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Abstract: As a recently developed high-strength aluminium alloy used specifically for laser additive
manufacturing, AlMgMnSc alloy possesses superior mechanical properties and excellent processabil-
ity. Extreme high-speed laser deposition (EHLD) is a novel surface-modification technique, which
is characterised by high depositing speed, rapid cooling, rate and minimal dilution rate. To offer
a new method for surface repairing high-strength aluminium alloys, an AlMgMnSc alloy coating,
containing two deposition layers, is prepared on a 6061 aluminium-alloy axle using the EHLD tech-
nique. Meanwhile, the microstructure, composition distribution, and microhardness variation of the
fabricated coating are studied. The results reveal that the coating is dense and crack-free, which is
well-bonded with the substrate. Additionally, layer 1 is mainly composed of large columnar and
equiaxed grains, while layer 2 consists of a fully equiaxed grain structure with an average grain size
of about 4.5 µm. Moreover, the microhardness of the coating (about 104~118 HV) is similar to the
substrate (about 105 HV), proving the feasibility of repairing high-strength aluminium alloys using
AlMgMnSc alloy powders through the EHLD technique.

Keywords: microstructure; microhardness; composition; grain structure; high-strength aluminium
alloy; extreme high-speed laser deposition

1. Introduction

Extreme high-speed laser deposition (EHLD) is a novel material-surface-modification
technique, which was developed by Fraunhofer Laser Technology Research Institute in
2013 [1,2]. In conventional laser deposition, primary energy is deposited into the substrate
instead of into powders. As for the EHLD, most of the laser energy is absorbed by powders,
decreasing the heat input to the substrate remarkably [3]. During the EHLD process, raw
materials are fed by a coaxial powder feed nozzle, with the focus of the powder flow
above the substrate. Most of the laser energy is absorbed by the powders before they reach
the substrate; only a small melting pool is formed on the substrate surface by residual
laser energy. As a result, powder particles are melted by the laser beam before hitting the
substrate, entering the melting pool in a molten or semi-molten state [4,5]. Consequently,
the EHLD has the advantages of high depositing speed, rapid cooling rate, and minimal
dilution rate, providing high economic benefits and satisfactory material performance [2,6].
As is reported, the processing speed and deposition efficiency of the EHLD can be up to
500 m/min and 96%, respectively [7].

Currently, the EHLD is mainly used to modify the surfaces of Ni-based alloy, Fe-
based based alloy, amorphous alloys, high-entropy alloys, and metal matrix composite
coatings [6,8–16]. Yuan et al. [1] deposited Ni45 alloy coatings on 45 medium carbon steel
substrates by a traditional laser-deposition technique and the EHLD, respectively. It is
reported that the coating fabricated using the EHLD has a lower roughness and a smaller
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thickness when compared with the traditional laser-deposition technique. Meanwhile,
variations in processing parameters lead to changes in the solidification conditions of the
melting pool. A fine equiaxial dendritic structure could be obtained under a high laser
cladding rate. Zhang et al. [4] established a powder flow model by using a transient
bidirectional coupling calculation method to investigate the effects of laser power, carrier-
gas flow rate, and shielding-gas flow rate on particle temperature profiles during the EHLD
process. According to their results, the carrier-gas and protective-gas flow rates are key
factors for determining the maximum elevation angle of the powder flow. With the increase
in carrier-gas flow, there is an increase in the maximum inclination angle of the powder. On
the other hand, the increase in shielding-gas flow could lead to a decrease in the maximum
inclination angle of the powder. Koß et al. [7] investigated the maximum surface rate and
deposition rate by depositing an AlSi10Mg coating on an AlMgSi0.5 alloy substrate using
the EHLD with a conventional 8 kW IR-laser beam source. The results demonstrate the
feasibility of fabricating an aluminium coating on an aluminium-alloy substrate through
the EHLA. At a processing speed of 100 m/min, a maximum surface rate of 800 cm2/min
and deposition rate of about 22.5 g/min could be obtained. Meanwhile, a maximum surface
rate of 1300 cm2/min and a deposition rate of about 34 g/min were achieved at a processing
speed of 200 m/min. It is proposed that it is possible to increase the surface and deposition
rate by increasing the laser power using the EHLD.

