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Simple Summary: Dengue is one of the vector-borne diseases spreading to all provinces in Indonesia.
In this study, dengue hotspot areas were identified using a clustering approach and the climate–
dengue spatiotemporal distribution and their relations were analyzed using the Singular Value
Decomposition technique. Four clusters of dengue hotspot areas were identified. Cluster 1 comprised
cities with medium to high incidence rates and high case densities in a narrow area. Cluster 2 has
high incidence rates but low case densities, and clusters 3 and 4 featured medium and low incidence
rates and case densities, respectively. This dengue clustering can be utilized to determine areas
to prioritize for the prevention and control of dengue, i.e., clusters 1 and 2 are high-priority areas,
cluster 3 is a medium-priority area, and cluster 4 is a low-priority area. Investigation of the dominant
climate variables showed that relative humidity and rainfall were the most influential parameters
on incidence rate across all clusters. Temporal fluctuations in the first mode of incidence rate and
climate parameters were delineated. The spatial distribution of heterogeneous correlation between
the first mode of rainfall and relative humidity to incidence rate exhibited higher values, which were
predominantly found in the southern part of Indonesia.

Abstract: Dengue has become a public health concern in Indonesia since it was first found in 1968. This
study aims to determine dengue hotspot areas and analyze the spatiotemporal distribution of dengue
and its association with dominant climate parameters nationally. Monthly data for dengue and
climate observations (i.e., rainfall, relative humidity, average, maximum, and minimum temperature)
at the regency/city level were utilized. Dengue hotspot areas were determined through K-means
clustering, while Singular Value Decomposition (SVD) determined dominant climate parameters
and their spatiotemporal distribution. Results revealed four clusters: Cluster 1 comprised cities
with medium to high Incidence Rates (IR) and high Case Densities (CD) in a narrow area. Cluster 2
has a high IR and low CD, and clusters 3 and 4 featured medium and low IR and CD, respectively.
SVD analysis indicated that relative humidity and rainfall were the most influential parameters on
IR across all clusters. Temporal fluctuations in the first mode of IR and climate parameters were
clearly delineated. The spatial distribution of heterogeneous correlation between the first mode of
rainfall and relative humidity to IR exhibited higher values, which were predominantly observed in
Java, Bali, Nusa Tenggara, the eastern part of Sumatra, the southern part of Kalimantan, and several
locations in Sulawesi.
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1. Introduction

Dengue is a viral disease transmitted by mosquitoes, is prevalent in tropical and
subtropical regions, and poses a significant risk to human life. Globally, the World Health
Organization (WHO) reported that over the last five decades, the number of dengue cases
has increased 30 times [1,2]. An increase in new infection dengue cases occurs yearly,
reaching around 50–100 million, with 20,000 deaths in more than 100 dengue-endemic
countries, namely Southeast Asia, Africa, America, the eastern Mediterranean, and the
Western Pacific, including Australia [1]. According to a WHO report in 2012, from 2004
to 2010, Indonesia was the country with the second-highest number of dengue cases
(129,435 cases). In Indonesia, dengue was first found in Surabaya (East Java) and Jakarta in
1968 and then became a public health problem. Dengue has been present in all provinces in
Indonesia since 2014, and in 2019, dengue spread to 481 of the 514 regencies/cities. Over
the past 50 years, dengue incidence has significantly risen in Indonesia, which in 2009
and 2016, recorded the most significant number of cases [3]. In contrast, the annual Case
Fatality Rate (CFR) of dengue has significantly decreased over time, from more than 20% of
those infected in the late 1960s to 0.79% in 2016 [3].

Dengue is one of 17 Neglected Tropical Diseases (NTDs) that are influenced by vectors
(mosquitoes), agents (viruses), hosts (humans), and the environment. Dengue is transmitted
through the bite of female Aedes aegypti infected with one of the four serotypes of the
dengue virus, namely DEN-1, DEN-2, DEN-3, and DEN-4 [1,4]. Human factors, such
as age, population density, socioeconomic, human behavior, and mobility, can influence
dengue transmission [5,6]. The availability of natural and non-natural mosquito breeding
places, often related to human activities, is also crucial in the transmission and spreading
of dengue. The development of urban areas, deforestation, and human mobility through
traveling, urbanization, and trading can lead to an increase in dengue transmission [6,7],
even in non-endemic regions in which no previous dengue cases have been found [8].
Environmental factors such as climate [2,9–12] and water conditions can affect the life cycle
of the mosquito.

Climate has a significant role in providing a suitable environment for the life cycle of
Aedes aegypti, from the egg to adult mosquitoes [13]. Rainfall, temperature, and humidity
are the climatic factors that influence the development of Aedes aegypti [5,14,15]. Naturally,
rainfall will fill water reservoirs, which become breeding places for Aedes aegypti during
egg-laying, larvae, and pupae stages [16–18]. The availability of sufficient water as a habitat
for mosquito development in both natural and non-natural habitats, such as used tires,
pots, and other water storage containers, due to human activities, can increase dengue
incidence [10]. Increasing temperature affects the development of viruses and mosquito
larvae, vector survival ability, gonotrophic cycle, incubation period, and viral replica-
tion [19,20]. Air humidity provides favorable environmental conditions for mosquitoes
to survive in their resting places and breeding sites [16]. Climate indirectly influences
dengue virus transmission through the possibility of interaction between mosquito vectors
and humans [5].

