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Abstract: Background: The association of periodontal disease and diabetes is a subject of intense
research in terms of etiopathology and treatment options. This research aimed to evaluate the
modulation of the local inflammatory status by two natural extracts, curcumin (Cu) and rutin (R), in
an experimentally induced diabetes and periodontal disease in Wistar rats. Methods: Fifty Wistar
albino rats were randomly assigned to five groups: Control (C), Diabetes-associated Periodontal
Disease (DP), Diabetes-associated Periodontal Disease treated with Curcumin (DPCu), Diabetes-
associated Periodontal Disease treated with Rutin (DPR), and Diabetes-associated Periodontal Disease
treated with both Curcumin and Rutin (DPCuR). Gingival samples were collected from all rats, and
immunohistochemical markers CD3, CD20, and CD34 were evaluated to assess the local inflammatory
infiltrate. Descriptive statistics were applied (SPSS24 Software, Armonk, NY, USA). Results: Rutin,
alone or combined with Curcumin, reduced CD3-positive cell levels. Curcumin demonstrated
superior efficacy in reducing CD20-positive cells. The combination of Curcumin and Rutin had the
most important impact on both markers. Curcumin notably increased immature CD34-positive cell
levels. Conclusions: Curcumin and Rutin, either alone or together, hold potential for reducing local
inflammation in diabetes-induced periodontal disease in Wistar rats.
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1. Introduction

One of the primary contributors to adult tooth loss is periodontal disease [1], while
diabetes is associated with a diminished quality of life, reduced life expectancy, increased
morbidity from microvascular issues, and an elevated risk of macrovascular complica-
tions [2,3]. Notably, periodontal diseases are more likely to manifest in individuals with
diabetes, but conversely, uncontrolled diabetes is also linked to a heightened risk of both
the onset and progression of periodontal disease [4,5].

The inflammatory response plays a pivotal role in the development of both periodontal
disease and diabetes [6,7]. Periodontal disease, stemming from microbial infections, is
intricately entwined with the host’s immune system, which can mitigate tissue damage
either by eradicating pathogens or by neutralizing their products. This immune response
significantly contributes to the destruction of both hard and soft tissues, underscoring its
dual function as a protective and destructive mechanism [8]. T and B lymphocytes are
believed to be key players in the etiology of periodontal disease, and they are found in both
healthy and affected periodontal tissues [9].
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In the initial stage of PD, an acute injury under the form of exudative vasculitis in the
gingiva takes place. polymorphonuclear leukocytes’ (PMN) migration and macrophages
accumulation are a part of the immune response of the organisms to pathogens. In the
continuous presence of microbial biofilm, inflammation may not be possible to be limited
at this stage. Microorganisms trigger the antigen-presenting cells and a gingival dense
infiltration of mononuclear cells, predominantly T lymphocytes, is formed. The T cells’
immune response consists mainly in increasing phagocytosis, but, if it is overwhelmed, a B
lymphocyte’s response is activated and predominates with antibodies being produced as a
subsequent control of infection. Continuous accumulation of B lymphocytes and release
of nonprotective antibodies contribute to PD progression when the alveolar bone and the
periodontal ligaments are interested [10–13].

In response to the injury, all immune cells in contact with pathogens produce cytokines,
metalloproteinases, prostaglandins, and proteolytic enzymes. Interleukin (IL)-1β, IL-6,
IL-8, IL-12, IL-17, and tumor necrosis factor (TNF)-α [G] were found to be responsible
for tissue alterations. Matrix metalloproteinases (MMPs) and prostaglandins, followed
by receptor activator of nuclear factor kappa B ligand (RANKL), are responsible for bone
resorption [14–16].

The inflammation in the periodontal disease and the direction in which it develops
depend both on the local microbial status and on the host’s immune response to it [7,10].

Recent research highlights the exacerbation of periodontal diseases due to immune
cell alterations in individuals with diabetes [17].

