique pattern
where its radius of gyration stayed consistently lower than the others during the initial
half of the simulation but eventually increased to reach the highest level of extension. This
indicates a notable structural change caused by the mutation. The data from the radius
of gyration research indicate that the P52R mutation has the most significant impact on
the protein’s compactness, potentially influencing its stability and function. The C96Y
mutation slightly reduced the protein’s compactness; however, the C96R mutation had less
impact on the protein’s compactness relative to the wild type. The differences in the radius
of gyration, especially in the P52R variant, may indicate modified functional dynamics or
alterations in the protein’s capacity to interact with other molecules. These findings can
impact the comprehension of the structural and functional characteristics of the protein
being analyzed.
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Figure 4. The radius of gyration of a wild-type protein and its three variations (C96R, C96Y, and P52R)
as a function of time throughout a simulation duration of 1000 ps.

Figure 5 shows the Solvent Accessible Surface Area (SASA) of a wild-type protein and
three variations, C96R, C96Y, and P52R, during a 1000 ps molecular dynamics simulation.
SASA is a crucial structural metric that represents the surface area of a protein available
for interaction with a solvent, usually water. This parameter is pertinent to the stability,
folding, and interactions of proteins. The SASA figure displays how the surface area
exposed to solvent changed over time for both the wild-type and mutant proteins during
the simulation. Values are expressed in square nanometers (nm2), with time shown in ps.
The wild-type protein is shown by the black line, and the mutants are illustrated in red
(C96R), green (C96Y), and blue (P52R). Initial observations demonstrate that all protein
variations exhibited a reduction in SASA over time during the simulation, indicating
a possible shift towards a more condensed structure or a modification in conformation
dynamics, leading to decreased solvent exposure. The C96R variant initially exhibited
SASA similar to the wild type but deviated towards the end, suggesting minor variations
in exposure or folding patterns that are absent in the wild type. Throughout the simulation,
the C96Y and P52R variations consistently displayed higher SASA values than the wild
type, with the C96Y variant displaying the most notable difference. This may suggest a
more open conformation or changed folding pattern that enhances the solvent accessibility
of specific residues. The P52R variation had higher SASA values than the wild type and
displayed a complicated pattern with frequent fluctuations, indicating a potentially more
dynamic or flexible protein structure. This study indicates that mutations at positions 96 and
52 impact the protein’s interaction with the solvent, potentially influencing protein stability
and function. The heightened solvent exposure in the C96Y and P52R variations could
impact the protein’s surface chemistry and its ability to interact with other biomolecules.
The reduced SASA observed in the later stages of the simulation for the C96R variant
compared to the wild type may suggest changes in the tertiary structure or dynamics that
could impact the protein’s biological function. The results emphasize the significance of
SASA in elucidating the impact of mutations on protein structure and function.

Figure 6 quantifies the hydrogen bonds present in a wild-type protein and its three
variations, C96R, C96Y, and P52R, over a 1000 ps molecular dynamics simulation. Hydro-
gen bonds play a crucial role in maintaining the stability of protein secondary and tertiary
structures and can impact protein dynamics. The graph measures the hydrogen bonding
arrangements in the molecular structures of the wild-type and mutant proteins as time pro-
gresses. The number of hydrogen bonds in the wild-type protein is represented by a black
line that varies during the simulation, demonstrating the dynamic nature of intramolecular
interactions. The mutations C96R, C96Y, and P52R are depicted by red, green, and blue
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lines, respectively, each displaying a unique hydrogen bonding arrangement in comparison
to the original type. The comparison of hydrogen bond dynamics shows that the wild-type
protein typically maintained a specific range of hydrogen bonds, mostly between 35 and
55. The C96R variant closely resembled the wild type in the amount of hydrogen bonds,
indicating that this mutation does not significantly change the hydrogen bonding network.
The C96Y variation had a wider range and a slightly larger quantity of hydrogen bonds,
suggesting potential changes in intramolecular interactions or the enhanced stability of
the secondary structure. The P52R variation exhibited the highest variety in hydrogen
bond numbers, potentially indicating alterations in the protein’s structural stability and
folding pattern as a result of the mutation. Proteins’ structural integrity and function are
frequently dependent on their hydrogen bonding networks. The data indicate that the
P52R mutation had the most significant impact on hydrogen bond formation during the
simulation, potentially leading to substantial changes in protein structure and dynamics.
The C96Y mutation exhibited enhanced hydrogen bonding but did not display the same
level of variability as the P52R mutation, indicating a less significant effect on the protein’s
stability. The similarity in hydrogen bond patterns between the C96R variation and the
wild type suggests that this mutation has a limited impact on the protein’s structural
stability. The observations could impact the protein’s heat stability, folding dynamics, and
interaction with other molecules.

