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Abstract: Background: Spatial navigation deficits are reported as early symptoms of Alzheimer’s
disease (AD) alongside episodic memory ones. The aim of the present study was to ascertain whether
neuropsychological deficits of visuospatial long-term memory can predict behavioral alterations
during the navigation of older adults in novel urban environments along the normal aging–dementia
continuum of the Alzheimer’s type. Methods: A total of 24 community-dwelling patients with Mild
Cognitive Impairment (MCI) due to AD, 27 individuals with subjective cognitive decline (SCD), and
21 healthy controls were assessed in terms of their sequential egocentric and allocentric navigation
abilities by using a modified version of the Detour Navigation Test, and neuropsychologically tested
by the Corsi learning suvra-span (CLSS) test. Generalized linear models were adopted to verify
whether the scores obtained by the three groups in the CLSS test predicted wrong turns and moments
of hesitation during the navigation task, with the results presented as topographical disorientation
scores. Results: Higher scores in the CLSS test predicted fewer wrong turns (b = −0.05; z = −2.91;
p = 0.004; net of between-groups differences) and moments of hesitation for patients with MCI due
to AD (b = −0.14; z = −2.43; p = 0.015), and individuals with SCD (b = −0.17; z = −3.85; p < 0.001).
Conclusions: Since the CLSS test has been reported to be a reliable measure of ecological navigational
abilities in the progression towards AD dementia, we recommend its use in clinical practice and
highlight implications for future research.
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1. Introduction

Alzheimer’s disease (AD) stands as a relevant neurodegenerative disorder primarily
affecting older adults and ranks as the leading cause of dementia [1]. It is characterized by
a gradual decline in cognitive functions, mainly encompassing amnestic symptoms and
spatial disorientation due to early decay [2].

Deficits in the free recall of objects’ locations, the temporal sequencing of landmarks,
landmark recognition, route learning, and directional guidance have been revealed in
patients with AD and Mild Cognitive Impairment (MCI) [3]. These deficits contribute to
spatial navigation errors and may lead to topographical disorientation, even in familiar
environments, as the disease progresses to its advanced stages [3–5].

Observing the manifestation of spatial disorientation in real-world settings may serve
as a proxy variable for the early identification of incipient AD in individuals at high
risk of conversion, i.e., MCI due to AD or Apolipoprotein-E (APOE)-ε4 carriers [6,7].
Furthermore, changes in walking patterns have been identified as motor features associated
with cognitive impairment and dementia [8], including AD [9].

Spatial cognition comprises a complex brain system with various processes and com-
ponents [10,11]. Human beings use two primary frames of reference for acquiring and
organizing spatial information in memory, i.e., egocentric and the allocentric [12]. The ego-
centric frame defines spatial information relative to the body’s position, thus maintaining
the viewpoint perspective of the navigator. Egocentric spatial representations are usually
described as ‘orientation-specific’ or ‘orientation-dependent’ in relation to sequential body
turns during a path-learning task [2]. By contrast, allocentric frames are not reliant on
the body’s position in the space and are centered on external cues, such as landmarks [2].
Allocentric spatial representations are frequently referred to as ‘orientation-independent’
or ‘orientation-free’ [13,14] because they focus on relationships among environmental cues.

Spatial memory also plays a crucial role in encoding, storing, and retrieving spa-
tial information. Spatial memory serves two important functions of navigational ability:
route learning, which involves acquiring a new path, and wayfinding, where a navigator
creates a global representation of the environment, based on landmarks used as spatial
cues for orientation. These functions allow individuals to maintain topographical orien-
tation [15] and depend on the neural activity of brain structures, including the parietal
cortex and the caudate nucleus, the hippocampus, and the medial temporal lobe, respec-
tively [16]. Moreover, executive and working memory functions have a pivotal role in
spatial navigation, including tasks such as selecting appropriate strategies, identifying
potential alternative approaches, maintaining navigational goals, and calculating directions
and distances. Executive functioning further influences the memory system, as the effec-
tive recall of information requires strategic elaboration during both the encoding and the
retrieval phases [4].