Hyperglycemia in diabetes produces important microvascular and macrovascular al-
terations resulting in inflammation and decreased healing capacity. PMN and macrophages
are the first immune cells that respond. And both inflammatory mediators IL-1β, IL-6,
IL-8, IL-17, TNF-α, and anti-inflammatory mediators TGF-β, IL-4, IL-10 are secreted. This
immune response, by itself, has an impact on the periodontal tissues. The association of di-
abetes with periodontal disease creates the most appropriate conditions for the progression
of periodontal tissue alterations [18].

When diabetes is not controlled, advanced glycation end-products (AGEs) are accumu-
lating and interact with RAGE pattern recognition receptors on the surface of macrophages
and fibroblasts and activate Nuclear factor kappa B (NF-κB) and p38 mitogen-activated
protein kinases (p38 MAPK), important pathways in inflammation [19,20].

Given that the immune-inflammatory response is the primary driver behind periodon-
tal tissue destruction, there is growing interest in host-modulating treatment approaches uti-
lizing natural therapeutic agents. Practically, any agent that can modulate the mechanisms
implicated in periodontitis and diabetes could be considered as a potential candidate [21].

Curcumin (Cu) boasts a plethora of biological properties, including anti-inflammatory,
antioxidant, antimicrobial, and antiviral effects. These qualities position Cu as a promising
avenue for the treatment of periodontal disease [21,22].

In vitro and in vivo studies attest that the anti-inflammatory effect of curcumin is due
to a reduction of the cellular immune response to the microbial biofilm leading to a pre-
vention in periodontal tissue destruction [23]. In diabetes associated with periodontitis, a
modified form of Cu seems to have anti-inflammatory effects and improvement of diabetic
osteoporosis, even in maintained hyperglycemic conditions [24]. Administered locally
curcumin showed a reduction of the oxidative stress biomarker, malondialdehyde, and
antioxidant enzymes amending periodontitis in diabetic rats [25]. Periodontal pathogenic
microorganisms were inhibited by topically applied Cu. While demonstrating good bio-
compatibility, Cu hydrogels successfully prevented the loss of alveolar bone. [26].

P. gingivalis, Prevotella intermedia, Fusobacterium nucleatum, Treponema denticola, and
periodontal pathogens were inhibited by curcumin [27]. Compared to chlorhexidine, a
commonly used periodontal antiseptic, curcumin showed similar effects on A. actino-
mycetemcomitans, P. gingivalis, and Prevotella intermedia [28].

Rutin (R), a flavonoid found in various plants, exhibits a wide array of biological
activities, encompassing antidiabetic, antioxidant, and anti-inflammatory properties. This
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versatility makes R an attractive candidate for addressing complications associated with
diabetes [29,30]. A recent double-blind, placebo-controlled trial reported rutin to have
normalized glycemia, increased insulin sensitivity, and improved the lipidic profile and
the oxidative stress status as well as reduced inflammation in patients diagnosed with
diabetes [31]. In an in vitro study, rutin modulated the oxidative stress by reducing the
production of reactive oxygen species and augmenting the antioxidant activity. R stimulated
the proliferation of periodontal ligament stem cells in the absence of any treatment [28]. We
found little evidence of the effect of R in periodontitis associated with diabetes. In previous
research, we found that rutin, alone or in combination with curcumin, exhibited general
and local antioxidative properties in periodontitis associated with diabetes [30].

The health of periodontal tissue, a highly vascularized structure, is paramount for
its proper function. Some research has delved into gingival vascular changes in diabetic
patients with periodontal disease, although limited data is available on this topic [32,33].

The overarching goal of this study was to assess the inflammatory infiltrates within
gingival tissues obtained from Wistar rats afflicted with periodontal disease compounded
by diabetes. Furthermore, we aimed to investigate how this inflammatory response is
modulated while delivering Cu, R, and both extracts together, in that order.