High-strength aluminium alloys are used in a broad range of industries, such as the
automobile, aerospace, and construction industries and mechanical and electrical engi-
neering [17–19]. The world’s top-three largest consumers of primary aluminium are China
(33.3 million tons), the USA (4.6 million tons), and Germany (2.1 million tons) [7]. As is
reported, aluminium alloys make up 60–80% of the weight of a commercial aircraft and
more than 50% of the structural quality of rockets and aircraft [20,21]. The 6xxx series alloy
is a kind of high-strength aluminium alloy. It is reported that the application proportion
of the 6xxx series alloy in civil aircraft is about 6% [20]. A typical 6xxx series alloy is
6061 aluminium alloy, which is a heat-treated, precipitation hardened, alloy and includes
magnesium (Mg), silicon (Si), and iron (Fe) as its major alloying elements [22]. The 6061 alu-
minium alloy offers low density, high strength-to-weight ratio, good ductility, excellent
formability and weldability, good corrosion resistance, and low cost [22]. Currently, it is
mainly adopted to fabricate aircraft wings, fuselages, and fuel tanks and in wheel rims,
wheel spacers, truck bodies, car frames, bicycle frames, bike frames, container bodies,
goods wagons, carriages, trams, driveshafts, valves, etc. [22,23].

The long-term performance of high-strength aluminium-alloy components under cer-
tain conditions is limited due to their high coefficient of friction, poor wear characteristics,
and low hardness. Additionally, it is reported that about 423.2 kWh of electricity and about
558 Nm3 of natural gas are needed to produce 1 t of primary aluminium, while recycling
requires only about 5% of the energy [7]. Consequently, surface repair and modification are
of great importance for high-strength aluminium alloys to reduce material quantity and
manufacturing costs.

As is known, the preparation of traditional high-strength aluminium alloys through
laser processing is challenging because they normally present high susceptibility to cracking
due to large liquidus-to-solidus temperature ranges and high solidification rates during
fabrication [24–28]. Tan et al. [25] analysed the influence of processing parameters on the
cracking of a 2024 aluminium alloy prepared by laser processing. It is suggested that a
reduction in the fraction of large elongated columnar grains could lead to a decrease in
hot cracks. However, it is impossible to eliminate columnar grains by adjusting processing
parameters. Thus, hot cracks in laser-processed 2024 aluminium alloys could hardly
be completely avoided. Wojciech et al. [26] optimised the processing parameters of a
7075 aluminium alloy fabricated through laser processing. Their results indicate that
solidification cracks along columnar grain boundaries could hardly be totally eliminated.
Furthermore, intergranular micro-segregation of Zn, Mg, Cu, and Si are observed. It is
considered that Si may result in a high cracking susceptibility by increasing the stability
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of the liquid film. Yao et al. [28] studied the formation mechanism of cracks in a laser-
processed 2024 aluminium alloy. They proposed that the transverse strain rate of columnar
grains could easily exceed the sum of the transverse expansion rate of grains and the filling
rate of liquids at the grain boundaries due to high Cu and Mg contents. In addition, the
high cooling rate and heat input involved in laser processing reduce the filling rate of
liquids at grain boundaries. As a result, a 2024 aluminium alloy presents strong thermal
crack sensitivity during laser processing. Therefore, the application of laser processing in
surface repair and modification of high-strength aluminium alloys is significantly limited.

Very recently, Sc-containing high-strength aluminium alloys have been designed
specifically for laser additive manufacturing (LAM) [24,29–36]. In LAMed AlMgMnSc
alloys, primary Al3Sc particles would precipitate in the melting pool before solidification
of the α-Al, providing heterogeneous nucleation sites for α-Al grains [30]. As a result,
the formation of equiaxed fine grains is promoted, which mitigates solidification cracking
significantly. Meanwhile, the addition of Sc remarkably improves the mechanical properties
of aluminium alloys. Wang et al. [31] studied the influence of solidification conditions
on the microstructure and mechanical property of an aluminium alloy fabricated through
laser-directed energy deposition. It was found that an equiaxed grain structure could be
obtained at a low cooling rate, while a heterogeneous grain structure containing a fine grain
band and a fan-shaped coarse grain was formed at a high cooling rate. After ageing, the
yield strength of the sample prepared at a high cooling rate is enhanced to ~2 times that
of the sample prepared at a low cooling rate. Hua et al. [32] prepared aluminium alloys
with a fully equiaxed grain structure with grain sizes of 2–30 µm through laser-directed
energy deposition. Most of the primary Al3Sc particles were found along grain boundaries.
The deposited alloy presents a certain but not obvious anisotropy, since the texture index
and strength are only slightly larger than 1. Yield strength, tensile strength, and elongation
of the specimen in the horizontal direction and the building direction are 399.87 MPa,
220.96 MPa, 9.13% and 385.40 MPa, 219.40 MPa, 8.24%, respectively.