According to Baddeley [17,18], working memory consists of four distinct components.
Among these, two serve as passive information maintenance systems: the phonological
loop (equipped with the ability to reiterate a limited sequence of phonologically encoded
information), where verbal material is stored, and the visuospatial sketchpad, where
visual and spatial material is maintained. Alongside these ‘slave systems’ is the ‘Central
Executive’, which allocates attentional resources for processing the information preserved
in the passive maintenance systems. The most recent implementation of the model is
the episodic buffer, a temporary system of storage that integrates information from both
the phonological and the visuospatial subsystems with data from long-term memory [18].
Logie [19] also proposed a visuospatial working memory model that breaks down the
visuospatial sketchpad into two distinct components: the visual cache and the inner scribe.
The visual cache works as passive storage for visual patterns, while the inner scribe
serves as an active rehearsal mechanism used during movement planning and execution.
These components are closely intertwined. The inner scribe refreshes the contents of the
visual cache when the maintained visual pattern becomes irrelevant. This model thus splits
visual working memory, responsible for temporary visual information, and spatial working
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memory, which holds spatial details during the preparation and execution of a movement.
The selection of the specific visuospatial sketchpad component required for a task depends
on the type of information to be stored in working memory [20].

The interface between visuospatial working memory and visuospatial episodic long-term
memory is provided by the episodic buffer, employing conscious awareness as a retrieval
mechanism [18]. Episodic memory is a component of long-term memory which refers to the
temporospatial context of personal memories [21,22], and can be further subdivided into verbal
and visuospatial components. Verbal episodic tasks involve encoding or retrieval through
verbal repetition, while visuospatial episodic tasks entail material that requires interpretation
through visuospatial processing [23]. Executing concrete spatial navigation tasks, such as
taking a shortcut, retrieving spatial information from long-term memory, and manipulating
visuospatial images to obtain new information, is crucial for spatial navigation [24]. In order
to assess visuospatial long-term memory, the Corsi learning suvra-span (CLSS) test represents
a neuropsychological test extensively employed in clinical practice, especially in Italian clinics
and hospitals [25,26] (Figure 1).
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the examiner only.

The CLSS test may be a valid method for the evaluation of visuospatial long-term
memory supporting spatial navigation [27]. In fact, to successfully navigate the urban
environment, elderly people need to actively manipulate visuospatial information, inte-
grate egocentric and allocentric abilities, and use spatial representations retrieved from
long-term memory. The sectorial literature has pointed out that only some virtual tasks
such as the Sea Hero Quest [28], or paper-and-pencil tasks such as the Mini Mental State
Examination (MMSE) [29], the Rey–Osterrieth Complex Figure (ROCF) [30,31], and the Free
and Cued Selective Reminding Test (FCSRT) [32], are associated with the spatial navigation
performances of real-word navigation tasks administered to older adults with MCI and
dementia [33]. However, no study to date has evaluated whether the neuropsychological
examination of visuospatial long-term memory using the Corsi suvra-span procedure
can effectively anticipate topographical disorientation in older adults along the normal
aging–dementia continuum of the Alzheimer’s type. In line with this, our investigation
sought to evaluate whether the CLSS test can predict the spatial navigation errors of
community-dwelling older adults undergoing a naturalistic experimental task along the
normal aging–dementia continuum of the Alzheimer’s type. In particular, we hypothesized
that better performance in the CLSS task corresponds to a lower number of errors in a
naturalistic spatial navigation task, effectively anticipating topographical disorientation in
older adults.