2. Materials and Methods
2.1. Substances

The following substances were acquired from Sigma-Aldrich® Chemie GmbH, Mu-
nich, Germany: streptozotocin, glucose, curcumin (yellow to orange powder, soluble in
EtOH (10 mg/mL) purity (HPLC) > 65%, CAS Number: 458-37-7), rutin (yellow pow-
der, soluble in Pyridine (50 mg/mL), purity (HPLC) > 94%, CAS Number: 207671-50-9),
2-thiobarbituric acid, o-phthalaldehyde, hydrogen peroxide ACS reagent and kalium phos-
phate buffer. Mineral oil (S.C. Vitamar Import Export SRL, Bucharest, Romania) was used
to disperse Cu and R at a concentration of 10 µmol/L, while distilled water (S.C. Vitamar
Import Export SRL, Bucharest, Romania) was used to dissolve streptozotocin and glucose.
Immunohistochemistry markers CD3 (Dako, clone F7.2.38), CD20 (Dako, clone L26), and
CD34 (Dako, clone QBEnd10) were procured from Dako Corp (Glostrup, Denmark).

2.2. Animals

Fifty Wistar albino rats, all male, 8 weeks old, weighing 220 ± 20 g on average,
were obtained from the “Iuliu Hat,ieganu” University of Medicine and Pharmacy in Cluj-
Napoca, Romania’s Animal Department. After that, the rats were moved to and housed
in the Department of Physics’ BIOCOM Research Centre. They were kept in a controlled
environment with a temperature of 21 ± 2 ◦C, a humidity of 70 ± 4%, and a 12-h light/12-h
dark cycle for the duration of the study. The rats were kept in cages with five rats apiece,
fed a typical laboratory diet of pellets, and allowed unlimited access to water [34].

2.3. Diabetes Mellitus and Periodontal Disease Induction

The rats were randomly allocated into five groups as follows: Group 1 served as
the control group (C); Group 2 represented the diabetes-associated periodontal disease
group (DP); Group 3 consisted of rats with periodontal disease associated with diabetes
and treated with Cu (DPCu); Group 4 included rats with periodontal disease associated
with diabetes and treated with R (DPR); Group 5 comprised rats with periodontal disease
associated with diabetes and treated with a combination of Cu and R (DPCuR).

Rats in groups 2 through 5 were given an intramuscular anesthetic with a ketamine-
xylazine cocktail (100 mg/kg ketamine and 10 mg/kg xylazine) after they had been accli-
mated for one week. Their intravenous dosage of streptozotocin (30 mg/kg body weight)
was then given to them, and six hours later, each animal was given 2 mL of 30% glucose to
cause diabetes. The identical volume of a vehicle solution was the sole thing provided to
rats in Group 1. Rats whose glycemia was less than 300 mg/dL were subjected to another
round of the streptozotocin and glucose induction regimen after their blood glucose levels
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had been tested two days later using a glucometer [30,34]. Around the second mandibular
rat molars, 0.1-mm-diameter stainless steel ligature wires were positioned in groups 2
to 5. Ligatures were monitored three times a week and, if necessary, substituted. The
periodontal disease was installed after 15 weeks when an average pocket depth of 3.1 mm
was measured in the ligatured teeth [30,34].

2.4. Treatment Protocol

Following the establishment of diabetes and periodontal disease, rats in groups DPCu,
DPR, and DPCuR received daily oral gavage treatments. These treatments included Cu
(75 mg/kg body weight per rat), R (75 mg/kg body weight per rat), and an equal mixture
of Cu and R (75 mg/kg body weight per rat), respectively [31]. As previously reported [31],
the doses were established from scientific articles regarding the effects of Cu and R on
inflammatory parameters. The values we found varied between 15–90 mg/kg for C and
25–100 mg/kg for R.