Figure 5. The Solvent Accessible Surface Area (SASA) of a wild-type protein and the three variants
(C96R, C96Y, and P52R) during a 1000 ps molecular dynamics simulation.

Figure 6. Quantification of the hydrogen bonds present in a wild-type protein and its three variations
(C96R, C96Y, and P52R) over a 1000 ps molecular dynamics simulation.
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3.8. Displaying Three-Dimensional Structural Changes Using PyMol Software

Figure 7 displays the three-dimensional structure of the INS protein (PDB ID: 3i40), the
wild type, and its mutations P52R, C96R, and C96Y. The sites of the mutations are shown
in the red color. Figures 8–11 display the three-dimensional structure of the wild type and
its mutations, P52R, C96R, and C96Y, respectively.

Figure 7. Three-dimensional structure of the wild-type INS protein (PDB ID: 4i30), and its mutations,
P52R, C96R, and C96Y. The sites of the mutations are shown in the surface presentation and red color.
This figure was prepared using PyMol Version 2.0.

Figure 8. The three-dimensional structure of the wild-type INS protein (PDB ID: 3i40). This figure
was prepared using PyMol software.

Figure 9. The three-dimensional structure of the INS protein (PDB ID: 3i40) for the mutation P52R;
the site of the mutation is red. This figure was prepared using PyMol software.

Figure 10. The three-dimensional structure of the INS protein (PDB ID: 3i40) for the mutation C96R;
the site of the mutation is red. This figure was prepared using PyMol software.

Figure 11. The three-dimensional structure of the INS protein (PDB ID: 3i40) for the mutation C96Y;
the site of the mutation is red. This figure was prepared using PyMol software.
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4. Discussion

In this study, we investigated the impact of nsSNPs in the INS gene on PNDM us-
ing computational methods. In this research, we sought to enhance the understanding
of genetic factors influencing PNDM and their potential implications for personalized
medicine. Our findings are expected to highlight the molecular basis of the illness, identify
new diagnostic indicators, and uncover potential treatment targets. This study aligns
with research that identified the association of nsSNPs with diabetes mellitus, and re-
search emphasized the relevance of genetic changes in the INS gene in the development of
diabetes mellitus [26].

Many computational methods were used to analyze the impact of nsSNPs on the
INS gene protein structure and function that are potentially contributing to the onset of
PNDM. The approach outlined in this study for predicting the deleteriousness of nsS-
NPs within the INS gene is comprehensive and systematic, utilizing multiple tools to
assess the potential impact on protein structure and function. The use of SIFT, PolyPhen2,
and SNAP2 tools provides a multifaceted analysis, enhancing confidence in identifying
harmful variants (Table 1). Comparing our study with other similar research using com-
putational tools can provide insights into the consistency and reliability of our findings.
A study by Kumar et al. (2009) conducted a comprehensive evaluation of the SIFT and
PolyPhen2 algorithms for predicting the impact of amino acid substitutions on protein
function. Kumar et al. (2009) found that while both tools generally perform well, there
can be discrepancies in their predictions, highlighting the importance of using multi-
ple prediction methods for increased accuracy [27]. Furthermore, the incorporation of
SNAP2 as a confirmation tool adds another layer of validation to the predictions made by
PolyPhen2, enhancing the robustness of the findings. Additionally, a study performed by
Ioannidis et al. (2016) emphasized the need for caution when interpreting computational
predictions of nsSNP deleteriousness, highlighting the potential for false positives and false
negatives. They underscored the importance of experimental validation to confirm the
functional impact of predicted variants [28]. Our study employed a rigorous approach to
predict the deleteriousness of nsSNPs within the INS gene, incorporating multiple compu-
tational tools and validation steps. This approach enhanced confidence in the identified
deleterious variants.