2. Materials and Methods
2.1. Participants

The study included 24 patients with MCI due to AD, 27 individuals with subjective
cognitive decline (SCD), and 21 healthy controls (HCs). Patients with MCI due to AD
were diagnosed using the criteria from Petersen et al. [34] and Dubois et al. [35,36], while
individuals with SCI were diagnosed using the criteria from Jessen et al. [37]. In addition
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to these participants, cognitively unimpaired older adults were enrolled through adver-
tisements posted in social centers for senior citizens in the Milan community (Italy) and
through conferences, webinars, and events concerning research pertaining to AD preven-
tion. All participants met specific inclusion criteria, encompassing an age range between
60 and 85 years, a minimum education level of 5 years, the absence of dementia, and basic
information and communication technology skills. The exclusion criteria included a history
of alcohol or substance abuse, a diagnosis of neurological or psychiatric conditions, or any
other medical conditions that could impact spatial navigation, such as head injury, vision
loss, or motor disability. Moreover, participants with prior knowledge of the urban area
used for the naturalistic task were excluded.

2.2. Study Design

This was an observational multi-center investigation with a regression approach.

2.3. Real-World Navigation Paradigm

Participants engaged in a modified version of the Detour Navigation Test [28], which
we designed to explore spatial alterations in patients with prodromal AD navigating
unfamiliar urban environments (for a detailed description, please see [38]). The test was
conducted in an ecological setting, i.e., the urban park of the Pontificio Istituto Missioni
Estere—PIME (81, Monterosa Street, Milan, Italy) (Figure 2). Participants wore a sensory
garment (the Howdy Senior® system by ComfTech S.r.l., Monza, Italy) and were asked to
complete a path from an initial start point to a designated endpoint (Route A, outward) by
following an investigator-guided walk, and pay attention to all the landmarks. They were
also required to perform an interfering algebraic task while walking until they reached the
destination point. This task was designed to guarantee the experiment’s ecological validity
and replicate the distracting elements of an urban environment. Once at the destination,
participants were tested on landmarks recognition. After this task, participants had to
reach the start point by retracing the same route (Route A, return) alone, with feedback
provided by the experimenter for deviations from the correct path. This route-retracing
task mainly represented egocentric sequential navigation supported by the recall of body
turns along a path backwards. Then, the participants were asked to reach the destination
point (Route B, outward) again. However, unknown to them, at the first intersection of
the way back, the participants were asked to walk a different route (Route B, return) that
did not overlap with Route A (return) at all. Such a cognitive/motor task required the
use of an allocentric strategy based on a built cognitive representation of the urban park.
For this second experimental part, feedback was not allowed. Wrong turns, measured in
numbers (n.) and moments of hesitation (in seconds), were recorded during the Route
A return and the Route B return and added up, and we assessed deviations from the
predefined path and uncertainties, respectively (for a complete description and calculation
of these two disorientation scores, please see [38]). The observational protocol for reporting
behavioral data and the experimental procedure for the collection and registration of wrong
turns and moments of hesitation are reported in Supplementary Materials.

2.4. Neuropsychological Evaluation

Prior to the ecological task, we evaluated participants at the hospital near to the
PIME urban garden (The Mosé Bianchi, IRCCS, Istituto Auxologico Italiano, Milan, Italy),
administering a screening of global cognition through the Montreal Cognitive Assessment
(MoCA) [39]. Given that our study had a multi-center recruitment strategy, some of the
participants were previously evaluated using the MMSE [40,41]. For these participants, we
adopted Aiello and colleagues’ [42] conversion norms to obtain MoCA scores in order to
correctly compare all groups. Participants were also evaluated to assess their affective status
by using the Geriatric Depression Scale [43], and their visuospatial long-term memory
abilities were assessed by the CLSS test [25].

