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Abstract: As the prime candidate for plasma-facing materials (PFM), the response of tungsten
(W) to thermal shock loads is an important research topic for future fusion devices. Under heat
loads, the surface of tungsten plasma-facing materials (W-PFM) can experience thermal damage,
including brittle cracking and fatigue cracks. Therefore, exploring solutions for thermal damage
of W-PFM remains one of the current research focuses. We propose a novel approach to mitigate
thermal radiation damage in PFM, namely, the stacked structure W-PFM. The surface thermal stress
distribution of the stacked structure W-PFM under heat loads was simulated and analyzed by
the finite element method. As the foil thickness decreases, both the peak thermal stresses in the
normal direction (ND) and rolling direction (RD) decrease. When the thickness decreases to a certain
value, the peak thermal stress in the RD decreases to about 1384 MPa and no longer decreases;
while the peak thermal stress in the ND approaches 0 MPa and can be neglected. In the range
of approximately 5–100 mm, the accumulated equivalent plastic strain decreases sharply as the
thickness decreases; in other thickness ranges, it decreases slowly. Thermal fatigue experiments were
conducted on the stacked structure W composed of W foils with different thicknesses and bulk W
using an electron beam facility. The samples were applied with a power density of 30 MW/m2 for
10,000 and 20,000 pulses. The cracks on the surface of the stacked structure W extended along the ND
direction, while on the surface of bulk W, besides the main crack in the ND direction, a crack network
also formed. The experimental results were consistent with finite element simulations. When the
pulse number was 10,000, as the thickness of the W foil decreased, the number and width of the
cracks on the surface of the stacked structure W decreased. Only four small cracks were present on
the surface of stacked structure W (0.05 mm). When the pulse number increased to 20,000, the plastic
deformation and number of cracks on the surface of all samples increased. However, the stacked
structure W (0.05 mm) only added one small crack and had the smallest surface roughness (Ra =
1.536 µm). Quantitative analysis of the fatigue cracks showed that the stacked structure W-PFM (0.05
mm) exhibited superior thermal fatigue performance.

Keywords: plasma facing materials; tungsten; thermal fatigue; irradiation effect; fusion

1. Introduction

As the prime candidate for PFM, the response of W to thermal shock loads is an
important research topic for future fusion devices [1,2]. According to current tokamak
designs, during normal operation, especially in the divertor region, W-PFMs must with-
stand harsh fusion environments, including high fluxes of low-energy particles (H/He)
and neutron irradiation, as well as extreme heat loads and repeated severe thermal shocks
generated by long-pulse discharges [3–5]. Under cyclic thermal loading, the surface of
W-PFMs will experience thermal damage, such as brittle cracking and fatigue cracks [6,7].
These crack damages may worsen during the service life of W-PFMs, eventually leading to
their degradation and failure, and even affecting the stability of the plasma.
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Limiting crack propagation or increasing the ductility of W can address this issue. Pre-
vious studies include: alloying W with other elements (such as Ta, Re) [8–10], cold-rolling
W [11,12], fine-grain reinforced W [11,13], using fiber-reinforced composites (WfW) [14,15],
or laminated W composites [16]. However, a common drawback of all these approaches is
their stability issue over time and use. The most apparent problem is the transmutation of
W (e.g., into Re, Os) due to neutron irradiation, which can seriously affect the possibility of
maintaining the achieved ductility during fusion reactor operation. In addition, the voids
and bubbles created with plasma irradiation can also affect the ductility of the material.
Considering the unavoidable recrystallization (especially in experimental tokamaks like
ITER), PFM solutions that rely on specific grain structures (such as texture strengthening,
fine-grain strengthening) to achieve certain ductility will also face the same challenge.
However, there is currently no effective method to comprehensively improve the thermal
radiation damage of W-PFMs and extend its service life. Therefore, exploring solutions for
thermal radiation damage of W-PFMs remains one of the current research focuses.

Terra et al. [17,18] proposed micrometer-structured W, which can significantly reduce
the periodic thermal stresses near the W surface, thereby reducing surface cracking of
W-PFMs. Based on a similar concept, we previously proposed a new approach to mitigate
thermal fatigue damage of W-PFMs by stacking many W foils parallel to the direction of
thermal loading to form a stacked structure W, replacing bulk W material. This allows
the bulk W to be composed of multiple mesoscale W foils to improve the micro-load
environment during service, thereby reducing the peak thermal stress and alleviating
thermal fatigue damage [19,20]. We have verified the feasibility of the stacked structure
PFMs on Cu materials [21] and confirmed that this structure can suppress the surface
blistering effect of W at the grain scale [22].

In this work, the finite element method is used to simulate and analyze the surface
thermal stress and strain distribution of the stacked structure W and bulk W with different
thicknesses. Then, thermal fatigue experiments using an electron beam are conducted to
study the surface thermal damage and crack distribution characteristics of the stacked
structure W with different foil thicknesses under thermal loading to verify the simulation
results. Subsequently, the crack evolution of the stacked structure W and bulk W under
different thermal cycling numbers is studied.