A combined approach was utilized using SNP & GO and PhD-SNP tools to analyze the
disease susceptibility of nsSNPs within the INS gene to provide valuable insights into their
potential association with diseases. SNP & GO analysis provides a score range from 9 to 10,
suggesting a potential association of 67 nsSNPs with the disease (Table 2). This method
likely considers functional annotations and gene ontology terms associated with the SNPs
to infer their potential disease relevance. On the other hand, the PhD-SNP methodology
identifies only 12 out of the 67 nsSNPs as significantly correlated with disease, with the
remaining 55 nsSNPs predicted to have neutral effects (Table 2). A study conducted by
Martelotto et al. (2014) evaluated the performance of SNP & GO in predicting the disease
association of nsSNPs. They found that while SNP & GO can provide valuable insights into
the potential functional impact of nsSNPs, it may also yield false positive predictions due
to the reliance on gene ontology annotations, which can be incomplete or inaccurate [29].
In contrast, the PhD-SNP methodology employs a different approach, likely incorporating
features such as protein structure, evolutionary conservation, and functional annotations
to predict disease association. A study conducted by Bendl et al. (2014) demonstrated
the effectiveness of PhD-SNP in identifying disease-associated nsSNPs, highlighting its
utility in prioritizing variants for further analysis [30]. The identification of 12 nsSNPs
as significantly correlated with disease by PhD-SNP suggests a subset of variants with
a higher likelihood of impacting disease susceptibility. While SNP & GO and PhD-SNP
provide valuable insights into the potential disease association of nsSNPs, the differences
in their predictions highlight the need for the careful consideration and validation of
computational findings.
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Then, MutPred2 was applied to analyze nsSNPs within the INS gene to provide valu-
able insights into nsSNPs’ potential impact on protein functionality related to pathogenicity.
The identification of eight nsSNPs associated with pathological conditions suggests a sub-
set of variants with a higher likelihood of disrupting normal protein function (Table 3).
The specific alterations predicted by MutPred2, such as the loss of helix, disulfide linkage,
loop, transmembrane protein, signal peptide, ordered interface, and metal binding, provide
mechanistic insights into how these nsSNPs may lead to pathogenicity. Comparing these
results with findings from other analyses, such as results obtained from SIFT, PolyPhen2,
SNAP2, SNP & GO, and PhD-SNP, can help corroborate and contextualize the predictions
made by MutPred2. For instance, if an nsSNP is predicted to be deleterious by multiple
algorithms and also associated with disease by SNP & GO and PhD-SNP, it strengthens the
confidence in its potential pathogenicity, as indicated by MutPred2.

A study by Pejaver et al. (2017) evaluated the performance of MutPred2 in predicting
the pathogenicity of nsSNPs and found it to be one of the top-performing tools in terms of
sensitivity and specificity. However, they also emphasized the importance of integrating
predictions from multiple tools and experimental validation to improve the accuracy of
pathogenicity predictions [21]. The MutPred2 analysis provides valuable insights into the
potential impact of nsSNPs on INS protein functionality related to pathogenicity [21].