After ten weeks of treatment, at the conclusion of the experiment, the animals were
anesthetized via intraperitoneal injection of a ketamine-xylazine cocktail (90 mg/kg body
weight of ketamine and 10 mg/kg body weight of xylazine). Tissue samples were then
collected from the gingival mucosa of each animal for subsequent immunohistochemical
analysis [34].

2.5. Immunohistochemistry

T and B lymphocytes were evaluated in gingival tissue samples collected from the
research animals. This assessment involved the use of a cluster of differentiation 3 (CD3), a
protein complex and T cell co-receptor [35,36], and a cluster of differentiation 20 (CD20),
a protein expressed on the surface of B cells [37]. We closely observed alterations that
occurred within the gingival epithelium, as well as in the superficial and deep chorion
layers. Special attention was given to changes in blood vessels, along with an examination
of the inflammatory infiltrates within the chorion. To quantify endothelial cells in the
gingival connective tissue, we utilized the immunohistochemistry vascular marker cluster
of differentiation 34 (CD34), which selectively labels both endothelial cells and angioblasts
(Table 1). This CD34 antibody was employed in our immunohistochemistry investigation
to elucidate vascular modifications within the periodontium [38].

Table 1. Immunohistochemical markers used.

Antibody Epitop/Marker Manufacturer Antigenic Unmasking Dilution

CD3 T lymphocytes DAKO Citrate buffer pH = 6 1:100
CD20 B lymphocytes DAKO Citrate buffer pH = 6 1:50
CD34 Endothelial cells DAKO Citrate buffer pH = 6 1:50

Following standard protocol, tissue specimens were embedded in paraffin after being
preserved for up to 24 h in 10% buffered formalin (pH 7.4). Each paraffin-embedded
tissue was sectioned at 4 µm using a Leica RM 2125 R T with a thin profile Dura Edge
type microtome (Leica Biosystems, Deer Park, IL, USA), in accordance with a standard
automated immuno-histochemical protocol (Ventana GX autostainer; Ventana Medical
System, Tucson, AZ, USA) [39]. Immunohistochemistry was used to detect CD3 (Dako,
clone F7.2.38), CD20 (Dako, clone L26), and CD34 (Dako, clone QBEnd10). CD34+ blood
vessels that showed lumen were considered mature vascular structures, and immature
blood vessels were considered those CD34+ vascular structures that did not show vascular
lumen or CD34+ progenitor cells [40]. The identical protocol was applied to the negative
controls, with the exception of the primary antibody. For each biomarker, normal palatine
tonsils served as the positive control. The palatine tonsil is mainly a lymphoid organ. Since
the immune response was studied, in our study, by evaluating B lymphocytes (CD20) and T
lymphocytes (CD3), this organ is recommended to be used as a positive control [41]. Being
intensively vascularized, like any internal organ, the palatine tonsil is recommended as a



J. Pers. Med. 2024, 14, 527 5 of 15

positive control for the CD34 marker (vascular marker) [42,43]. All of the evaluation was
completed using the hot-spot method. Three standard fields of 0.5/0.5 cm were selected
for each case from areas with high densities of the investigated antibody, and the number
of positive cells from 100 cells was tallied. The outcomes and the features of normal tissue
were connected.

2.6. Statistical Analysis

The statistical analysis was performed in the SPSS24 Software (version 24, Armonk,
NY, USA) dedicated to statistical processing. A level of significance of 0.05 was considered.
Data were processed with descriptive statistics. For assessing the significance of differences
between groups we used an inferential statistic, a t-test [34].

3. Results

The number of CD3+ T cells increased, in average, in the group of rats with diabetes
associated to periodontal disease (DP) as compared to the control group (Table 2).

Table 2. Mean Values of tested biomarkers.

Group T CD3+ Cells B CD20+ Cells Total CD34+ Cells Mature CD34+ Cells Imature CD34+ Cells

Control 3 2.5 17.5 7 10.5
DP 55.5 6 13.5 4 9.5

DPCu 41 3.5 25 4.5 20.5
DPR 15 6.5 7 2.5 4.5

DPCuR 2 0.5 8 3 5

There is a difference considered to be extremely statistically significant (p < 0.0001)
between CD3+T, CD20+ B in all groups, Table 3.