2. Experimental and Finite Element Simulation Methods
2.1. Sample Preparation

The W materials used in the experiments included bulk W and W foils, both provided
by Antai Technology Co., Ltd. (Xiamen, China). Both were rolled W (purity > 99.9 wt%)
with dimensions of 10 mm × 10 mm. The thicknesses of the W foils were 0.05 mm and
0.1 mm, respectively, while the bulk W sample was a 3 mm thick W plate. We define the
normal direction (ND) as the thickness direction of the foil, the rolling direction (RD) as
the length direction of the foil, and the transverse direction (TD) as the height direction
of the foil. The scheme of the laminated structure W-PFM is shown in Figure 1a. A large
number of tungsten foils are stacked vertically on the copper alloy surface and compressed
together using a stainless steel clamp. They are connected to the copper alloy by brazing
to form a stacked structure W-PFM, with the irradiated surface (plasma-facing surface)
composed of the edges of multiple foils. Since the actual foils all have a certain degree of
unevenness, the average gap between the foils can be adjusted by controlling the pressure
applied by the stainless steel clamp. In this work, we study the stress condition of the
plasma-facing surface under transient thermal loading, and the heat transfer distance along
the TD direction is smaller than the size of the tungsten foil in the TD direction, so the
influence of the copper alloy can be ignored. Therefore, we only stacked them together
using a stainless steel clamp without brazing them to the copper alloy. At the same time,
for easy comparison with bulk W, we combined the W foils with bulk W and applied
uniform pressure using a stainless steel clamp to prepare a composite experimental sample
of stacked structure W and bulk W, as shown in Figure 1b. The red area in Figure 1b
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represents the heat load region, i.e., the plasma-facing surface. The heat load region of the
samples was mechanically polished and electrochemically polished (2 wt% NaOH solution)
to a low roughness of Ra ≈ 0.01 µm. The physical diagram of the experimental sample is
shown in Figure 1c, with the red region being the thermally loaded region.
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sample assembly, (c) Experimental samples of the physical picture.

2.2. Finite Element Simulation Analysis
2.2.1. Model

The stacked structure W-PFM was composed of numerous W foils, and each W foil
has the same experimental environment, we select a single W foil for simulation [17]. We
mainly study the effect of thickness (dimension in the ND direction) variation on surface
thermal stress, and since the dimension in the RD direction is the same, we ignore its effect
on surface thermal stress and choose a plane strain model. At the same time, this is also
to simplify the calculation. The model size in the TD direction is set to 10 mm, which
is larger than the heat transfer distance of the transient heat flow, to avoid the influence
of the constant temperature boundary condition at the bottom on the temperature of the
heat-loaded surface [23]. The dimensions in the ND direction are respectively 0.05, 0.1, 0.5,
1, 5, 10, 20, 50, 100, 200, and 500 mm. According to spatial symmetry, we select a 1/2 model
for analysis. The mesh size of all models is uniformly 2.5 × 10−5 m. Since the dimension
values in the ND direction span several orders of magnitude (0.05–500 mm), the mesh size
is very small, so the model images after mesh division cannot be displayed one by one here.
Figure 2 shows the plane strain model image with a thickness of 5 mm.

2.2.2. Boundary Conditions and Thermal Property Parameters

A transient analysis of 20.5 s (heating 0.5 s/cooling 20 s) is performed on the model to
simulate a complete thermal cycle. The initial temperature of the model is set to 20 ◦C, and
a heat flux density of 30 MW/m2 is loaded on the top surface (as shown by the red arrow
in Figure 2). The thermal radiation effect from tungsten to the surrounding environment is
ignored, so the TD surface and ND surface of the single-foil model are set to be adiabatic;
at this time, the model is one-dimensional heat transfer, which can better reflect the effect
of the thickness variation of the stacked structure W-PFM on the surface thermal stress.
The bottom surface is assumed to be an ideal cooling condition (constant temperature of
20 ◦C) [23]. The mechanical constraint is a fixed constraint applied to the bottom surface of
the model.
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Assuming W is an ideal elastic-plastic material, its thermal property parameters are
listed in Table 1, referring to the ITER materials handbook [24] and relevant literature [25].

Table 1. Relevant parameters of tungsten finite element simulation.

Material Temperature
(◦C)

Thermal
Conductivity

(W/(m·K))

Coefficient of
Thermal Expansion

(10−6/◦C)

Young’s
Modulus (GPa) Poisson’s Ratio Yield Strength

(MPa)

W

20 173 4.50 398 0.279 1384
500 133 4.68 390 0.284 854

1000 111 4.89 368 0.29 465
1500 101 5.13 306 0.295 204

2.3. Thermal Fatigue Experiment

The thermal fatigue tests were conducted on an electron beam facility with a rated
voltage of 8 kV (a vacuum of 4 × 10−4 Pa). All samples were mounted in graphite crucibles
placed on water-cooled copper blocks. To ensure good thermal conduction, a small amount
of gallium metal was filled between the samples and the crucibles [26]. The TD surface
served as the irradiated surface, and thermal cycling tests were performed for 10,000 and
20,000 cycles with a power density of 30 MW/m2, a pulse width of 0.5 s, and a pulse
interval of 20 s. The schematic diagram of the thermal fatigue device is shown in Figure 3.