Although the successful preparation of AlMgMnSc alloys through LAM suggests
that it could be possible to modify the surfaces of aluminium alloys through the EHLD
technique, research in this field is seldom conducted. The microstructure characteristics and
mechanical behaviour of the EHLDed AlMgMnSc alloy coating remain unclear. Therefore,
the EHLD approach was used in this work to fabricate an AlMgMnSc alloy coating on a
6061 aluminium-alloy axle. Additionally, the microstructure, composition, distribution,
and microhardness variation of the prepared coating were analysed. Meanwhile, the
microstructure formation mechanism of the deposited coating was investigated. The aim of
this paper is to offer a comprehensive understanding of the microstructure and mechanical
property of the EHLDed AlMgMnSc alloy coating, providing theoretical guidance for
surface repairing of a high-strength aluminium alloy using the EHLD technique.

2. Materials and Methods

An annealed wrought 6061 aluminium-alloy axle with a diameter of 60 mm was
applied as a substrate. The composition and microhardness of the substrate are about Al-
1.12Mg-0.18Cu-0.12Mn-0.17Zn-0.19Cr-0.06Ti-0.61Si-0.55Fe (wt.%) and 105 HV, respectively.
Spherical AlMgMnSc alloy powders with particle sizes ranging from 15 to 53 µm were
adopted as feedstock material (D10: 17.30 µm, D50: 33.15 µm, and D90: 55.58 µm). The
apparent density and tap density of the powders are 1.40 g/cm3 and 1.7 g/cm3, respectively.
Figure 1 illustrates the SEM images of the powders. As shown in Figure 1a, the powders
have a spherical shape. It is also noticed that some planetary powders are distributed on
the surfaces of powders (see Figure 1b). The nominal composition of the AlMgMnSc alloy
is Al-5Mg-0.4Sc-0.35Zr-0.9Mn-Si-0.6Ti-0.6Cu-0.25Cr (wt.%). The deposition process was
carried out using an LDF3000-40 EHLD system (Laserline GmbH, Muelheim, Germany),
which is composed of a high-speed lathe and laser and powder feeding system. The
laser adopted in this paper is a LDF3000-40 semiconductor pulse laser (Laserline GmbH,
Muelheim, Germany). The pulse duration and wavelength of the laser are 100 ms and
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960~1060 ± 10 nm, respectively. During processing, the laser beam is focused by a focusing
lens group. A detailed introduction to the EHLD system can be found in Ref. [1]. In
this paper, the coating was prepared by depositing two AlMgMnSc alloy layers using
the following processing parameters: a powder feed rate of 6 g/min, laser spot diameter
of 1.2 mm, laser power of 1500 W, scanning speed of 5.5 m/min, and overlapping ratio
of 50%. According to our previous work on the optimization of processing parameters,
crack-free EHLDed AlMgMnSc alloy coatings with a metallurgical bond to the substrate
can be obtained by using the above processing parameters. Before deposition, the surface of
the 6061 aluminium-alloy axle was polished and cleaned with alcohol and acetone. During
the deposition process, argon was adopted as a powder carrier gas and shielding gas. A
schematic illustration of the EHLD process is shown in Figure 2.
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Figure 2. Schematic illustration of the EHLD process.

After deposition, the fabricated sample was sectioned into pieces using electrical
discharge wire cutting to analyse the microstructure, composition variation, and micro-
hardness distribution of the longitudinal section of the prepared coating. The samples
were ground with SiC grit paper and then polished using the standard mechanical polish-
ing method. Mechanical polishing was conducted by adopting a Tegramin-20 polishing
machine (Struers, Copenhagen, Denmark), and the duration of mechanical polishing is
about 1 min. After mechanical polishing, a VibroMet 2 vibratory polisher (BUEHLER,
Lake Bluff, IL, USA) was adopted to polish the surfaces of the samples. During vibratory
polishing, SiO2 turbid liquid was utilised as a grinding polishing media and the polishing
time was 4 h. Microstructure, crystallographic orientations, grain size distributions, and
composition variation were determined by a JSM7900F scanning electron microscope (SEM)
(JEOL, Tokyo, Japan) equipped with energy-dispersive X-ray analysis (EDX). Microhard-
ness distributions along depth direction were tested by using an FM-800 Microhardness
tester (Future-Tech, Tokyo, Japan), with 10 s loading time and under loads of 50 g. The
average hardness of each position was calculated from three measurements.
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3. Results and Discussion

To reveal the microstructure formation mechanism of the prepared AlMgMnSc alloy
coating, the change of composition, grain morphology, grain size, and crystallographic
orientation along the deposition direction are analysed. In addition, to verify the feasibility
of repairing aluminium alloys by utilising the EHLD technique and AlMgMnSc alloy
powders, the microhardness distribution along the depth direction is measured.