Numerous studies have investigated the influence of both climate and non-climatic
factors on dengue incidence, including dengue model prediction in Indonesia [21]. On a
daily scale, rainfall of 50 mm and humidity of 70% with a time lag of 50 days showed a
positive correlation and increase in dengue cases in Semarang [22]. Model prediction of
dengue using rainfall showed a positive correlation to dengue incidence in Indramayu,
Bogor, North Jakarta, and Padang [23]. Rainfall and humidity in Jakarta also correlate
to dengue incidence with values of 0.55 and 0.78, respectively [24]. The optimal daily
temperature for dengue infection ranges from 24.3 ◦C to 30.5 ◦C [22]. A positive correlation
and low magnitude were obtained between the difference in maximum and minimum
temperature to dengue incidence in Sleman [25]. Predicting dengue occurrences based on
climate can be a preventive measure in dengue control. However, current developments
indicate that research on the relationship between dengue and climate in Indonesia remains
sporadic and only in a few locations. A comprehensive nationwide study to identify the
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dominant climate parameters affecting dengue fever incidence has yet to be conducted [21].
At the national level in Indonesia, identifying dengue hotspot areas is crucial for deter-
mining the highest priority regions for dengue control. A similar study of macroscale
analyses for spatiotemporal patterns of dengue has been conducted in the State of Mato
Grosso, Brazil [26].

This study aims to determine the hotspot areas of dengue and analyze the nationwide
spatiotemporal distribution of dengue incidence associated with dominant climate parame-
ters. The findings of this study can be utilized to identify priority areas for the prevention
and control of dengue in the public health system of Indonesia, to provide insights into
climate-influenced dengue occurrences at a national level, and as input in developing
dengue prediction models using climate parameters as early warning information.

2. Methodology
2.1. Study Area

Indonesia is a large tropical country located between the Pacific Ocean and the In-
dian Ocean (6◦ N–11◦ S and 95◦ E–141◦ E) with over 17,000 islands. With only around
7000 islands inhabited, it has several major islands: Sumatra, Kalimantan, Java, Bali, Nusa
Tenggara, Sulawesi, Maluku, and Papua. Indonesia is the fourth most populated country
in the world, with a total population of over 270 million people and an area of around
1,892,410 km2. In 2022, Indonesia had 38 provinces with 416 regencies and 98 cities. Indone-
sia has a tropical climate with three dominant types of rainfall pattern, namely (1) Region
A: monsoon type with one peak in the wet season in November to March, (2) Region B:
Equatorial type with two peaks in the wet season in October to November and March to
May, and (3) Region C: local type with one peak in the wet season in June to July [27]. In
lowland areas, the average temperature normally ranges from 23.3 ◦C to 31.6 ◦C, and in
highland areas, the range of average temperature is from 17.6 ◦C to 27.0 ◦C [28].

2.2. Dengue Data

Dengue case data were obtained from the Directorate of Prevention and Control
of Infectious Diseases, the Indonesian Ministry of Health (MoH). Community Health
Centers (Puskesmas) and public hospitals collect and report the data to district and province
health authorities. We obtained 11 years of monthly dengue case data covering the period
2010–2020 from 514 regencies/cities. From 2010 to 2014, 17 regencies underwent expansion
and were, therefore, not included in the analysis because of data limitations. The population
and coverage area data (km2) at the regency/city level period 2010–2020 was derived from
the Indonesian Statistics Bureau (BPS) “https://www.bps.go.id (accessed on 9 August
2022)”. Administrative boundaries on the regency/city level were set using data provided
by the Indonesian Geospatial Information Agency (BIG).

Dengue case data in each regency/city shows varying degrees of completeness with
missing data in a number of locations, as described in Figure 1a. We found that 472 regen-
cies/cities have 0–10% missing data, including 263 regencies/cities with 0% missing data
and 209 regencies/cities with less than 10% missing data. Additionally, 22 regencies/cities
have 10–20% missing data, while no locations have 20–30% missing data. However,
10 regencies/cities have 30–40% missing data, and 10 more 40–50% missing data. The
regions with more than 30% missing data are primarily found in newly constituted regen-
cies as a result of the 17 location-expansion zones that we excluded from the analyses. The
three other locations with more than 30% missing data are found in locations dominated by
zero cases.