Assessment of predicted deleterious mutations on INS protein stability using both
I-Mutant2.0 and MuPro tools provides valuable insights into the potential impact of nsSNPs
on protein stability. However, the discrepancies between the predictions obtained from
these two tools warrant careful consideration and comparison with findings from the
other analyses. In this study, results from I-Mutant2.0 suggested that seven out of eight
of the analyzed nsSNPs are expected to diminish protein stability, with only one nsSNP
predicted to increase stability. Conversely, the findings from MuPro indicated that four out
of seven nsSNPs are anticipated to diminish protein stability, while three are predicted to
increase stability (Table 4). Comparing these results with findings from other computational
tools, such as SIFT, PolyPhen2, SNAP2, and MutPred2, can help assess the consistency of
predictions regarding the impact of nsSNPs on protein stability. If an nsSNP is consistently
predicted to be deleterious by multiple tools and associated with disease susceptibility, it
strengthens the confidence in its potential to disrupt protein stability and function.

Khan, et al. (2010) evaluated the performance of I-Mutant2.0 and MuPro in predicting
the impact of nsSNPs on protein stability. They found that while these tools can provide
useful predictions, there can be discrepancies between their results due to differences in
underlying algorithms and features considered. While the predictions from I-Mutant2.0
and MuPro provide insights into the potential impact of nsSNPs on INS protein stabil-
ity, discrepancies between the results highlight the importance of considering multiple
computational tools [31].

The use of the HOPE tool to evaluate the effects of single-nucleotide variations (SNVs)
on the structural and functional properties of proteins, specifically focusing on the four
nsSNPs predicted to diminish protein stability by the MuPro tool, provides additional
insights into their potential impact. The identification of three nsSNPs (C96Y, P52R, and
C96R) as potentially damaging to the protein’s structure by the HOPE tool aligns with
findings from other computational analyses, such as MutPred2, which predicted alterations
in protein structure for these variants. This consistency across multiple prediction methods
strengthens the confidence in the detrimental effects of these nsSNPs on protein structure
and function. Conversely, our study finding that the L14Q variant was not predicted
to affect protein structure by the HOPE tool (Table 5) contrasts with its classification as
deleterious by other computational tools, such as MutPred2, I-Mutant, and MuPro. This
discrepancy highlights the importance of considering multiple prediction methods and
experimental validation to accurately assess the impact of nsSNPs on protein structure
and function.

Venselaar et al. (2010) evaluated the performance of the HOPE tool in predicting the
effects of mutations on protein structure and function. They found that HOPE can aid in
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understanding the potential impact of gene mutations on protein stability and function [25].
Therefore, using the HOPE tool to evaluate the effects of nsSNPs on protein structure and
function complements findings from other computational analyses.

Our investigations pinpointed four variations as the most harmful using the combined
results of different analytical methods. Three possible mutants, named C96Y, P52R, and
C96R, were chosen among the four nsSNPs, identified using the HOPE tool (Table 5)
as the most harmful mutants, for further study using molecular dynamic simulations
(MDSs). The detected mutations were shown to alter the protein’s stability and functional
characteristics, potentially affecting its biological activity. A molecular dynamics simulation
for these three nsSNPs was conducted to assess the differences in protein dynamics between
the wild-type and mutant INS proteins (Figures 2–6).

In the analysis of nsSNPs in the INS gene, molecular dynamics simulations can be
employed to understand the structural dynamics and stability of the INS protein affected
by the variants.

RMSD analysis evaluated the overall structural stability of proteins during the MD
simulations. Our findings suggest that while the C96R mutation has minimal impact on
stability, the C96Y mutation causes a slight increase in flexibility, and the P52R mutation
induces significant structural alterations, as evidenced by a higher RMSD value. These ob-
servations align with computational predictions and highlight the structural consequences
of these mutations. RMSF analysis provides insights into the flexibility of individual atoms
within the protein structure. Results indicate that the C96R mutation closely resembles the
wild type, while the C96Y and P52R mutations exhibit increased fluctuations in certain
regions, suggesting potential alterations in flexibility and structural dynamics caused by
these mutations. The radius of gyration reflects the compactness of the protein structure.
Data showed that while the C96R mutation has minimal impact on compactness, the C96Y
mutation slightly reduces it, and the P52R mutation significantly increases it, indicating
substantial structural changes induced by this mutation. SASA analysis revealed changes
in the protein’s interaction with the surrounding solvent. Results suggest that the C96Y
and P52R mutations increase solvent accessibility, potentially affecting surface chemistry
and molecular interactions, whereas the C96R mutation has a limited impact on solvent
exposure. Hydrogen bonds are crucial for maintaining protein stability and structure. Data
indicate that while the C96R mutation maintains a similar hydrogen bonding pattern to
the wild type, the C96Y mutation exhibits enhanced hydrogen bonding, and the P52R
mutation displays variability, suggesting significant alterations in protein stability and
folding dynamics.