Variation in composition along the depth direction of the fabricated sample was
measured by EDX, and the result is given in Figure 3. As is shown, with an increase in the
distance away from the substrate, the contents of Fe and Zn decrease while the contents of
Mg, Sc, Zr, Si, Mn, Ti and Cr are increased. The average compositions of layers 1 and 2 are
Al-3.5Mg-0.36Sc-0.16Zr-Si-0.5Ti-0.22Cr-0.8Mn-0.17Fe-0.6Cu-0.2Zn (wt.%) and Al-4.4Mg-
0.42Sc-0.32Zr-Si-0.55Ti-0.24Cr-0.9Mn-0.15Fe-0.6Cu-0.01Zn (wt.%), respectively. During
deposition of layer 1, part of the substrate is melted and mixed with newly deposited
AlMgMnSc alloy. Thus, a layer with a composition between 6061 aluminium alloy and
AlMgMnSc alloy is established. As deposition continues, the composition of layer 2 is more
close to the AlMgMnSc alloy. Finally, a coating with changed compositions is formed.
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Figure 4 shows SEM images of a cross section of the fabricated sample. An overview
of the coating in Figure 4a indicates that the coating is dense and crack-free. Also, pores
with an average diameter smaller than 100 µm are observed. The boundary between the
substrate and the coating is illustrated in Figure 4b, revealing that the interface between
the coating and the substrate is smooth, continuous, and well-bonded. The microstructure
of layers 1 and 2 in Figure 4c,d indicates that both layers are composed of precipitation
phases and an α-Al matrix. The microstructure of layer 1 in Figure 4c reveals that most
of the precipitation phases exhibit a lath-shaped morphology. Also, a small amount of
nano-scaled precipitation phases with a dot-shaped morphology are visible. Meanwhile,
the precipitation phases in layer 1 mainly precipitate around the grain boundaries of α-Al,
displaying a lamellar structure. The microstructure of layer 2 in Figure 4d shows that
nano-scaled precipitation phases with particle-like morphology disperse evenly through
equiaxed α-Al grains.

To further analyse the microstructural characteristics of different layers, electron
backscattered diffraction (EBSD) analysis is adopted. The EBSD results of layer 1 are
shown in Figure 5. The orientation map in Figure 5a indicates that layer 1 has a unique
heterogeneous grain structure, which can essentially be divided into three regimes based
on the variation in grain size and morphology: (i) equiaxed grains at the bottoms of melting
pools (EGB), (ii) columnar grains grown from the bottoms of melting pools (CGB), and
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(iii) equiaxed grains at the tops of melting pools (EGT). The EGB mainly distributes at
the melting boundary close to the previously deposited layer, while the CGB primarily
distributes at the melting boundary adjacent to the substrate. In addition, columnar
grains preferred to grow along the direction perpendicular to the melting boundary. From
Figure 5b, it is noticed that the distribution of grain size in the EGB region is not uniform.
In the colony of fine equiaxed grains (FEGB), there is a band of relatively coarse equiaxed
grains (CEGB).
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To further analyse the difference between crystallographic orientations and the grain
size of different regimes in layer 1, the texture index and grain size distributions are
quantitatively compared in Figure 6. Pole figures (PFs) of the FEGB, CEGB, and EGT
regions in Figure 6a–c illustrate that equiaxed grains in layer 1 are randomly oriented,
which can be confirmed by the random colour in Figure 5. The maximal texture indices
of the FEGB, CEGB, and EGT regions are 1.936, 4.314, and 5.774, respectively. The inverse
pole figure (IPF) of the CG region in Figure 6d suggests that columnar grains mainly grow
along the crystallographic direction of [212] and [103]. Grain-size data calculated based
on the EBSD spectrum in Figure 6e–g show that the grain size distributions of the FEGB,
CEGB, and EGT regions are 0.2~1.8 µm, 0.2~2.8 µm, and 1.7~41.9 µm, respectively. The
average grain sizes of the equiaxed grains in the FEGB, CEGB, and EGT regions are about
1.0 µm, 1.9 µm, and 16.0 µm, respectively.
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The grain structure of the AMed AlMgMnSc aluminium alloy is primarily determined
by the solidification condition of the melting pool and precipitation of primary Al3(Sc, Zr)
particles [37]. During solidification, a high temperature gradient (G) at the solidification
interface and low solidification velocity (V) favour the formation of columnar grains
growing along the direction parallel to the direction of the maximum thermal gradient. By
contrast, high V and low G promote the formation of equiaxed grains [38,39]. Additionally,
primary Al3(Sc, Zr) particles tend to precipitate from liquid metals before the onset of α-Al
solidification. The similar lattice constants of α-Al and Al3(Sc, Zr) make the Al3(Sc, Zr)
particles effective nucleation cores for the following solidification of α-Al grains [37]. As a
result, the formation of a fine equiaxed grain structure is strongly promoted.