In this neuropsychological test, nine wooden cubes (4.5 cm × 4.5 cm) are attached to
a board (32 cm × 25 cm) in a standard arrangement [25]. The examiner presents a fixed
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sequence of eight cubes exceeding short-term memory capacity, presenting one cube every 2
s. Following each demonstration, the subject is required to exactly reproduce the sequence,
and the examiner records the touched cubes considering only the first 8 cubes selected in
case of iterative behavior. The sequence is repeated until the learning criterion is fulfilled
(i.e., three consecutive correct repetitions produced by the examinee) or up to a maximum
of 18 trials. After a 5 min interval, the examinee is then asked to reproduce the sequence
without the experimenter’s demonstration (i.e., the delayed recall score). The re-enactment
of the sequence without a new presentation is assessed independently from the preceding
18 trials [25,26]. The test takes about 15 min to be administered.
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different options for the Route B detour).

The quantitative evaluation of performance in the CLSS test takes into account all
cubes that were touched in the correct order, as well as their possible combinations (i.e.,
0 = 0.36; 2 = 0.30; 3 = 0.52; 4 = 0.74; 5 = 0.96; 6 = 1.18; 7 = 1.40; 8 = 1.62; 2 + 2 = 0.53;
2 + 3 = 0.75; 2 + 4 and 3 + 3 = 0.97; 2 + 5 and 3 + 4 = 1.19; 2 + 6, 3 + 5, and 4 + 4 = 1.41;
2 + 2 + 2 = 0.76; 2 + 2 + 3 = 0.99; 2 + 3 + 3 = 1.21, 2 + 2 + 2 + 2 = 1). The learning score (LS)
was calculated by adding up all the sub-scores obtained from the 18 trials, ranging from
0 to 26.16. This final raw score was then appropriately adjusted based on age, education,
and gender [25].

2.5. Statistics

Scores for wrong turns and moments of hesitation were checked for normality by com-
puting skewness and kurtosis (judged by indexing non-normal distributions if >|1| and |3|),
respectively [44] and by observing histograms and quantile–quantile plots. As both these
variables proved to be heavily right-skewed and over-dispersed, the ecological validity of the
CLSS test was separately tested against wrong turns and moments of hesitation via general-
ized linear models underlying a negative binomial distribution [45]. Group was also entered
as a factor within these two models, with a CLSS*Group interaction term also fitted in order to
test whether the predictive capability of the CLSS test differed across healthy controls (HCs),
SCD individuals, and MCI patients. The post hoc comparisons regarding Group effects were
Bonferroni-corrected, whilst the CLSS*Group interaction was decomposed via simple slope
analyses. The analyses were run via Jamovi 2.3 (The Jamovi project, 2023).
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3. Results

The sociodemographic, clinical, neuropsychological, and behavioral measures from
the modified version of the Detour Navigation Test and comparisons among groups are all
reported in Table 1.

Table 1. Participants’ sociodemographic, clinical, neuropsychological, and behavioral measures.

HCs SCD MCI p

N 21 27 24 -

Sex (male/female) 9/12 12/15 16/8 0.185 c

Age (yrs.) 62.9 ± 10.7 (28–82) 54.1 ± 10.9 (24–86) 54.1 ± 10.9 (24–86) n.s. d

Education (yrs.) 12.7 ± 3.8 (5–18) 13.2 ± 4.0 (5–22) 13.2 ± 4.0 (5–22) n.s. d

GDS 12.7 ± 3.8 (5–18) 13.2 ± 4.0 (5–22) 13.2 ± 4.0 (5–22) SCD > HCs (p = 0.031) d

MCI > HCs (p = 0.020) d

MoCA
(adjusted scores) a 12.7 ± 3.8 (5–18) 13.2 ± 4.0 (5–22) 13.2 ± 4.0 (5–22)

SCD > HCs (p = 0.003) d

MCI < HCs (p = 0.001) d

MCI < SCD (p < 0.001) d

CLSS
(adjusted scores) b 12.7 ± 3.8 (5–18) 13.2 ± 4.0 (5–22) 13.2 ± 4.0 (5–22)