Table 3. Differences for CD3+ T and CD20+ B in groups.

Control Group Mean SD t p Value

T CD3+ cells 3 0.001
11.7611 <0.0001

B CD20+ cells 2.35 0.231

DP Mean SD t p value

T CD3+ cells 54.4 0.83
199.20 <0.0001

B CD20+ cells 5.73 0.46

DPCu Mean SD t p value

T CD3+ cells 40.6 0.50
275.09 <0.0001

B CD20+ cells 3.4 0.13

DPR Mean SD t p value

T CD3+ cells 14.4 0.5
59.2915 <0.0001

B CD20+ cells 6.4 0.12

DPCuR Mean SD t p value

T CD3+ cells 1.894 0.119
45.0619 <0.0001

B CD20+ cells 0.49 0.012

The distribution of CD3+T lymphocytes was diffuse and inhomogeneous, very rarely
being identified grouped, perivascular, or subepithelial (Figure 1).
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Figure 1. Rat, gingiva. CD3 immunolabelled type T lymphocytes are seen in the submucosa in a
band like distribution (some indicated by the arrows); 100×.

In the DP group compared to the control group, a larger proportion of CD3+ T lym-
phocytes than CD20+ B lymphocytes were found; Table 3 (p < 0.0001). CD3+T lymphocytes
were the most prevalent immune system cells, according to the immunohistochemical ex-
amination of inflammatory infiltrate cells in the gingival tissue of DP Wistar rats. They were
irregularly distributed throughout the periodontium’s connective tissue, with the majority
of CD3+ T lymphocytes found at the level of the covering and perivascular epithelium
(Figure 2).
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Figure 2. Rat, gingiva. Multiple CD3 immunolabelled type T lymphocytes with a predominatly
perivascular location; 200×.

In contrast to CD3+T lymphocytes, B lymphocytes were less represented in the inflam-
matory infiltrates of periodontal tissue in all groups compared to controls and were found
perivascular or at the chorion level. The group of diabetic rats with periodontal disease
treated with the combination of Cu and R (DPCuR) showed an important reduced number
of B lymphocytes compared to the DP group and the groups treated with Cu or R alone
(Figure 3).
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Figure 3. Mean values of B and T lymphocytes in the gingival inflammatory infiltrate of all studied
groups: Control-control group; DP-diabetes associated with periodontal disease group; DPCu-
diabetes associated with periodontal disease treated with curcumin group; DPR-diabetes associated
with periodontal disease treated with rutin group; DPCuR-diabetes associated with periodontal
disease treated with curcumin and rutin group. Significant differences (p < 0.05) were depicted
between CD3+ T cells and CD20+ B cells within each group.

On some sections, CD20+ B lymphocytes were the most prevalent cells in the inflam-
matory areas. They were either seen to have a diffuse appearance, one concentrated around
the blood vessels, or a nodular appearance (Figure 4).
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Figure 4. Rat, gingiva. Many CD20 immunolabelled type B lymphocytes are seen in the submucosa
with a multifocal to nodular distribution; 200×.

The overall number of CD34+ cells decreased in the DP group compared to the control
group. Also, the total number of progenitor cells decreased when R was administered as
monotherapy or in combination with Cu. In DP rats, R, followed by Cu combined with
R decreased the number of circulating immature progenitor cells. Cu administered alone
increased the number of immature progenitor cells (Figure 5).
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Damage to the vascular wall in the form of microhemorrhages in the periodontal
connective tissue was observed (Figure 6).
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4. Discussion

Periodontal disease is characterized by a chronic bacterial infection that gives rise to
inflammatory lesions and provokes a robust immune response. The immune response
serves a dual role: it safeguards the host by controlling the infection, while simultaneously
causing gradual damage to the supporting mechanisms of teeth within the alveoli [44]. This
dual effect arises from the action of inflammatory mediators and immune cells. Among
these immune cells, activated T and B lymphocytes play a pivotal role in both controlling
periodontal infections and determining the extent of destruction in periodontal tissues [45].