During the deposition of layer 1, the G and cooling rate (R) of the melting pool are
relatively large, due to the low temperature of substrate. Rapid cooling during solidification
may suppress precipitation of primary Al3(Sc, Zr) particles [31]. Additionally, G usually
enhances with the increase of depth in the melting pool, while V is the highest at the top
of the melting pool [40,41]. Therefore, columnar grains prefer to form at the bottom of
the melting pool, while equiaxed grains are obtained at the top of the melting pool [42].
Consequently, layer 1 mainly contains large columnar and equiaxed grains. The addition
of Sc does not result in a widespread presence of fine equiaxed grains. In layer 1, it is
also noticed that only a small amount of fine equiaxed grains are formed at the melting
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boundary close to the previously deposited layer. The existence of fine equiaxed grains
could be attributed to the high temperature of the previously prepared layer, which leads
to a decrease in G and R. Under a relatively low R, primary Al3(Sc, Zr) particles would be
obtained in the melting pool, providing heterogeneous nucleation sites. Simultaneously, a
low G promotes the formation of equiaxed grains. Generally, variation of local solidification
conditions results in heterogeneity in the grain structure of layer 1.

EBSD results of layer 2 in Figure 7 show that the grain structure of layer 2 is quite
different from that of layer 1, indicating that these two layers experience different modes of
solidification. Orientation maps in Figure 7a–d reveal that no columnar grain is formed
in layer 2, and most grains exist in the form of equiaxed grains. The fully equiaxed grain
structure in layer 2 is similar to the AlMgSc aluminium alloys prepared using a laser-
directed energy deposition technique [31,32]. Despite the similarity in grain morphology,
the distribution of grain size in layer 2 is not uniform. According to the variation in grain
size, layer 2 can be divided into three regimes: (i) fine equiaxed grains at the bottoms of
melting pools (FEG), (ii) equiaxed grains with medium size at the centres of melting pools
(MEG), and (iii) coarse equiaxed grains at tops of melting pools (CEG).
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To study the differences in crystallographic orientations and grain size of different
regimes in layer 2, the texture index and grain size distributions are quantitatively investi-
gated in Figure 8. PFs of the FEG, MEG, and CEG regions in Figure 8a–c show that layer
2 presents strong anisotropy, and grains in layer 2 have no obvious preferred orientation.
The maximal texture indices of the FEG, MEG, and CEG regions are 2.054, 1.465, and 2.149,
respectively. Grain-size data obtained from the EBSD spectrum in Figure 8d–f show that the
grain size distributions in the FEG, MEG, and CEG regions are determined to be 0.2~1.8 µm,
0.7~5.0 µm, and 0.7~12.1 µm, respectively. The average grain sizes of the equiaxed grains in
the FEG, MEG, and CEG regions are about 1.2 µm, 2.2 µm, and 5.6 µm, respectively. Layer
2 displays an average grain size of about 4.5 µm. Compared with layer 1, it is clear that
the distribution of grain size in layer 2 is more uniform. According to previous research,
a fully equiaxed grain structure with grain sizes of 2–30 µm could be obtained by using
laser-directed energy deposition [32]. As can be seen, the alloy prepared through the EHLD
in this work is smaller than the laser-directed energy-deposited alloy.