https://www.bps.go.id
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As an initial step to ensure data quality, climate data series were flagged for several 
gross errors, including the absence of a consistent code for rainfall events (e.g., rainfall is 
recorded as 0 mm or blank entries), duplicate or outlier data, and physical inconsistencies 
such as a minimum temperature that was the same or higher than the maximum or aver-
age temperatures, and vice versa. Manual assessments such as visualizing data and check-
ing data trends were also conducted to double-check data quality. Systematic quality con-
trol of the daily climate data was carried out using RClimdex-extraqc 
“http://www.c3.urv.cat/data/Manual_rclimdex_extraQC.r.pdf (accessed on 31 May 
2022)” to detect errors and outlier data and obtain better performance. We compared data 
from nearby stations to identify suspected outlier data. Expert judgment was also em-
ployed if there was no information from nearby stations or other resources to identify 
outlier data. The monthly climate data scale was used from 128 stations for 131 regen-
cies/cities that have more than 80% data completeness. The spatial distribution of the cli-
mate stations in this study is shown in Figure 1b. Additionally, the detailed of climate 
stations is provided in Supplementary Table S1.  

2.4. Substituting Missing Data 
To tackle the dengue data completeness issue, we used a single imputation method 
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Figure 1. Spatial distribution of data completeness in Indonesia: (a) for dengue data, (b) for
156 climate stations. Stations marked with blue dot represent those stations used in analyses, while
marked X represent those stations excluded from analyses because of a lack of data completeness.

2.3. Climate Data

Climate data, consisting of rainfall (RR, mm), relative humidity (RH, %), average tem-
perature (Tavg, ◦C), minimum temperature (Tmin, ◦C), and maximum temperature (Tmax,
◦C), were obtained from the Indonesian Agency for Meteorology, Climatology, and Geo-
physics (BMKG). Daily climate data was collected from 1 January 2010 to 31 December 2020
from 156 stations. All data from 2010 to 2020 have been analyzed and it was determined
that missing values amounted to less than 20% [29,30].

As an initial step to ensure data quality, climate data series were flagged for several
gross errors, including the absence of a consistent code for rainfall events (e.g., rainfall is
recorded as 0 mm or blank entries), duplicate or outlier data, and physical inconsistencies
such as a minimum temperature that was the same or higher than the maximum or
average temperatures, and vice versa. Manual assessments such as visualizing data and
checking data trends were also conducted to double-check data quality. Systematic quality
control of the daily climate data was carried out using RClimdex-extraqc “http://www.
c3.urv.cat/data/Manual_rclimdex_extraQC.r.pdf (accessed on 31 May 2022)” to detect
errors and outlier data and obtain better performance. We compared data from nearby
stations to identify suspected outlier data. Expert judgment was also employed if there
was no information from nearby stations or other resources to identify outlier data. The
monthly climate data scale was used from 128 stations for 131 regencies/cities that have
more than 80% data completeness. The spatial distribution of the climate stations in this
study is shown in Figure 1b. Additionally, the detailed of climate stations is provided in
Supplementary Table S1.

2.4. Substituting Missing Data

To tackle the dengue data completeness issue, we used a single imputation method by
calculating the mean for an i-th month on specific regencies/cities during the period of data
to substitute missing dengue data for the i-th month. This imputation technique considered
that dengue cases had a monthly pattern with one peak in several regencies/cities. The
mean has been used for some medical data imputation approaches for dengue prediction
with a single value in instances with fewer than 15% missing values [31]. Mean imputation
can be retained in full datasets and used to run analyses as if data were complete, even
though this method does not account for the uncertainty in missing data [32].

Missing climate data due to errors in observation instruments, instrument replace-
ments, or human errors can be substituted using spatial interpolation [29]. In this study,
we employed the Inverse Distance Weighted (IDW) interpolation method to substitute
missing daily climate data. IDW is a widely used deterministic interpolation technique for
climate- and weather-related factors that assumes spatial autocorrelation and similarity
among points [33]. It operates on the principle that closer points significantly influence

http://www.c3.urv.cat/data/Manual_rclimdex_extraQC.r.pdf
http://www.c3.urv.cat/data/Manual_rclimdex_extraQC.r.pdf
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interpolation, with diminishing impact as distance increases [34]. In IDW, a linear combina-
tion of neighboring observations determines the value at each interpolated location. The
details of IDW interpolation can be found in [35,36].

2.5. Cluster Analyses

Cluster analysis is a statistical technique that categorizes observational factors into
distinct groups. In this study, dengue hotspot areas are delineated based on two key metrics:
Incidence Rate (IR) and Case Density (CD). The IR represents the number of dengue cases
per 100,000 inhabitants, while the CD indicates the number of dengue cases per square
kilometer. This study used K-means clustering to categorize dengue hotspot areas based
on the annual averages of IR and CD time series data at the regency and city levels. The
data series are standardized to a mean value of 0 and a standard deviation of 1 during the
clustering process to ensure equitable consideration of all locations. In K-means, objects are
selected and partitioned into k distinct classes. The Euclidean distance metric is utilized
to determine the proximity of each input object to the centroids. To identify the optimal
number of clusters, we employed the elbow method, assessing up to 10 groupings. Optimal
cluster numbers are determined by identifying the point on the elbow plot at which a
subtle reduction in within-cluster variability is often visualized as a bend in the elbow [37].
Throughout the K-means clustering process, the value of k is iteratively adjusted, and the
within-cluster sum of squares is computed and plotted for each k value.