These computational analyses provide valuable insights into the structural and func-
tional consequences of specific mutations in the insulin protein. The detected mutations
were shown to alter the protein’s stability and function, potentially affecting its biological
activity. A molecular dynamics simulation was conducted to assess the differences in
protein dynamics between the wild-type and mutant INS proteins. The simulation lasted
1000 picoseconds and involved analyzing various metrics such as the RMSD, RMSF, SASA,
and RG. Comparisons were conducted to analyze the functional traits and robustness of the
protein structures. After minimizing, marginal variances in the RMSD plots of backbone
atoms showed that the wild-type structure was more stable than the mutations. The RMSF
plots showed that the native and mutant structures displayed the highest degree of flexibil-
ity. The RMSF estimates averaged over residual elements and trajectories showed that atom
fluctuation within the structures was significantly higher in the second third. The inquiry
analyzed the radius of gyration and SASA to determine how the unfolding of the mutant
protein structure affects the solubility of surface area and protein activity. A discrepancy in
RG values suggests decreased stability. The current results indicate the original structure
had a more limited range of RG values than the mutated structures. The solvent-accessible
surface area of the wild-type INS differed from that of the mutations of the INS protein.
These three mutations, C96Y, P52R, and C96R, are suggested to cause a decrease in INS
stability and functionality. Figure 7 displays the three-dimensional structure of the selected
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INS gene mutations, that are likely suggested to introduce structural disruptions potentially
affecting the stability and function of the protein.

From the literature, Laurenzano et al., in 2019, detected a P9R missense variant of the
INS gene in a patient, which occurs in the signal peptide of the preproinsulin molecule
in an amino acid residue that is highly conserved [32]. Also, the results of Balboa et al.,
in 2018, demonstrated that neonatal diabetes-associated INS mutations lead to defective
beta-cell mass expansion, leading to diabetes development [9]. Moreover, Liu et al., in 2015,
reported that a preproinsulin-L13R mutation was identified experimentally in a baby girl
who developed severe diabetes on the second day after birth [8]. Our results differ from
other results in the literature. Hence, we compare the results of our study with the results
of other published studies on INS gene mutations associated with PNDM in Table 6.

Table 6. Comparison of the results of our study with the results of other published studies on INS
gene mutations associated with PNDM.

Studies on INS Gene Mutations Associated with PNDM

This Study Laurenzano et al. 2019
[32]

Balboa et al. 2018
[9]

Liu et al. 2015
[8]

Mutations

P52R P9R C96R L13R

C96R C109Y

C96Y

However, additional research may be required to link these computational results with
experimental data to understand the effects of these mutations on protein behavior fully.

5. Conclusions

This study delved into the assessment of the potential correlation between non-
synonymous single-nucleotide polymorphisms (nsSNPs) within the INS gene and PNDM
utilizing an array of computational methodologies. Techniques such as SIFT, PolyPhen2,
Mutpred2, SNAP2, SNP & Go, PhD-SNP, MuPro, I-Mutant, HOPE, and MDSs were em-
ployed. Among the findings, three mutations, C96Y, P52R, and C96R, were identified
to diminish the stability and functionality of the INS protein. These results suggest that
these mutations could impact the stability and function of the insulin protein encoded
by the INS gene, potentially influencing the onset of PNDM. Further investigations are
warranted to comprehensively grasp the diverse ramifications of INS gene mutations on
insulin production and function. Upon validation, these findings could be instrumental in
genetic screenings for PNDM, aiding in risk assessment and the formulation of therapeutic
or preventive measures.
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