Conversely, diabetes is associated with serious complications that stem from a chronic
inflammatory environment. This includes inflammation of periodontal tissues and bone
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loss, driven by alterations in host metabolism resulting from hyperglycemia [44,46]. Dia-
betes induces changes in immune cell function, the release of pro-inflammatory cytokines
from PMN and monocytes as well as a reduction in macrophage growth factors, mainly.
These modifications predispose the body to chronic inflammation, progressive tissue degra-
dation, and reduced repair capacity. Periodontal tissues are particularly susceptible as they
are constantly exposed to endotoxins from bacterial biofilms [17]. All available evidence
pointing to the biological connection between diabetes and periodontal disease indicates
that diabetes and persistent hyperglycemia trigger an exaggerated immune-inflammatory
response to periodontal pathogens, resulting in accelerated and severe destruction of pe-
riodontal tissues [47]. A growing body of research has demonstrated the occurrence of
lesions in periodontal tissues in individuals with diabetes [2,4,48].

In our current research, we observed that both at the gingival epithelium and chorion
levels, CD3+ T lymphocytes were the most abundant cell type, followed by CD20+ B
lymphocytes, across all groups of rats studied. This observation contrasted with the control
group, where although present, these inflammatory-type cells did not contribute to tissue
destruction but rather played a role in the host’s response to bacteria and other substances
encountered by the gum. Earlier studies have also highlighted that significant numbers of
T and B lymphocytes infiltrate the gingival tissue in an antigen-specific manner [49–51].
Researchers have attributed this inflammatory response to bacterial products within plaque,
which interact with the gingival epithelium, inducing the expression of adhesion molecules,
proinflammatory cytokines, and chemokines. These molecules guide leukocytes into the
gingival tissue and ultimately into the gingival sulcus through the junctional epithelium.
Within the connective tissue, an inflammatory infiltrate predominantly composed of T
lymphocytes is formed.

Subsequently, this adaptive response shifts the nature of the inflammatory response to
involve B cells and plasma cells. This shift can lead either to the production of protective
antibodies and the subsequent control of infection or the production of non-protective
antibodies, contributing to connective tissue destruction and bone loss [52]. It has been pro-
posed that T cells predominate in the initial stages of periodontal disease, with an increase
in B cells in more advanced stages, albeit still under the regulation of T cells [12,52,53]. This
may elucidate why CD20+ B lymphocytes were the second most prominent subgroup of
immune cells affected in our study [54]. The exact mechanism is still unclear. It seems
that B cells generate IL-10 and TGF-β as proinflammatory mediators and TNF-α, IL-6, and
matrix metalloproteinases as anti-inflammatory factors [55].

At sites of inflammation, CD20+ B lymphocytes predominated in some sections,
displaying either a diffuse distribution or clustering around capillaries, angiogenesis vessels,
or forming nodular structures. These observations likely correlate with the intensity of
the inflammatory process and the presence of antigens. The clustering around capillaries
and angiogenesis vessels can be attributed to the transportation of antigens through the
bloodstream to these areas [56].

Numerous investigations have unveiled diabetes’ contribution to periodontal disease
and its severity, affecting both the inflammatory and immune responses as well as the
vascular system [1]. Microvascular alterations represent one of the initial factors in the
development of gingivitis and its progression to periodontal disease, potentially due
to the transportation of pro-inflammatory cells and the increase in endothelial surface
area, leading to the production of cytokines and other factors that drive inflammation
forward [57]. In our study, the local levels of total vascular structures expressing CD34,
mature blood vessels CD34+, and immature blood vessels CD34+ were not significantly
altered in the DP group compared to the control group, possibly because the periodontal
changes were not highly advanced. An association between an increased number of blood
vessels and the progression of periodontal disease, characterized by pronounced thickening
of basement membranes, particularly in capillaries and venules, has been reported [58]. The
microhemorrhages observed in the periodontal connective tissue in our current research are
likely the result of local mechanical trauma and vascular damage caused by the heightened
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aggressiveness of microorganisms in the bacterial plaque, either directly or through the
production of toxic substances.