The heat flux factor FHF is applicable for comparing thermal shock experiments
performed at different pulse durations on different devices [7]. In ITER, the time scale of
transient thermal load is around 1 ms. According to the heat flux factor formula:

FHF = P
√

∆t (1)

where P is the power density and ∆t is the heat loading duration. Our thermal fatigue
experiment is equivalent to an experiment with a power density of 670 MW/m2 and a
pulse duration of 1 ms.
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We theoretically estimated the maximum surface temperature using the following
formula:

Tmax = T0 + 2P
√
(t/πλρC) (2)

where Tmax is the maximum surface temperature due to the transient thermal load, T0 is
the initial surface temperature, P is the power density (W/m2), t is the pulse duration (s),
λ is the thermal conductivity (W/(m·K)), ρ is the density (kg/m3), and C is the specific
heat (J/(kg·K)). This has been proven to be an effective method for theoretically calculating
the maximum surface temperature under thermal loading [7,27,28]. Using the thermal
properties at 20 ◦C and 1500 ◦C, the estimated surface temperature range was 1173–1351 ◦C.

2.4. Characterization Methods and Performance Measurements

The surface morphology of the samples before and after thermal fatigue tests was
examined by Scanning Electron Microscope (SEM, FEI Quanta650FEG, Hillsboro, OR, USA).
The metallographic structure of the samples before thermal fatigue tests was obtained by
optical microscope (OLYMPUS DP27, Tokyo, Japan). The surface roughness (Ra) of the
samples after thermal fatigue tests was obtained by laser confocal microscope (OLYMPUS-
LEXT-OLS4000, Tokyo, Japan), with the test details shown in Figure 4. To avoid the
influence of the foil gap on the test, the sampling lines were parallel to the RD, and the
sampling line of the foil was located in the ND center area. Each W foil was sampled once,
and 5 foils were sampled to report the average value. The bulk W was also sampled 5 times
to report the average value.

After the thermal fatigue test, Vickers microhardness testing was performed on the
ND surface of the heat-loaded center area of the bulk W. The sample was subjected to
Vickers microhardness testing (MH-50) at room temperature, with a load of 100 g and a
dwell time of 15 s [29]. Starting from 50 µm away from the heat-loaded surface, a group
of tests (indentations parallel to the TD surface) was performed every 100 µm along the
TD direction until the hardness value tended to be stable. All indentations were optically
inspected, and unsuitable indentations were eliminated. For each group of 5 hardness
values, the average hardness value was reported.
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3. Finite Element Simulation of Stacked Structure W-PFM

Since the heat transfer is a one-dimensional model, the highest temperature is the
surface temperature. We neglected the thermal radiation effect and the thickness of the
model has no effect on its temperature distribution, so the temperature distribution is
the same in the TD direction for models with different thicknesses. Figure 5 shows the
evolution of the temperature distribution of the loaded surface over time for a single
cycle of the bulk model at 30 MW/m2 heat flux, with a maximum temperature of 1251 ◦C.
The simulated surface temperature is within the range of theoretically estimated surface
temperature, indicating that the temperature results of our simulation are reasonable.
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As shown in Figure 6, the peak thermal stresses on the heat-loaded surface in the RD
and ND directions are compared for models with different thicknesses. As the thickness
decreases, the peak stresses on the heat-loaded surface in the RD and ND directions both
decrease in an “S” curve shape. When the thickness decreases to 0.5 mm, the decrease
in peak thermal stress in the RD slows down, with the peak thermal stress in the RD
decreasing by about 214 MPa, and the stress value is close to the yield strength of the
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material, as shown in Figure 6a. The peak thermal stress in the ND is close to 0 MPa and
can be neglected, with the peak thermal stress in the ND decreasing by about 1384 MPa,
which is close to the yield strength of the material, as shown in Figure 6b. This is because
when the model thickness is large, there are relatively large peak thermal stresses in both
the ND and RD directions. The stress state on the heat-loaded surface is a two-dimensional
stress state, as shown in Figure 7a. After multiple cycles of thermal loading, it is expected
that cracks will form on the heat-loaded surface in both the ND and RD directions. As
the thickness decreases to a certain value, the peak thermal stress in the ND decreases to
approximately 0 MPa and can be neglected, with only a certain stress existing in the RD
direction. The stress state on the heat-loaded surface changes from a two-dimensional stress
state to a uniaxial stress state, as shown in Figure 7b. At this point, the thermal damage on
the heat-loaded surface of the model is mainly caused by the stress in the RD direction, and
the stress in the ND does not generate thermal damage. After multiple cycles of thermal
loading, it is expected that cracks will appear on the heat-loaded surface due to the stress
in the RD direction only.
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Figure 8 shows the change in the difference in RD stress from the center to the edge
along the ND direction on the heat-loaded surface of single-foil models with different
thicknesses at the end of the cyclic thermal load (20.5 s). It can be seen from the figure
that as the thickness decreases, the difference in RD stress along the ND direction on the
heat-loaded surface decreases in an “S” curve shape. In the range of approximately 1 mm
to 20 mm, the difference in RD stress on the heat-loaded surface decreases sharply as the
thickness decreases. Beyond the thickness range of 20 mm, the difference in RD stress
no longer changes. When the model thickness decreases to 0.1 mm, the difference in RD
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stress is 0, indicating that the RD thermal stress is equal from the center to the edge. After
multiple cycles of thermal loading, it is expected that the width of the cracks caused by the
RD stress on the heat-loaded surface of the single-foil model with a thickness not exceeding
0.1 mm will be equal.
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surfaces for bulk models.