2.6. Singular Value Decomposition (SVD)

SVD is a method in mathematics used to investigate the coupled variability between
two variables, identifying modes of behavior where variations in the two variables are
closely associated [38]. In meteorology, SVD has been used for data decomposition to
find spatial patterns of variability and temporal variations and to assess the significance
of patterns and relationships for the two fields. In this study, SVD is used to analyze
the variability between the mode climate dataset and dengue incidence in space and
time, investigate the dependency of both datasets, and determine the dominant climate
parameters in influencing dengue. The climate dataset is defined as an X matrix with n time
and p location points and the IR data is defined as a Y matrix with n time and q location
points. The covariance matrix (Cxy) was calculated using Equation (1), and the SVD process
for Cxy was performed using Equation (2) as specified by [38].

Cxy = XTY (1)

Cxy = ULVT (2)

Two orthogonal spatial pattern clusters and matching pairs of singular values, compa-
rable to eigenvalues, were formed from the cross-covariance matrix in SVD. Equation (2),
which includes the three main components, was used to calculate the decomposition of
the matrix Cxy [38]. The initial values of the fundamental matrix axis were represented
by the singular vectors that made up the matrix U, which had a dimension of p × m.
The singular value denoting each particular vector relevance within the original matrix
was represented by Matrix L. The initial matrix impacted matrix V with a dimension of
m × q and was influenced by the original matrix. SVD identifies a linear combination of
p predictor variables that exhibits the highest covariance with a linear combination of q
predicted variables. These pairs of linear combinations, denoted by A and B, are referred to
as expansion coefficients and are analogous to eigenvectors as described in Equation (3).

A = XU and B = YV (3)

A and B contain expansion coefficients for each mode, and due to the orthogonality
of U and V, the data matrix can be formed as X = AUT and Y = BVT. This provides
a straightforward method for evaluating the significance of individual singular modes
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by considering the proportion of squared covariance, known as the Squared Covariance
Fraction (SCF) explained by each mode. SCF expresses the fraction of squared covariance
elucidated by the corresponding singular vector. The SVD technique can produce both a
homogenous and heterogeneous correlation map. In this study, we used the heterogeneous
correlation between the mode of the climate dataset and the IR dataset as another field.

3. Results
3.1. Epidemiology of Dengue Cases

Dengue cases were found in most regencies/cities in Indonesia in every year under
study. A total of 1,240,267 dengue cases were reported from 2010 to 2020. The highest
country-wide counts were in 2010 (156,053) and 2016 (203,936), and the lowest were in
2011 (65,717), 2017 (68,396), and 2018 (65,600). Based on the National Strategic Plan of
the Indonesia Ministry of Health for 2020–2024, the IR threshold to control dengue in
Indonesia was determined to be less than 49 per 100,000 inhabitants annually. The yearly
IR on the regency/city level from 2010 to 2020 is shown in Figure 2. During this time, a
high incidence rate (49 ≤ IR ≤ 100) and a very high incidence rate (IR > 100) of dengue
were found almost every year, e.g., in East Kalimantan, North Kalimantan, and Bali. In
2016, locations with high and very high IR showed a rapid increase in 250 regencies/cities.
Furthermore, 129 regencies/cities with an IR of 49 > IR > 100 and 96 regencies/cities with
an IR > 100 were found.

Insects 2024, 15, x FOR PEER REVIEW 6 of 16 
 

 

forward method for evaluating the significance of individual singular modes by consid-
ering the proportion of squared covariance, known as the Squared Covariance Fraction 
(SCF) explained by each mode. SCF expresses the fraction of squared covariance eluci-
dated by the corresponding singular vector. The SVD technique can produce both a ho-
mogenous and heterogeneous correlation map. In this study, we used the heterogeneous 
correlation between the mode of the climate dataset and the IR dataset as another field.  

3. Results 
3.1. Epidemiology of Dengue Cases 

Dengue cases were found in most regencies/cities in Indonesia in every year under 
study. A total of 1,240,267 dengue cases were reported from 2010 to 2020. The highest 
country-wide counts were in 2010 (156,053) and 2016 (203,936), and the lowest were in 
2011 (65,717), 2017 (68,396), and 2018 (65,600). Based on the National Strategic Plan of the 
Indonesia Ministry of Health for 2020−2024, the IR threshold to control dengue in Indone-
sia was determined to be less than 49 per 100,000 inhabitants annually. The yearly IR on 
the regency/city level from 2010 to 2020 is shown in Figure 2. During this time, a high 
incidence rate (49 ≤ IR ≤ 100) and a very high incidence rate (IR > 100) of dengue were 
found almost every year, e.g., in East Kalimantan, North Kalimantan, and Bali. In 2016, 
locations with high and very high IR showed a rapid increase in 250 regencies/cities. Fur-
thermore, 129 regencies/cities with an IR of 49 > IR > 100 and 96 regencies/cities with an 
IR > 100 were found.  