SCD > HCs (p = 0.069) d

MCI < HCs (p < 0.001) d

MCI < SCD (p < 0.001) d

WTs (n.) 12.7 ± 3.8 (5–18) 13.2 ± 4.0 (5–22) 13.2 ± 4.0 (5–22) MCI > HCs (p < 0.001) e

MCI > SCD (p < 0.001) e

MsH (s) 12.7 ± 3.8 (5–18) 13.2 ± 4.0 (5–22) 13.2 ± 4.0 (5–22) MCI > HCs (p < 0.001) e

MCI > SCD (p < 0.001) e

Notes: HCs = heathy controls; SCD = subjective cognitive decline; MCI = Mild Cognitive Impairment;
GDS = Geriatric Depression Scale; MoCA = Montreal Cognitive Assessment; CLSS = Corsi learning suvra-span;
WTs = wrong turns (number of, n.); MsH = moments of hesitation (in seconds, s); a [39] MoCA normative dataset;
b [26] CLSS normative dataset; c χ2-statistic for independent samples; d Tukey-adjusted p-values for F-statistic;
e Dwass–Steel–Critchlow–Fligner-adjusted p-values for Kruskal–Wallis χ2-statistic.

The three groups were balanced for age (F(2, 43.45) = 1.38, p = 0.263), gender (χ2(2) = 3.38;
p = 0.185), and education (F(2, 45.33) = 0.91, p = 0.408). The GDS scores differed significantly
across groups (F(2, 41.29) = 6.41, p = 0.004), being lower in HCs when compared to individuals
with both SCD (p = 0.031) and MCI (p = 0.020). The comparison between MCI and SCD
patients was not significant for depression (p = n.s.). A significant discrepancy was also
detected in the MoCA scores (F(2, 43.90) = 23.24, p < 0.001), with MCI patients performing
worse than both SCD patients (p <.001) and HCs (p = 0.001), and SCD patients performing
better than HCs (p = 0.003).

A similar pattern was detected as for the CLSS test (F(2, 45.33) = 21.36, p < 0.001), with
MCI patients reporting lower scores on this test when compared to both individuals with
SCD (p < 0.001) and HCs (p < 0.001), and a trend was detected towards lower scores in
SCD patients when compared to HCs (p = 0.069). Significant between-group differences
were also detected with regard to wrong turns (χ2(2) = 21.82; p < 0.001) and moments of
hesitation (χ2(2) = 19.24; p < 0.001), with MCI patients performing worse than SCD patients
(wrong turns: p < 0.001; moments of hesitation: p < 0.001) and HCs (wrong turns: p < 0.001;
moments of hesitation: p < 0.001) on both measures. The other comparisons between
individuals with SCD and HCs were not significant for these disorientation scores (p = n.s.).

The generalized linear model focusing on wrong turns revealed that higher CLSS
scores predicted lower wrong turns (b = −0.05; z = −2.91; p = 0.004), detected as the net
of between-group differences (χ2(2) = 9.28; p = 0.010) which were calculated in the post
hoc comparisons, with MCI patients reporting more wrong turns than both individuals
with SCD (p = 0.020) and HCs (p = 0.019). Regarding variance, no significant CLSS*Group
interaction (χ2(2) = 1.96; p = 0.375) was detected (Figure 3).
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Similarly, higher CLSS scores predicted lower scores for moments of hesitation as well
(b = −0.08; z = −2.60; p = 0.009). Within this model, whilst Group did not yield a significant
effect per se (χ2(2) = 5.55; p = 0.062), a significant interaction was detected between Group
and the CLSS test (χ2(2) = 9.74; p = 0.008). A posteriori, simple slope analyses (Figure 4)
revealed that CLSS scores were predictive of moments of hesitation in SCD (b = −0.17;
z = −3.85; p < 0.001) and MCI patients (b = −0.14; z = −2.43; p = 0.015), but not in HCs
(b = 0.07; z = 1.15; p = 0.249).
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4. Discussion

Our study aimed to determine whether the CLSS test can predict spatial navigation
errors in novel urban environments for community-dwelling older adults from normal
aging to AD. We documented that this test was able to predict spatial navigation errors
such as wrong turns beyond participants’ cognitive profiles and moments of hesitation for
individuals with SCD and patents with MCI due to AD.