Figure 9 shows the maximum accumulated equivalent plastic strain on the heat-
loaded surface of single-foil models with different thicknesses at the end of cooling. In
the range of approximately 5 mm to 100 mm, the equivalent plastic strain decreases
sharply as the thickness decreases; in other thickness ranges, the equivalent plastic strain
decreases slowly as the thickness decreases. The decrease in model thickness effectively
reduces the equivalent plastic strain, improving the thermal fatigue resistance of the
heat-loaded surface.
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Through finite element simulations of the stacked structure W-PFMs, we found that
reducing the foil thickness can effectively reduce the peak thermal stress on the heat load
surface and the surface equivalent plastic strain, which is beneficial for improving the
thermal fatigue resistance of W-PFMs.
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4. Thermal Fatigue Test
4.1. Surface Damage Morphology Characteristics of Stacked Structure W-PFMs and Bulk W-PFMs

When the electron beam applies a thermal load to the sample, the material surface
undergoes thermal expansion, which is constrained by the surrounding cooler material,
generating compressive stress. If these stresses exceed the yield strength of the material,
plastic deformation will occur. After heat loading, the material enters the cooling stage and
undergoes contraction. Since the plastic strain gradually decreases to zero with increasing
depth, the material cannot recover to its original state through elastic strain, and the
compressive stress is converted into tensile stress. Due to the plastic strain generated in
the material, fatigue cracks are produced. Figure 10a,b show the metallographic images of
the sample surface before heat loading, with no cracks present on the surface. After 10,000
cycles of thermal loading at a power density of 30 MW/m2, the damage morphology of the
stacked structure W-PFM and bulk W-PFM surfaces is shown in Figure 10. Both stacked W
and bulk W surfaces exhibit cracks along the ND direction, as indicated by the red boxes in
Figure 10. The cracks on the surface of stacked W are dispersed and discontinuous, with
crack propagation being interrupted, and only a single crack along the ND is observed. In
contrast, the surface of bulk W exhibits cracks along both the ND and RD directions. ND
cracks are wider and longer, representing the main crack. This is because the bulk W used is
a 3 mm thick plate, resulting in slight differences in the ND and RD stresses, with maximum
stress along the RD. Consequently, the primary crack on the surface of bulk W occurs along
the ND and additional cracks along the RD, ultimately forming a crack network. As the
thickness decreases, the stress on the stacked structure W in the ND decreases sharply and
can eventually be neglected, with the maximum stress along the RD, and the stress state
of the heat flow loading surface changes from a two-dimensional stress state to a uniaxial
stress state. The surface expansion and contraction are only constrained by the RD, and the
gaps between the W foils in the ND provide a stress release space, finally producing only
ND fatigue cracks, as shown on the surfaces of the 0.05 mm and 0.1 mm tungsten foils in
Figure 10. This is in good agreement with the stress analysis results from the finite element
simulation. Comparing the cracks in the stacked structure W in Figure 10a,b, it can be seen
that as the thickness decreases, the crack damage on the heat-loaded surface is alleviated,
and reducing the thickness is an effective way to improve the thermal fatigue resistance of
the stacked structure W.
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4.2. Comparison of Thermal Fatigue Cracking Evolution Process of the Stacked Structure W-PFM
and the Bulk W-PFM

Under the condition of a power density of 30 MW/m2, 10,000 cycles of thermal loading
were first applied to the stacked structure W and bulk W, and the surface thermal damage
morphology was observed and recorded. Then, another 10,000 cycles of thermal loading
were performed, and the surface damage morphology was observed and recorded. We
compared the surface damage morphology under the two thermal loads to study the
evolution process of thermal fatigue cracks on the surfaces of the stacked structure W and
bulk W. The surface thermal damage morphology is shown in Figure 11.
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Figure 11. Surface damage diagrams of stacked W and bulk W-PFM under thermal load of dif-
ferent cycles. (a) stacked structure W (0.05 mm, 10,000 cycles), (b) stacked structure W (0.05 mm,
20,000 cycles), (c) stacked structure W (0.1 mm, 10,000 cycles), (d) stacked structure W (0.1 mm,
20,000 cycles), (e) bulk W (10,000 cycles), (f) bulk W (20,000 cycles).