 
Figure 2. Geographical distribution of annual incidence rate (cases per 100,000 inhabitants) from 
2010 to 2020 in Indonesia. 

3.2. Determination of the Dengue Hotspot Areas 
The K-means clustering technique resulted in four clusters of dengue hotspot areas 

across Indonesia with representative insight and distinct characteristics based on the den-
gue IR and CD, as shown in Figure 3. The features of clusters 1 and 2 showed them to be 
the locations with the most significant dengue incidence. Eleven urbanized sites (2%) with 
a condensed geographic size and a large number of cases formed cluster 1. Twenty-five 
locations (5%), mainly in districts with sizable areas and many dengue cases, formed clus-

Figure 2. Geographical distribution of annual incidence rate (cases per 100,000 inhabitants) from 2010
to 2020 in Indonesia.

3.2. Determination of the Dengue Hotspot Areas

The K-means clustering technique resulted in four clusters of dengue hotspot areas
across Indonesia with representative insight and distinct characteristics based on the dengue
IR and CD, as shown in Figure 3. The features of clusters 1 and 2 showed them to be the
locations with the most significant dengue incidence. Eleven urbanized sites (2%) with
a condensed geographic size and a large number of cases formed cluster 1. Twenty-five
locations (5%), mainly in districts with sizable areas and many dengue cases, formed
cluster 2. Additionally, cluster 3 had 117 locations (24%) with a medium level of dengue
incidence and case density, whereas cluster 4 contained 344 regencies/cities (69%) with a
low level of dengue incidence and case density. From the clustering result, we were able
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to determine locations to prioritize for the management and control of the incidence of
dengue. Cluster 1 and cluster 2 were classified as areas where there is a high priority for
dengue control due to increased dengue cases almost every year. However, the control
programs for dengue in cluster 1 and cluster 2 should be different because cluster 1 has a
smaller area than cluster 2. Cluster 3 and cluster 4 were identified as areas where there is a
medium and low priority for dengue control, respectively. In cluster 3, dengue incidence
was frequently found every year, but with a medium number of cases, and in cluster 4, a
low number of cases were found. The detail of cluster number in each province and the
cluster member is provided in Supplementary Tables S2 and S3, respectively.
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The spatial distribution of the clustering result is shown in Figure 4, (a) for all of
Indonesia, and (b) for Java, Bali, and Lombok Island. Red denotes cluster 1, and orange,
green, and yellow denote cluster 2, cluster 3, and cluster 4, respectively. Cluster 1 is
dominantly located in Java island, Bali, and Lombok as visualized in Figure 4b. The
identified dengue hotspot areas can be utilized to analyze spatial and temporal patterns
of dengue incidence and their correlation with dominantly climatic factors in Indonesia.
Maps depicting the hotspot dengue areas in Indonesia can also be used to identify priority
areas for dengue control efforts. One of the measures to control dengue spread involves
devising preventive steps by developing early warning systems for dengue and utilizing
climatic factors as input parameters for dengue prediction models.
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Figure 4. Map of dengue hotspot areas based on clustering: (a) national level, (b) Java Island, Bali,
and Lombok.

3.3. Spatiotemporal Distribution of Climate Parameters Strongly Correlated with Dengue Incidence
3.3.1. Variance and Coefficient Correlation

The dominant patterns in a time series of climate parameters and IR were obtained
using the SVD technique. Each of the modes extracted will be orthogonal to the others.
The SVD produced covariance (SCF) and coefficient correlation (r) values that showed
strong, significant coupling between climate parameters and IR. The first mode (mode 1)
will be the most coupled pattern and exhibit a highly significant variance. Subsequently,
the second mode emerges as the second most dominant, followed by the third mode, and
so on. The SVD results show the dependency of dengue cases or incidence on climate
parameters across Indonesia. The number of regions/cities utilized in applying the SVD
technique aligns with the availability of climate stations, totaling 131 regions/cities. Eight
districts/cities were used in Cluster 1, 11 in Cluster 2, 39 in Cluster 3, and 73 in Cluster 4.
The two modes of SCF values and the correlation between expansion factor A (the first
mode of climate) and expansion factor B (the first mode of IR) are shown in Table 1.

The variance values expressed as SCF (%) show that mode 1 and mode 2 of the climate
predictors can explain most of the diversity in predicting IR. As we move to mode 3 and
beyond, the SCF values decrease continuously. Based on Table 1, the total SCF exceeds 80%
for all clusters and climate parameters from the first mode to the second. Relative humidity
(RH) achieved the highest covariance values in the first mode of cluster 1, cluster 2, cluster
3, and cluster 4, with percentages of 98.7%, 73%, 90%, and 86%, respectively (see Table 1).
The correlation values (r) between the expansion factors of climate parameters and IR
indicate the relationship strength between these two parameters. These correlation values
vary among the first and second modes in each cluster. The highest correlation in the
first mode for cluster 1 is found with air humidity (0.47), in cluster 2, it is found with
rainfall (0.54) and average temperature (0.54), in cluster 3, with rainfall (0.57) and average
temperature (0.57), and in cluster 4, with rainfall (0.58). The 95% significance level was used
for the first and second mode of climate parameters in all clusters that showed significance
with p-values less than 0.05 (Table 1).
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Table 1. The SCF value and correlation between expansion coefficients A and B (two orthogonal
spatial sets) of the two first modes of each cluster.