Recent scientific interest has surged in assessing the potential benefits of natural ex-
tracts in modulating the inflammatory and immune responses [59–61]. In our study,
Cu, a highly potent polyphenolic compound derived from turmeric, specifically iso-
lated from Curcuma longa, has exhibited anti-inflammatory and anti-proliferative proper-
ties. Cu demonstrated interactions with various immune cells, including dendritic cells,
macrophages, natural killer cells, neutrophils, T and B lymphocytes [62]. Its immunomodu-
latory effects primarily involve immune system suppression [63]. With respect to T cells,
Cu influences proliferation by downregulating activated cells or by blocking constitutively
activated targets in T cell signaling pathways, thereby suppressing proliferation [64]. Ad-
ditionally, Cu promotes regulatory T cell differentiation, induces T cell apoptosis, and
inhibits T cell activation [65]. Our results converge with a previous study in which orally
administered Cu inhibited inflammation through antioxidative stress mechanisms both
locally and generally in periodontitis rats with diabetes [30]. Oxidative stress biomark-
ers (malondialdehyde) were reduced and antioxidants (glutathione, oxidized glutathione,
glutathione/oxidized glutathione and catalase were increased following Cu administration.

In another induced periodontitis in a diabetic rat experiment, Cu reduced the in-
filtration of PMN and monocytes, the degradation of periodontal collagen fibers—and
decreased IL-1β, IL-6, TNF-α MMP-9 [66] and MMP-2, MMP-8 levels [67]. Moreover, Cu
exhibited hypoglycemic effects via an oxidative stress mechanism. Cu anti-inflammatory
effects were increased while bone resorption was alleviated when a chemically modified
curcumin, designed to counteract Cu’s lack of bioavailability, was used [66]. Later on,
the same authors found the suppression of p38 MAPK and NF-κB signaling pathways to
be modulated by the modified Cu [68]. Incorporated in nanoparticles, Cu decreased the
periodontal tissues’ inflammatory infiltrate and also, the number of osteoclasts and reduced
the activation of p38 MAPK and NF-kB [23].

Little evidence exists regarding potential therapeutic agents with modulatory effects
on B cells. Although less studied in relation to B lymphocytes, Cu was found to suppress
their proliferation and function and also modulate B cell differentiation [69]. Cu, as an
anti-CD20, was investigated and it seems it can inhibit the activation, proliferation, and
differentiation of naïve B cells into B effector cells. Cu, also impaired upon B cells function
by inhibiting the release of auto-antibodies from B effector cells [69]. The modification of
Cu on the CD+ 20 was not relevant in the present study. There is increased interest in using
CD 20 as a target in B cell pathologies treatments, but the results are unclear due to an
incomplete understanding in B cells metabolism [70].

Recently, there has been much interest in the immature CD34+ blood vessels or
progenitor cells, that can circulate, proliferate, and differentiate into mature endothelial
cells [71]. Progenitor endothelial cells circulate in the blood and seem to preferentially
settle to vascular or tissue lesions, significantly contributing to both reendothelialization
and neo angiogenesis and therefore playing a key role in maintaining vascular endothelial
function [72]. The increase of immature CD34+ blood vessels in the Cu treated group
(DPCu) could be a result of Cu stimulating the proliferation of the progenitor cells in a local
regenerative process. Our observations are consistent with recent treatment directions that
evaluate the effects of CD34+ cell therapy in various diseases [72]. Authors reported that
the mechanism of local healing involved low release of pro-inflammatory agents IL-1, IL-6,
TNF-α, and nitric oxide synthase 2 (an enzyme which is encoded by the reactive free radical
nitric oxide), and overexpression of IL-10 in CD34+ cell therapy [72,73]. Our outcomes
are similar to another other study where the authors advanced the idea of antagonistic
effects of Cu depending on the dose, time, and type of cells that are targeted [74,75]. This
could explain the lack of effect of Cu in the DPCuR group where the dose of Cu was halved
compared to the one in DPCu group.