As can be seen from Figure 11, under the same heat flux density, as the number of
heat load cycles increases, the degree of surface damage on the stacked structure W and
bulk W increases to different extents, except for the stacked structure W (0.05 mm). After
10,000 cycles of thermal loading, both stacked W and bulk W surfaces exhibit cracks. A com-
parison between Figure 11a,b reveals that after increasing the cycle count to 20,000 cycles,
there is a slight change in the number of cracks on the surface of stacked W (0.05 mm),
with an additional crack appearing, as indicated by the red marker in Figure 11b. By
comparing Figure 11c,d, when the number of cycles increases to 20,000, the number of
cracks on the surface of stacked W (0.1 mm) significantly increases, as shown by the red
marker in Figure 11d, with new cracks appearing on the surfaces of some foils. As depicted
in Figure 11e,f, there is a noticeable increasing trend in thermal fatigue damage on the
surface of bulk W with an increase in the cycle count. when the number of cycles increases
to 20,000, the width of the cracks on the left side of the image increases, and the cracks
noticeably lengthen, as indicated by the red marker in Figure 11f. From the observed
surface crack damage on W, it can be concluded that the thermal fatigue damage on stacked
W remains relatively light, especially for stacked W (0.05 mm), which exhibits the least
thermal damage under the cyclic thermal loading.

Compared to the low-magnification observations in Figure 11, the changes in the
surface morphology of the stacked structure W and bulk W at different cycle numbers
under high-magnification SEM observation are shown in Figure 12.
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Figure 12. Microscopic morphology changes of W foils and bulk W surfaces with different thicknesses
during thermal loading, where (a1,b1,c1) were utilized with the backscattering detector. (a2) stacked
structure W (0.05 mm, 10,000 cycles), (a3) stacked structure W (0.05 mm, 20,000 cycles), (b2) stacked
structure W (0.1 mm, 10,000 cycles), (b3) stacked structure W (0.1 mm, 20,000 cycles), (c2) bulk W
(10,000 cycles), (c3) bulk W (20,000 cycles).

As can be seen from Figure 12, for samples with the same thickness, as the number
of thermal loading cycles increases, the microscopic morphology of the stacked structure
W and bulk W surfaces changes to different degrees. Under cyclic thermal loading, the
fluctuating temperature causes changes in the internal stress and microstructure of the
material, even leading to recovery, recrystallization, and surface roughening of the material
grains. For the stacked structure W (0.05 mm), by comparing Figure 12(a1–a3), after
10,000 cycles of thermal loading, we can see that most of the grain structures on the sample
surface still maintain the fibrous organization state after rolling. The surface is relatively
flat, with only slight plastic deformation at the crack edges. However, after 20,000 cycles
of thermal loading, some of the grain structures on the surface underwent recovery. The
surface became rough, with severe plastic deformation occurring at the crack edges. Part
of the grain structure exhibited an extruded state, mostly in the RD grains. This may
be related to the texture introduced during the rolling process. In the experiment, the
surface temperature of the loading area undergoes periodic fluctuations with cyclic thermal
loading, and then cyclic alternations of compressive and tensile stresses are generated
in the loading area. The shear stresses generated on the crystallographic slip planes
of different grains under cyclic thermal loading are different, which is strongly related
to the crystallographic orientation. When the cyclic shear stress on the slip systems of
some grains on the material surface reaches a critical value, cyclic slip will occur. With
the conversion of shear stress, irreversible slip will occur on the same slip band and
also on adjacent parallel slip planes [26]. Therefore, in the cyclic plastic deformation
process, the extruded/intruded structures/grains will extrude/intrude the surface along
the crystallographic slip planes. For the stacked structure W (0.1 mm), by comparing
Figure 12(b1–b3), after 10,000 cycles of thermal loading, we can find that most of the grain
structures on the sample surface underwent recovery and growth, with a small portion
of grains still maintaining the RD fibrous organization. The surface is relatively flat, with
only slight plastic deformation at the crack edges. After 20,000 cycles of thermal loading,
the recovery and grain growth phenomena on the surface became more pronounced. For
the bulk W-PFM, by comparing Figure 12(c1–c3), after 10,000 cycles of thermal loading, we
found that most of the grains on the sample surface still maintained the original equiaxed
grain state, with no surface roughening. After 20,000 cycles of thermal loading, the surface
underwent severe roughening (i.e., surface etching), exhibiting a pyramidal shape. These
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pyramidal shapes are regular and have a certain angle, which should be related to the
grain orientation.