Cluster Mode SCF (%) Correlation (r) *

RR RH Tavg Tmax Tmin RR RH Tavg Tmax Tmin

Cluster 1 Mode 1 95.0 98.7 88.3 92.7 79.4 0.24 (0.005) 0.47 (0.00) 0.33 (0.00) 0.46 (0.00) 0.24 (0.005)
Mode 2 3.8 0.9 9.5 4.0 12.0 0.19 (0.026) 0.40 (0.00) 0.31 (0.00) 0.23 (0.007) 0.20 (0.022)

Accum. SCF mode 1–2 98.8 99.6 97.8 96.7 91.4
Cluster 2 Mode 1 69.6 73.2 69.5 56.6 79.6 0.54 (0.00) 0.49 (0.00) 0.54 (0.00) 0.51 (0.00) 0.49 (0.00)

Mode 2 15.3 13.4 20.8 28.1 15.2 0.39 (0.00) 0.49 (0.00) 0.42 (0.00) 0.53 (0.00) 0.45 (0.00)
Accum. SCF mode 1–2 84.9 86.6 90.3 84.7 94.8

Cluster 3 Mode 1 84.0 90.3 59.6 79.6 80.5 0.57 (0.00) 0.54 (0.00) 0.57 (0.00) 0.54 (0.00) 0.48 (0.00)
Mode 2 5.8 4.2 26.2 8.7 12.9 0.47 (0.00) 0.59 (0.00) 0.60 (0.00) 0.49 (0.00) 0.65 (0.00)

Accum. SCF mode 1–2 89.8 94.5 85.8 88.3 93.4
Cluster 4 Mode 1 82.3 86.1 69.1 69.0 83.9 0.58 (0.00) 0.53 (0.00) 0.45 (0.00) 0.54 (0.00) 0.49 (0.00)

Mode 2 4.0 5.1 13.3 14.7 7.5 0.53 (0.00) 0.56 (0.00) 0.46 (0.00) 0.50 (0.00) 0.63 (0.00)
Accum. SCF mode 1–2 86.3 91.2 82.5 83.7 91.4

* In parenthesis are the 95% significance levels for the correlation (α < 0.05).

3.3.2. Time-Series Patterns of the Expansion Factors

The time-series patterns between the first mode of each climate parameter and the
first mode of the IR on a monthly scale are shown in Figure 5. Figure 5a–d show the time
series pattern for cluster 1, cluster 2, cluster 3, and cluster 4, respectively. In Figure 5a,
the IR shows clear monthly fluctuations with a single peak around February until April,
generally following the pattern of each climate parameter. Increases in rainfall and humidity
correspond to increases in IR. The IR peaks notably occurred in 2010 and 2016 within cluster
1. A decline in IR was also noticeable in 2017 and 2018 following the surge in cases in 2016.
Figure 5b shows the temporal pattern of IR concerning rainfall (a) and air humidity (b) in
cluster 2, exhibiting clear seasonal patterns, while temperature shows a different pattern
concerning IR. In cluster 3, as depicted in Figure 5c, the temporal pattern of IR concerning
rainfall and humidity displays a distinct seasonal pattern with a single peak, whereas the
temperature parameter shows an inverse pattern. In Figure 5d, the highest IR peaks in
cluster 4 are generally observed in 2016 and 2019. The monthly IR pattern shows relatively
lower fluctuations but still generally follows the climate pattern.

3.3.3. Spatial Distribution of Dominant Climate Parameters to Dengue Incidence

The SVD technique resulted in the heterogeneous correlation between the expansion
factors of the mode of each climate parameter and dengue incidence. For each regency/city,
we chose the parameter with the highest correlation among the first modes of RR, RH,
Tavg, Tmax, and Tmin toward IR (A1Y). The spatial map is obtained from the combination
of heterogeneous correlation in all clusters used to determine the most dominant climate
parameters with the highest magnitude and specify the appropriate location. The spa-
tial distribution of heterogeneous correlation values between the first mode of climate
parameters and IR for all clusters is depicted in Figure 6.