The results from this study are in line with our previous investigation [46] and represent
a step forward. In fact, patients with MCI due to AD also showed a higher number of wrong
turns and more moments of hesitation than individuals with SCD and HCs, as we already
noticed [46]. Moreover, they reported lower performance than the other two groups in global
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cognitive screening (MoCA) and CLSS, as expected, as well as in depression (GDS), given
that depressive symptoms in MCI appear to be predictors for progression to AD dementia.
Individuals with SCD presented with better performance in MoCA than HCs, probably
because cognitive effort in sustaining the global screening test was influenced by greater
activation aimed at confirming the absence of the neurological deficit, with patients already
aware of the integrity of their cognitive profile before the experiment.

Spatial memory relies on brain structures that are particularly susceptible to both nor-
mal aging and degenerative dementia [15]. The hippocampus, the fronto-parietal network,
and the temporal lobe collaborate in sustaining spatial memory [15]. In AD, neurodegen-
eration primarily affects the hippocampus, leading to anterograde amnesia as an early
symptom. However, the hippocampus is also crucial for visuospatial processes, sustaining
both sequential egocentric abilities and allocentric abilities, as we already discussed for
patients with MCI due to AD undergoing the modified version of the Detour Navigation
Test [46]. Additionally, early targets in AD are the temporal-parietal areas, which are
related to spatial and visuo-constructive abilities. The evidence on progressive damage to
the neural circuits supporting spatial memory in AD suggests that subtle impairments in
spatial navigation are already present in MCI due to AD and possibly serve as a potential
biomarker for the risk of developing AD dementia [14].

A large-scale variant of the CLSS test, the Walking Corsi test [47], has also been
developed to specifically assess navigational memory proficiency during the execution
of a predefined path (Figure 5). This test is conducted in a featureless room measuring
5 m × 6 m, with walls entirely concealed by curtains obscuring any external landmarks.
Nine black squares (30 cm × 30 cm) are positioned on a light-grey carpet measuring
2.50 m × 3.00 m, arranged in a manner identical to the scaled position and relative spatial
layout observed in the CLSS test. The administration of the Walking Corsi test is identical
to that of the CLSS test, with the examiner walking on the carpet and pausing for 2 s on
each square while presenting the sequences. The Walking Corsi test has been employed in
clinical settings and has been proven to be a valid instrument for evaluating individuals
in the initial phases of AD, given its sensitivity in the early detection of topographical
deficits [48].
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Whereas the CLSS test can be considered a gold standard for the assessment of visu-
ospatial long-term memory, little research has been conducted into its potential use for
testing spatial navigation abilities in real-world setting [47,48]. We documented that the
CLSS test can predict deviations from a predefined route expressed as wrong turns in the
elderly (net of group belonging) and that it is a valid measure to anticipate moments of
hesitation for SCD individuals and patients with MCI due to AD, probably because they
represent the preclinical and premorbid phase of AD dementia in which people start demon-
strating spatial disorientation, being partially unaware of their whereabouts and unable
to navigate to an intended unfamiliar location [49]. These findings represent a promising
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scenario in terms of CLSS ecological validity, defined as the ability of performance-based
measures of cognition to accurately represent patients’ behavior in real-world settings,
which is referred in the literature as ‘veridicality’ [50].

Neuropsychological tests are often biased because they are based on laboratory tasks
with poor ecological validity. As a result, evaluating ecological validity typically involves
retrospectively assessing how neuropsychological tests can really reflect real-life cognitive
functioning. This is usually explored by examining the correlation between performance-
based cognitive measures and reports from proxies about an individual’s cognitive abilities
in everyday life [51]. Considering these assumptions, we demonstrated the ecological va-
lidity of the CLSS test in terms of veridicality, specifically focusing on assessing its capacity
to predict spatial navigation alterations along the physiological aging–AD continuum.