For samples with the same number of thermal cycles, with increasing thickness, their
microstructural morphology also changes to varying degrees. Before thermal loading, the
stacked structure W (0.05 mm and 0.1 mm) exhibited elongated fibrous grains along the
RD, with the grain sizes being similar and lengths ranging from a few µm to tens of µm.
Along the ND, the grain boundary density was very high, as shown in Figure 12(a1,b1). In
contrast, the bulk W exhibited equiaxed grains with a large variation in grain size from a
few micrometers to tens of micrometers, which may be due to insufficient grain growth
during the production process, as shown in Figure 12(c1). After 10,000 thermal loading
cycles (Figure 12(a2–c2)), all samples exhibited cracking. The fatigue cracks on the surface
of the stacked structure W (0.05 mm and 0.1 mm) propagated in a transgranular manner,
with a relatively uniform crack width of approximately 2 µm, which is consistent with our
finite element simulation results of the RD stress difference (Figure 8). In contrast, the bulk
W exhibited an intergranular fracture mode, with non-uniform crack widths. As pointed
out by Prakash et al. [30], when the kink angle between the grain boundary and the crack
propagation direction is smaller than a threshold angle (around 50◦, with a higher grain
boundary cohesive strength leading to a smaller threshold angle), the fracture process
zone will undergo intergranular fracture; in other words, if the kink angle is larger than
the threshold angle, the grains will undergo transgranular brittle fracture. As shown in
Figure 13, the W foil exhibits a high density of fibrous grains along the crack propagation
direction. The cracks are nearly perpendicular to the grain boundaries of the fibrous grains,
resulting in a very large misorientation angle. In contrast, the bulk W consists of equiaxed
grains, with most misorientation angles being relatively small. After 20,000 thermal loading
cycles (Figure 12(a3–c3)), with increasing thickness, the surface roughening and plastic
deformation of the samples increased, as shown in Table 2. This may be due to the larger
thickness resulting in higher surface thermal stresses, and a higher degree of grain recovery
and growth, leading to a more severe reduction in material strength, making this effect
more pronounced. The increase in surface roughness is well reflected in the finite element
simulation results of the accumulated equivalent plastic strain, indicating that reducing the
thickness of the W foil can effectively reduce the surface plastic deformation under thermal
loading, thereby mitigating thermal damage. The increase in surface roughness implies
an increased absorption of electron beam energy at a constant power density, which in
turn leads to more severe damage. It is noteworthy that the fibrous grain structure of the
foil, resulting from the rolling process, may enhance the yield strength and ultimate tensile
strength of the material, which is beneficial for suppressing thermal fatigue damage [31].

Table 2. Surface roughness of thermally loaded area (20,000).

0.05 mm 0.1 mm 3 mm

Roughness (Ra/µm) 1.536 1.668 2.586

According to the estimated surface temperature of the samples, which is slightly
lower than the recrystallization temperature of W (ITRR 1300 ◦C) [32], recrystallization
was observed in the stacked W structures, as shown in Figure 12. For the bulk W, due to
the large variation in grain size before thermal loading, it is difficult to determine whether
recrystallization occurred from the changes in microstructure alone. As is well known,
hardness is closely related to microstructure, and the evolution of hardness can reflect
the recrystallization behavior of the material [33–35]. Vickers microhardness tests were
performed on the ND surface of the center region of the bulk W sample subjected to thermal
loading. Starting from 50 µm away from the thermally loaded surface, a set of indentations
(parallel to the surface) were made along the TD at intervals of 100 µm until the hardness
values stabilized, as shown in Figure 14. The hardness values decreased with decreasing
distance from the surface. An anomaly in hardness was observed at 50 µm, which is similar
to the observation by Nemati et al. in their high heat flux tests [29]. This may be due
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to the severe deformation near the surface during the experiment, resulting in a higher
dislocation density and a higher fraction of low-angle grain boundaries in this region. The
hardness tests indicate that recrystallization also occurred in the bulk W sample. It can be
considered that the recrystallization phenomenon was accelerated by the combined effect
of high thermal stresses and repeated cycling at elevated temperatures. These extreme
conditions may have induced dynamic recrystallization and grain growth, thereby affecting
the material’s resistance to thermal fatigue. During the experimental process, the applied
stress will accumulate in the form of stored energy, such as dislocations, on the material
surface. The gradual increase in dislocation density may lead to stress concentrations,
which can act as potential crack initiation sites, resulting in the formation of fatigue cracks
on the surface. On the other hand, the stored energy may promote recrystallization, thereby
lowering the recrystallization temperature to a relatively low value during repeated thermal
loading [28]. However, the fibrous grain structure of the stacked W structures, along with
the low stress along the RD and the crack deflection effect along the ND, contributed to
their superior thermal fatigue resistance compared to the bulk W.
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Figure 14. Curve of hardness with depth after thermal loading of block W (100 g).

To accurately compare the surface crack damage of samples with different thicknesses
subjected to the same thermal loading after 20,000 thermal cycles, an improved quanti-
tative analysis method (Uddholm method) was employed to evaluate the surface crack
damage [36,37]. The key aspect of this method is the accurate calculation of the fatigue
damage factor (D). A larger fatigue damage factor D indicates more severe surface crack
damage. The fatigue damage factor is calculated using the following formula:

D = S·W (3)

where D is the fatigue damage factor (Twips, 17.64 µm), S is the percentage of the surface
crack area (%), and W is the average width of the main surface crack (µm). SEM images
at the same magnification were processed and calibrated using image software, as shown
in Figure 15. The various parameters were then calculated using computational software,
and the results are presented in Table 3. Under the same thermal loading conditions and
after 20,000 thermal cycles, the stacked W structure (0.05 mm) exhibited the best thermal
fatigue performance.
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Table 3. The calculation results of the parameters associated with the damage factor.

Samples S/% W/µm D/17.64 µm

0.05 mm 0.2089 2.4735 0.005167
0.1 mm 0.6998 3.512 0.02257

Bulk 0.8962 3.4603 0.03101

5. Conclusions

In this study, finite element simulations were performed to analyze the thermal stress
behavior on the thermally loaded surface of stacked W-PFM structures, and the influence
of thickness was investigated. When the thickness was reduced to a certain value, the peak
thermal stress along the ND became negligible (close to 0 MPa), while the peak thermal
stress along the RD decreased to approximately 1384 MPa and did not decrease further.
In the range of approximately 5 mm to 100 mm, the equivalent plastic strain decreased
rapidly with decreasing thickness, while in other thickness ranges, the equivalent plastic
strain decreased slowly with decreasing thickness.