Based on Figure 6a,b, the map showed that the heterogeneous correlations between
the first mode of rainfall (RR) and the first mode of relative humidity (RH) towards IR
have a higher magnitude than that of the first mode of temperature, ranging from 0.30 to
0.56. These correlation values exceeded 0.30 in a total of 52 regencies/cities for relative
humidity (RH), followed by 49, 17, 29, and 2 regencies/cities for RR, Tavg, Tmax, and Tmin
respectively. The predominant spatial distribution of correlation values between RH and
IR, as well as between RR and IR, was found in the southern part of Indonesia, i.e., Java,
Bali, Nusa Tenggara, the eastern part of Sumatra, the southern part of Kalimantan, and
several regencies/cities in the southeastern and northern regions of Sulawesi. Conversely,
correlation values below −0.30 were identified in 19 regencies/cities for Tavg, 19 for Tmax,
and 31 for Tmin.
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4. Discussion
4.1. Dengue Hotspot Areas

Dengue has been spreading rapidly to almost all regencies/cities and is frequently
found every year in Indonesia. From 2010 to 2020, a total of 1,240,267 dengue cases were
reported nationally. East and North Kalimantan, Bali, and DKI Jakarta were the provinces
that frequently had a high number of dengue cases. In the last five decades, several peaks
in IR have been identified in Indonesia with a cyclic pattern that peaked approximately
every 6 to 8 years, as in 1973, 1988, 1998, 2009, and 2016 [3]. The change in the trend in
IR during the 2000s peaked in 2016, partly due to a shift in the dominant serotypes from
DEN-3 to DEN-1 and DEN-2, which rapidly emerged in Indonesia. Additionally, there was
heightened activity of these virus serotypes across most areas in Indonesia [3]. For instance,
during the dengue fever outbreak in Jambi in 2015, DEN-1 dominated at an incidence rate
of 66%, causing more severe clinical impacts than DEN-3 [39]. This change in serotype
dominance was also observed regionally in other regions, such as Southeast Asia [3].

The most important result of the clustering technique using IR and CD was a catego-
rization of dengue hotspot areas as priority regions for intervention and control of dengue.
The first category is a high–interest area, consisting of cluster 1 and cluster 2, which had
a high number of dengue cases but different case densities. Cluster 1 was dominated by
urban areas, commonly found in relatively confined areas with high population densities.
Conversely, cluster 2 is located in urban and suburban areas with more expansive areas
than cluster 1. In densely populated and narrow urban areas, the probability of human
and vector contact is very high [40], which could trigger fast dengue transmission. Aedes
aegypti is also often found in houses in urban areas [41], so the denser the settlement, the
easier mosquitoes circulate and the faster the virus transmits. In urban areas, there are also
many people with no immunity to one of the four DEN serotypes for which an effective
dengue vaccine is still unavailable. An explosive dengue outbreak will occur if climate
conditions favor dengue vector and virus spread [40]. In suburban areas, which commonly
have larger areas and lower population densities than urban areas, many dengue cases
were also found. Cluster 3 was identified as a medium interest area for the dengue control
program. In this cluster, dengue cases are frequently found annually, with an incidence rate
reaching a high government threshold (IR > 49) with case density similar to cluster 2. The
last category is the low-interest area, which consists of cluster 4. In this cluster, dengue cases
were rarely found annually; if cases were found, there were few in number. The identified
dengue hotspot areas with different degrees of dengue incidence can be used by health
authorities like the Ministry of Health and local governments to determine the regency/city
prioritization for the prevention and control of dengue transmission effectively.

4.2. Climate Parameters Dominant in Influencing Dengue Incidence

Rainfall, humidity, and temperature directly impact the mosquito life cycle at every
stage and can influence dengue transmission indirectly. Additionally, these climate factors
contribute to a heightened probability of human–mosquito vector contact, consequently,
elevating the transmission of the dengue virus [5]. Each climate parameter influences
dengue incidence to a different degree in each area [22–24,42]. Determining which climate
parameters dominantly influence dengue incidence in Indonesia and the dependency
between dengue incidence and climate parameters is essential. Based on the SVD results,
the heterogeneous correlation between the first mode of each climate parameter and IR
shows that rainfall and relative humidity have higher degrees of correlation than average,
maximum, and minimum temperatures. These correlation values reached more than 0.3
and were primarily found in the southern part of Indonesia with the monsoonal rainfall
pattern. In the monsoonal climate region, the rainfall is influenced by the Asian winter
monsoon, which brings more water vapor from the South China Sea, generally from
November to March (wet season). Conversely, from May to September, the monsoonal
wind will bring drier air from Australia (dry season) [27]. During the dry season, mosquito
eggs will survive and hibernate in their breeding places for months. When the rainy season
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begins and with the watering of the storage containers, the eggs that hibernate during
the dry season will soon hatch. In relation to this hatching and the growth to adulthood,
the pattern of dengue cases generally followed the rainfall with a lag time around of
two months [22]. This pattern shows that the mosquito egg will start to hatch and the
mosquitoes grow to adulthood when the rains fall at the onset of the wet season. We also
obtained from Figure 6a that a very weak correlation between the first mode of rainfall
and IR (r ≤ 0.1) was found in several locations with an equatorial rainfall pattern. This
type of rainfall has two peaks in the year, generally in October to November and March to
May [27]. A better correlation between rainfall and dengue incidence in this rainfall pattern
defined the second mode.