However, our study had some limitations. While neuropsychological tests such as the
CLSS test continue to contribute to the diagnosis of some neurological conditions, such as
detecting early stages of AD (e.g., [52]), they often reflect the activity of multiple neural
circuits, which may limit their precision in locating brain damage [53]. Moreover, the
veridicality approach has been subject to criticism because a direct comparison between
traditional neurocognitive tests and functional performance evaluated through behavioral
observation is not often evident [53]. By using the Italian norms from Aiello and col-
leagues [42], we converted the MMSE scores into MoCA scores for those participants who
were not assessed by the latter instrument, since our study was a multi-center investigation
recruiting participants from three sites [38]. The three groups were not perfectly balanced
either, even if they were well matched in terms of age, education, and gender. The spatial
navigation performance of elderly people may be also affected by anxiety. Beyond depres-
sion, which we measured, anxious symptoms may influence the subjective perception of
spatial navigation abilities in elderly people [54], thus representing a relevant variable that
should be considered in such a specific research line. In the design of our study [46], the
participants were administered different neuropsychological assessment tools for the eval-
uation of visuospatial short-term memory, too, such as the Corsi block-tapping test [55–57]
to evaluate the backward and the forward spans, or the ROCF immediate recall test [58,59]
to evaluate visuo-constructional ability and visual memory. This procedure did not allow
the researchers to have a unique measure of short-term visuospatial memory, which would
have been useful for comparison with the long-term component. Finally, given that visu-
ospatial short-term memory is also involved in sustaining spatial navigation, we could have
also used this variable to forecast the spatial navigation abilities critical to the everyday
independence of elderly people in their communities, especially if affected by AD-related
cognitive symptoms. Research in the real world poses a number of challenges, due to the
need to ensure that everyone has identical conditions to optimize task design [60]. Poten-
tially disturbing factors in the real-word settings, such as weather conditions (e.g., light or
temperature), background noise, the presence of individuals who need to move away from
the urban circuit prior to the experiment, or landmarks of the research working setting
that need to be rearranged before carrying out the naturalistic test, were difficult and time-
consuming to control. To this end, the researchers adopted all the possible countermeasures
to eliminate confounding factors.

Carefully examining whether neuropsychological tests are appropriate for a particular
purpose represents a crucial feature of clinical research. Choosing valid instruments for the
assessment of the premorbid phase of dementia is challenging for clinicians, given that they
should provide valuable information about the personal autonomy of older adults in their
everyday environments. Spatial navigation is a complex cognitive skill that is necessary
for the everyday functioning of elders, increasing independence and reducing caregivers’
burden. This line of research is particularly hindered by some methodological issues, such
as difficulty in translating performance in standardized neuropsychological testing into
real-world abilities, the correct measurement of the real-world functioning of older adults,
several aging-related factors (e.g., maintaining cognitive reserve) that may play a mediating
role, and the influence of confounding variables related to the natural environment. To this
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end, our investigation significantly contributed to the further development of scientific
knowledge in the field of the neuropsychological assessment of the premorbid phase of
Alzheimer’s dementia.

5. Conclusions

Spatial navigation may be impaired early in the course of AD and represents a marker
of clinical dementia progression. Patients with AD frequently lose their way in familiar and
unfamiliar environments, showing topographical disorientation. We reported the CLSS
test as a potential reliable measure of ecological navigational abilities in elderly people
along the normal aging–dementia continuum of the Alzheimer’s type. For this reason, we
recommend its use in routine clinical practice when older adults and/or their informant
caregivers complain about spatial disorientation symptoms during clinical interviews, and
in rehabilitation intervention as a fundamental neuropsychological tool for pre/post-tests.
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