To verify the simulation results, thermal fatigue experiments were conducted on
stacked W structures and bulk W samples using an electron beam facility. The surface
cracks formed on the stacked W structures under cyclic thermal loading were oriented
along the ND. For the bulk W, in addition to the main cracks along the ND, a crack network
was also observed. These observations were consistent with the finite element simulation
results. At 10,000 pulses, as the thickness of the W foil decreased, the number and width
of surface cracks on the stacked W structures decreased. When the number of pulses
increased to 20,000, the surface plastic deformation and the number of cracks increased for
all samples. The quantitative analysis of fatigue cracks revealed that the stacked W-PFM
structure (0.05 mm) exhibited superior thermal fatigue performance.

Although the current study is only a conceptual validation and not a comprehensive
evaluation of a final product, the stacked structure concept offers a wide range of optimiza-
tion possibilities. It can be combined with existing research methods, and the pure W foil
can be replaced with other materials, such as W alloys or nanostructured W. Moreover,
compared to existing research, the W foil can be manufactured using current industrial
processes, without the need for expensive manufacturing techniques. Structures based
on this concept may potentially solve the thermal fatigue issues faced by plasma-facing
materials and extend the lifetime of PFMs. However, further research and development are
required to fully realize the potential of this approach.
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Micro-Structured Tungsten: An Advanced Plasma-Facing Material. Nucl. Mater. Energy 2019, 19, 7–12. [CrossRef]

19. Wang, B.; Hu, D.-Z.; Ma, D.; Lu, G.-H. Method for Improving Resistance of Fusion Reactor Inner Wall to Plasma Irradiation by
Using Lamination Structure. U.S. Patent 10,102,928, 16 October 2018.

20. Wang, B.; Hu, D.-Z.; Ma, D.; Lu, G.-H. Improvement of irradiation resistance of the inner wall of a fusion stack using a laminated
structure 2016. CN 201410117811.X, 17 February 2016.

21. Li, S.D.; Wang, B.; Liu, Y.H.; Qi, Y.F.; Li, M.; Ma, Y.T. Thermal Fatigue Resistance Enhancement of Laminated Copper Foil. Chin. J.
Vac. Sci. Technol. 2018, 38, 434–441.

22. Xiao, S.; Ma, Y.; Tian, L.; Li, M.; Qi, C.; Wang, B. Decrease of Blistering on Helium Irradiated Tungsten Surface via Transversal
Release of Helium from the Grooved Surfaces. Nucl. Mater. Energy 2020, 23, 100746. [CrossRef]

23. Li, C.; Zhu, D.; Li, X.; Wang, B.; Chen, J. Thermal–Stress Analysis on the Crack Formation of Tungsten during Fusion Relevant
Transient Heat Loads. Nucl. Mater. Energy 2017, 13, 68–73. [CrossRef]

24. Davis, J.W.; Smith, P.D. ITER Material Properties Handbook. J. Nucl. Mater. 1996, 233–237, 1593–1596. [CrossRef]
25. Wang, S.-M.; Li, J.-S.; Wang, Y.-X.; Zhang, X.-F.; Ye, Q. Thermal Shock Behavior Analysis of Tungsten-Armored Plasma-Facing

Components for Future Fusion Reactor. Acta Met. Sin. Engl. Lett. 2018, 31, 515–522. [CrossRef]
26. Wang, L.; Wang, B.; Li, S.-D.; Ma, D.; Tang, Y.-H.; Yan, H. Thermal Fatigue Mechanism of Recrystallized Tungsten under Cyclic

Heat Loads via Electron Beam Facility. Int. J. Refract. Met. Hard Mater. 2016, 61, 61–66. [CrossRef]
27. Zhao, M.; Zhou, Z.; Zhong, M.; Tan, J.; Lian, Y.; Liu, X. Thermal Shock Behavior of Fine Grained W–Y2O3 Materials Fabricated via

Two Different Manufacturing Technologies. J. Nucl. Mater. 2016, 470, 236–243. [CrossRef]
28. Xie, Z.M.; Miao, S.; Liu, R.; Zeng, L.F.; Zhang, T.; Fang, Q.F.; Liu, C.S.; Wang, X.P.; Lian, Y.Y.; Liu, X.; et al. Recrystallization and