Relative humidity and temperature provide a favorable environment for mosquitoes
to lay eggs and survive until they hatch. The optimal relative humidity was found to be
more than 75% for egg preservation and also has a positive correlation with egg-hatching
ability [43]. This factor was also observed to significantly impact the vector’s ability to
transmit a pathogen, behavior of biting, and adult mosquito survival rate [2]. In tropical
areas surrounded primarily by oceans, the temperature is relatively warm throughout the
year, providing a sufficient environment for mosquitoes to continue laying eggs. With
temperatures ranging from 23 ◦C to 31.6 ◦C, the lowland areas over Indonesia [28] are
suitable for mosquito life and transmission of the dengue virus to humans [22]. The
heterogeneous correlation between the first mode of average temperature and incidence
rate (Figure 6c), as well as maximum temperature and incidence rate (Figure 6d), indicated
a scattered distribution in all locations, exhibiting both positive and negative correlations.
For the minimum temperature (Figure 6e), a negative correlation with a magnitude ranging
from −0.2 to −0.45 was found in almost all locations. The vector development will be
hampered by extreme temperatures that are too low or too high. In specific environments,
higher temperatures can consequently, raise mosquito mortality rates and reduce the risk
of dengue transmission [2]. Moreover, the results also showed that in highland areas,
a negative correlation with the highest magnitude between the first mode of minimum
temperature and incidence rate was defined in Kerinci regency (elevation ±784 m), Malang
(±590 m), Tana Toraja (±829 m), and Kepahiang (±517 m). In these highland areas, the
dengue case data is less than 10 cases in a month and these areas are mostly classified in
cluster 3 and cluster 4. In other highland areas, a positive correlation was found between
the first mode of relative humidity and incidence rate in Kota Bandung (±791 m) in cluster
1, Pasuruan (±832 m) in cluster 3, and Tana Toraja in cluster 4.

In influencing vector growth and virus transmission, climate variables should not be
considered independently, as they support each other in influencing dengue transmission.
Elevated rates of precipitation, coupled with higher temperatures, also lead to increased
humidity [44]. The results of this study provide valuable insight into how far the climate
influences dengue in wide areas of Indonesia. This result also can be used as a preliminary
reference in building climate–dengue model predictions regarding prioritized dengue
hotspot areas. Even if the climate–dengue prediction cannot easily be modeled because of
their non-linear relationships, it can be utilized for a dengue–climate early warning system.
It represents the first piece of information that should be used to enhance awareness and
determine preventive strategies for dengue outbreaks. Further strategies can be employed
by health authorities to minimize the risk of dengue transmission, such as vector control,
sanitation improvement, public education, and environmental management.

This study had several limitations. Dengue case data at the national level were only
partially available; some instances of missing data were encountered and data were avail-
able only at the regency/city level. The data did not differentiate between the three types
of dengue, i.e., Dengue Fever, Dengue Hemorrhagic Fever, and Dengue Shock Syndrome.
Information is also needed indicating whether the data has undergone epidemiological
investigation or not. The second limitation is that the use of observation data from climate
stations was not enough to cover all regencies/cities in Indonesia. The distribution of cli-
mate stations is still sparse and only covers around 25% of the country’s 514 regions/cities.
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Gridding climate data from a regional climate model or reanalyzing climate data to cover
all regencies/cities in Indonesia is recommended. Further improvement is needed, such as
using lag-time and involving non-climatic factors in the analyses.

5. Conclusions

Dengue hotspot areas in Indonesia’s regions have been identified based on dengue
incidence rate and case density at the regency/city level. Cluster 1 predominantly consists
of cities and is characterized by moderate to high incidence and high case density. Cluster
2 encompasses areas with high incidence but lower case density. Both cluster 1 and
cluster 2 represent areas where there is a high priority for intervention and control of
dengue. Cluster 3 includes regions with moderate incidence and case density, categorized
as medium priority. Lastly, cluster 4, characterized by low incidence and case density, falls
into the low-priority category.

The application of the SVD technique revealed that the highest covariance values
were associated with relative humidity in the first mode of climate parameters and IR
across all clusters. In this first mode, cluster 1 exhibits the highest correlation values with
relative humidity, while cluster 2 and cluster 3, the highest correlation values were with
rainfall and average temperature, and cluster 4 showed higher correlations with rainfall.
The heterogeneous correlation showed that the dominant temporal pattern for IR across
all clusters follows a distinct pattern, aligning with the first mode of rainfall and relative
humidity patterns. However, the temperature exhibits a different pattern. In the spatial
distribution of correlation values, the first mode of rainfall and relative humidity were
the dominant climate parameters in influencing the incidence of dengue in Indonesia,
with a higher correlation than temperature. This dominant correlation was found in Java,
Bali, Nusa Tenggara, eastern Sumatra, southern Kalimantan, and several locations in the
northern and southeastern parts of Sulawesi.

Determining the dengue hotspot areas is crucial for directing resources and efforts
toward controlling dengue outbreaks effectively. Additionally, our study underscores the
pivotal role of certain climate parameters in influencing dengue transmission, offering valu-
able insights for developing dengue–climate model prediction. Such models can empower
health authorities to implement proactive measures to prevent dengue transmission and
protect public health.
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