R, also known as P Vitamin, rutoside, quercetin-3-rutinoside, and sophorin, is a
flavonoid widely present in plants that showed, among many others, anti-oxidative stress
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and anti-inflammation properties [76–78]. While there is limited direct evidence on the
specific impact of R on T and B lymphocytes, several studies have identified R as an
anti-inflammatory agent. It has been shown to reduce pro-inflammatory biomarkers such
as tumor necrosis factor-α, interleukin (IL)-6, cyclooxygenase-2, and IL-1β [79]. These
biomarkers are closely interconnected with T and B lymphocytes at various levels. They are
either produced or expressed by these lymphocytes or can downregulate their suppressive
activity [79–84]. R was recently studied in relation to the ligament periodontal cells. In an
in vitro experiment, R augmented the antioxidant capacity and stimulated the proliferation
of the human periodontal ligament stem cells [85] and osteogenic differentiation through the
phosphatidylinositol 3-kinase/protein kinase B signaling pathway [28]. Another research
study reported the mTOR signaling pathway being suppressed by R, shielding human peri-
odontal ligament stem cells from TNF-α-induced damage to osteogenic development [85].
Several researchers proposed R as a therapeutic agent in advanced periodontitis [86]. R has
been demonstrated to modulate the glucose and lipid metabolism, augment insulin levels,
and have a protective role on pancreatic cells [76].

In our study, R, whether used alone or in combination with Cu, exhibited a significant
reduction in the levels of T lymphocytes in the context of periodontal disease associated
with diabetes. Moreover, this reduction was more pronounced when R was combined
with Cu compared to Cu alone. Notably, in the combined treatment group, the levels of
B lymphocytes were even more decreased than in the group treated solely with Cu. This
suggests the possibility of a synergistic anti-inflammatory effect when Cu and R are used
together. This research converges with results from a previous study in which gingival and
circulatory oxidative stress was modulated by R in periodontitis diabetic rats. The effects
were augmented by the R combination with C [30]. Malondialdehyde as a biomarker of
oxidative stress was depleted and glutathione, oxidized glutathione, glutathione/oxidized
glutathione and catalase, indicating the antioxidant response, were augmented. The fact
that Cu associated with R had a more important anti-inflammatory effect is sustained by the
results of other studies [87]. Several extracts have been found to exert superior antimicrobial
and anti-inflammatory effects on periodontal disease when they were combined rather
than when they were given separately [87].

Another two novel approaches, photobiomodulation [88] and probiotic therapy [89],
could be tested in combination with Cu and R in order to understand their mutual effects
on oral microbiota, and consecutively on periodontal disease onset and progression.

Developing the experiment using larger sample sizes and/or more concentrated
treatments over a longer period of time could result in a more significant outcome.

Since Cu and R are known for their rapid metabolization when administered
orally [90,91], in future research endeavors, it is crucial to explore the pharmacokinet-
ics of Cu and R, with a particular emphasis on improving their solubility and bioavailability.
Recent studies reported promising results when nanotechnology was used for developing
new Cu and R delivery formulas [92–94].

5. Conclusions

The administration of Curcumin (Cu) and Rutin (R), whether individually or in
combination, resulted in a reduction of the immunohistochemical markers CD3, CD20,
and CD34 within the gingival tissues of Wistar rats afflicted with diabetes-associated
periodontal disease.
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