Thermal Shock Fatigue Resistance of Nanoscale ZrC Dispersion Strengthened W Alloys as Plasma-Facing Components in Fusion
Devices. J. Nucl. Mater. 2017, 496, 41–53. [CrossRef]

https://doi.org/10.1016/j.jnucmat.2020.152506
https://doi.org/10.1016/j.nme.2024.101609
https://doi.org/10.1016/j.nme.2023.101536
https://doi.org/10.1088/1402-4896/acec19
https://doi.org/10.1016/j.jnucmat.2023.154555
https://doi.org/10.1016/j.jnucmat.2019.03.035
https://doi.org/10.1016/j.nme.2024.101585
https://doi.org/10.3390/met12040686
https://doi.org/10.1016/j.fusengdes.2023.113991
https://doi.org/10.1016/j.ijrmhm.2023.106198
https://doi.org/10.1016/j.ijrmhm.2016.10.018
https://doi.org/10.1016/j.ijrmhm.2023.106247
https://doi.org/10.1088/2053-1591/ad0c7c
https://doi.org/10.1016/j.nme.2018.05.001
https://doi.org/10.1016/j.ijrmhm.2017.07.013
https://doi.org/10.1016/j.nme.2019.02.007
https://doi.org/10.1016/j.nme.2020.100746
https://doi.org/10.1016/j.nme.2017.06.008
https://doi.org/10.1016/S0022-3115(96)00202-4
https://doi.org/10.1007/s40195-018-0721-9
https://doi.org/10.1016/j.ijrmhm.2016.07.022
https://doi.org/10.1016/j.jnucmat.2015.12.042
https://doi.org/10.1016/j.jnucmat.2017.09.022


Metals 2024, 14, 555 17 of 17

29. Nemati, N.; Manhard, A.; Greuner, H.; Hunger, K.; Böswirth, B.; Visca, E.; You, J.H. Microstructural Evolution of Tungsten under
Thermal Loads: A Comparative Study between Cyclic High Heat Flux Loading and Isochronous Furnace Heating. Nucl. Mater.
Energy 2023, 36, 101465. [CrossRef]

30. Prakash, C.; Lee, H.; Alucozai, M.; Tomar, V. An Analysis of the Influence of Grain Boundary Strength on Microstructure
Dependent Fracture in Polycrystalline Tungsten. Int. J. Fract. 2016, 199, 1–20. [CrossRef]

31. Yin, C.; Terentyev, D.; Zhang, T.; Nogami, S.; Antusch, S.; Chang, C.-C.; Petrov, R.H.; Pardoen, T. Ductile to Brittle Transition
Temperature of Advanced Tungsten Alloys for Nuclear Fusion Applications Deduced by Miniaturized Three-Point Bending Tests.
Int. J. Refract. Met. Hard Mater. 2021, 95, 105464. [CrossRef]

32. Jin, Y.-Z.; Liu, X.; Lian, Y.-Y.; Song, J.-P. Influence of Recrystallization on Tungsten Divertor Monoblock under High Heat Flux.
Tungsten 2022, 4, 194–202. [CrossRef]

33. Lemetais, M.; Lenci, M.; Maurice, C.; Devictor, T.; Durif, A.; Minissale, M.; Mondon, M.; Pintsuk, G.; Piot, D.; Gallais, L.; et al.
Temperature Gradient Based Annealing Methodology for Tungsten Recrystallization Kinetics Assessment. Fusion Eng. Des. 2023,
193, 113785. [CrossRef]

34. Larsen, T.; Chmelar, K.; Larsen, B.L.; Nagy, P.; Wang, K.; Pantleon, W. Thermal Stability of Differently Rolled Pure Tungsten Plates
in the Temperature Range from 1125 ◦C to 1250 ◦C. Fusion Eng. Des. 2023, 192, 113581. [CrossRef]

35. Kim, H.C.; Bang, E.; Min, G.; Choi, H.; Han, H.N. Analysis of High Heat Flux Tested Tungsten Mono-Blocks by Hardness and
Microstructural Profiling. Fusion Eng. Des. 2023, 193, 113800. [CrossRef]

36. Wu, X.-C.; Xu, L.-P. Quantitative Analysis and Evaluation of The Uddeholm Heat-Checking Scale. Phys. Test. Chem. Anal. A Phys.
Test. 2002, 38, 14–17.

37. Qi, Y.; Tang, Y.; Wang, B.; Zhang, M.; Ren, X.; Li, Y.; Ma, Y. Characteristics of Tungsten Coatings Deposited by Molten Salt
Electro-Deposition and Thermal Fatigue Properties of Electrodeposited Tungsten Coatings. Int. J. Refract. Met. Hard Mater. 2019,
81, 183–188. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.nme.2023.101465
https://doi.org/10.1007/s10704-016-0083-0
https://doi.org/10.1016/j.ijrmhm.2020.105464
https://doi.org/10.1007/s42864-021-00126-1
https://doi.org/10.1016/j.fusengdes.2023.113785
https://doi.org/10.1016/j.fusengdes.2023.113581
https://doi.org/10.1016/j.fusengdes.2023.113800
https://doi.org/10.1016/j.ijrmhm.2019.03.006

	Introduction 
	Experimental and Finite Element Simulation Methods 
	Sample Preparation 
	Finite Element Simulation Analysis 
	Model 
	Boundary Conditions and Thermal Property Parameters 

	Thermal Fatigue Experiment 
	Characterization Methods and Performance Measurements 

	Finite Element Simulation of Stacked Structure W-PFM 
	Thermal Fatigue Test 
	Surface Damage Morphology Characteristics of Stacked Structure W-PFMs and Bulk W-PFMs 
	Comparison of Thermal Fatigue Cracking Evolution Process of the Stacked Structure W-PFM and the Bulk W-PFM 

	Conclusions 
	References