During the deposition of layer 2, G and R are relatively small due to the high tem-
perature of layer 1. Compared with layer 1, precipitation of primary Al3(Sc, Zr) particles
is more homogeneous in the entire melting pool. The enrichment of primary Al3(Sc, Zr)
particles leads to the formation of a fully equiaxed grain structure. The formation process
of fine equiaxed grains is illustrated in Figure 9. In addition, Figure 7 indicates that the
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distribution of grain size in layer 2 is not uniform. This may be ascribed to the convection
of liquid in the melting pool [43]. It is speculated that liquid flow leads to a non-uniform
distribution of primary Al3(Sc, Zr) particles, resulting in the variation in grain size.
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As is reported by previous works, Sc-containing aluminium alloy fabricated by selec-
tive laser melting normally presents a bimodal grain structure. That is, a band of equiaxed
grains with no preferential crystallographic orientation forms at the melting boundary,
while columnar grains growing along the deposition direction dominate the centre of the
melting pool [44,45]. On the other hand, a fully equiaxed fine grain structure can be ob-
tained in Sc-containing aluminium alloy prepared through laser-directed energy deposition,
due to a relatively low cooling rate and temperature during deposition [32]. As for the
prepared coating in this paper, the unique fabrication process of the EHLD leads to different
microstructure features. The variation in solidification conditions results in a changed grain
morphology along the building direction. That is, layer 1 displays a heterogeneous grain
structure, while layer 2 consists of a fully equiaxed grain structure.
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Figure 10 presents variations in microhardness along the depth direction of the fab-
ricated sample and micrographs of microhardness indent marks. As can be seen, the
microhardness of layers 1 (about 104~112 HV) and 2 (about 107~118 HV) are similar to the
substrate (about 105 HV). Hence, it could be suggested that using AlMgMnSc alloy powders
as raw materials to repair the surfaces of traditional high-strength aluminium-alloy compo-
nents via the EHLD technique is applicable. It is also noticed that microhardness fluctuates
obviously within the deposited layers. As illustrated in Figures 5 and 7, the fabricated
coating presents a mixed microstructure. That is, there is a change in grain morphology
and grain size along the deposition direction. Therefore, it is speculated that the fluctuation
in microhardness may be ascribed to the uneven distribution of the microstructure.
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To sum up, this paper reveals the microstructure and microhardness of the EHLDed
AlMgMnSc alloy coating for the first time. It is found that a change in the solidification
conditions within the melting pool results in the variation in grain morphology along
the deposition direction. Moreover, fully equiaxed fine grains can be obtained with an
increase in the deposition layer. In addition, the fabricated coating exhibits a similar
microhardness to the 6061 aluminium-alloy substrate. This paper offers a deep insight into
the microstructure and mechanical performance of the EHLDed AlMgMnSc alloy coating.

4. Conclusions

In this paper, an AlMgMnSc high-strength aluminium-alloy coating was prepared on
a 6061 aluminium-alloy axle using the EHLD technique. The grain structure, composition
distribution, and microhardness variation of the fabricated coating were studied.

The results reveal that the prepared coating is dense and crack free and is well-bonded
with the substrate. Additionally, with an increase in distance away from the substrate, there
is a change in chemical compositions along the deposition direction. Moreover, due to
the variation of local solidification conditions, layer 1 mainly contains large columnar and
equiaxed grains. Only a small amount of fine equiaxed grains are formed at the melting
boundary. The average grain size of the equiaxed grains in the FEGB, CEGB, and EGT
regions in layer 1 are about 1.0 µm, 1.9 µm, and 16.0 µm, respectively. Meanwhile, layer 2
consists of a fully equiaxed grain structure with no preferential crystallographic orientation.
The distribution of grain size in layer 2 is not uniform. The average grain sizes of the
equiaxed grains in the FEG, MEG, and CEG regions in layer 2 are about 1.2 µm, 2.2 µm,
and 5.6 µm, respectively. Furthermore, the microhardness of the coating (about 104~118
HV) is similar to the substrate (about 105 HV), proving the feasibility of repairing the
surfaces of traditional high-strength aluminium-alloy components using AlMgMnSc alloy
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powders through the EHLD technique. Compared with conventional laser deposition, the
EHLD technique presents higher depositing efficiency. In the meantime, primary Al3(Sc,
Zr) particles in AlMgMnSc alloy promote the formation of equiaxed fine grains, inhibiting
the generation of solidification cracking remarkably. Also, the addition of Sc significantly
improves the mechanical properties of the alloy. By combining the advantages of the EHLD
technique and an AlMgMnSc alloy, this paper provides a new approach to rapidly modify
the surfaces of aluminium-alloy components with high performance.
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