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Abstract: In this work, Ce-doped TigCr14Vgy BCC hydrogen-storage alloys have been synthesized
as catalysts to enhance the hydrogen-storage performance of MgH, based on its room-temperature
activation features and excellent durability. The TigCr14VgoCe; alloy was pre-ball milled under a
hydrogen atmosphere into a TigCr4VggCe; Hx hydride. Different amounts of the TigCry4VgyCe1Hx
hydride were incorporated into MgH) by ball milling to obtain the MgH, + y wt%TigCr14 VgoCeiHx
(y =0, 3, 5, 10, 15) nano-composites. With an optimization doping of 10 wt%TigCrj4VgoCeiHy,
the initial dehydrogenated temperature was decreased to 160 °C. Moreover, the composite can
rapidly release 6.73 wt% H; within 8 min at 230 °C. Also, it can absorb 2.0 wt% H; within 1 h
even at room temperature and uptake 4.86 wt% Hj, within 10 s at 125 °C. In addition, the apparent
dehydrogenated activation energy of the MgH, + 10 wt%TigCr14VgoCe Hx composite was calculated
to be 62.62 k] mol ! fitted by the JMAK model. The capacity retention was kept as 84% after 100 cycles
at 300 °C. The ball milled TigCr14VgyCe1Hx transformed from the initial FCC phase structure into a
BCC phase after complete dehydrogenation and back into an FCC phase when fullly hydrogenated.
A catalyst mechanism analysis revealed that the “autocatalytic effect’ originating in TigCr4VgyCeHx
plays a crucial role in boosting the de-/hydrogenation properties of MgH,. This work provides
meaningful insights into rational designs of nano-compositing with different hydrogen-storage alloy
catalyzed MgH,.

Keywords: TigCri4VgyCeiHy; MgHj;; nano-compositing; hydrogen storage; catalyst mechanism

1. Introduction

The current prevailing energy sources, fossil fuels, have brought severe challenges
for human survival such as pollution and irreversible carbon emission [1,2]. Excessive
reliance on unsustainable fossil fuels is undesirable and the crisis of energy exhaustion is
gradually approaching. Exploring alternative energy sources to fossil fuels has been a basic
consensus of all the countries. Consequently, it is undoubted that developing alternative
environmentally cleaner fuels are crucial for a sustainable future [3]. Hydrogen, as a clean
energy carrier, has drawn sustained attention as an alternative to fossil fuels owing to its
pollution-free and high calorific value of combustion. It is believed that hydrogen acts as
the most promising non-fossil fuel and will play a crucial role in reducing the release of
greenhouse gases and realizing zero carbon emissions. However, one major concern for
widespread implementation of hydrogen is lack of safe, convenient and economic hydrogen-
storage methods [4,5]. Currently, hydrogen is often stored in the gas by compression in
pressure vessels or in liquid form at below 20 K in cryogenic tanks [6,7]. Even though
these two types of hydrogen storage have been matured and commercialized, its use is
still challenging for various applications due to high energy demands, expensive tank cost
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and intrinsic safety risks [8,9]. Therefore, it is imperative to develop safe, cost-effective,
reliable hydrogen-storage techniques for large-scale application. Thus, the solid-state
storage technique has attracted increasing attention; it possesses the extra advantages of
being lightweight, high-capacity, reliable, easy to operate and cost-effective compared to
other techniques [10,11]. It is worth pointing out that metal hydrides are widely researched
and developed because they show high hydrogen-storage densities, excellent sorption
reversibility and fast kinetic performance [12-14].

Metal hydrides usually form interstitial hydrides in which atomic hydrogen occupies
interstitial voids in the crystal, which typically includes LaNi5, AB, AB, or V-based body-
centered cubic (BCC) alloys [15-18]. Though the V-based BCC alloys have maximum
theoretical hydrogen-storage capacity~3.8 wt% among them, they face the problem of
difficult activation and keeping residual hydrogen in the alloys [19]. Furthermore, it has
been verified that the content of vanadium plays a crucial role in the cyclic stability of
the typical Ti-Cr-V BCC-type hydrogen-storage alloy [20]. It has been reported that the
Ti-Cr-V alloy with the V content exceeding 75 at% demonstrated excellent durability [21].
The higher the V content they have, the stronger the toughness the alloy possesses and
the more difficult it is to break. One of the typical shortcomings of the Ti-Cr-V alloys is
that it is challenging to activate under ambient conditions. Nevertheless, doping with few
light rare earth lanthanum (La) or cerium (Ce) could make the V-based BCC alloy easier to
activate and cause faster absorption of hydrogen [22,23]. It has been reported that La/Ce
elements have strong affinity with oxygen. Liu et al. [24] found that a small amount of
0.4% Ce doped into TizpCrys Voo alloy can activate it and cause it to absorb hydrogen at
room temperature. Xue et al. [23] prepared TiCr3V14Cey alloys by doping different amount
of Ce and revealed the hydrogen-storage mechanism of the alloy.

Magnesium hydride was considered as a promising solid hydrogen-storage medium
on account of its outstanding reversible storage capacity of 7.6 wt% and the abundance
of magnesium resources on earth. However, sluggish de-/absorption kinetics and sta-
ble thermodynamic characteristics cause it to have high operation temperature and in-
ferior sorption rate [25]. To this end, massive strategies have been carried out to tailor
its thermodynamics and kinetics, combining the alloying, nanosizing, catalyzing and
compositing with other hydrides, and so on [26-29]. Recently, by adding the AB; or
BCC hydrogen-storage alloys, with excellent hydrogen de-/absorption features at room
temperature, as catalytic additives into MgH, to fabricate nano-compounds, one can
regulate the thermodynamics and kinetics of MgH, during the de-/hydrogenation pro-
cess. Yu et al. [30] found that the ball milled MgH,-20 wt%Tig 4Cr¢ 15Mng 15V.3 compos-
ite could absorb 90% of its initial hydrogen capacity within 1.5 h at below 100 °C. Lu
et al. [31] adopt the prepared Tig9Zrg1Mn; 5Vo3 (AB, Laves phase) alloy accompanied
with CNTs as aid agent to modify the hydrogen-storage properties of MgH,. The ball
milled MgH; + 10 wt%Tip 9Zrg1Mn; 5V 3 + 1wt% CNTs composite can uptake Hp at room
temperature and release 6.1 wt% in 5 min at 300 °C. It was verified both experimentally
and theoretically that local destabilization of Mg-H bonds was induced by MgH, /alloy
interfaces. Zhang et al. [32] also synthesized the MgH>-20 wt% Tig 35Crp 45 V2 composite
by reactive ball milling under 5.0 MPa H;, which revealed nanocrystalline 3-MgH,, -
MgH; and Ti-Cr-V(2Hy (1.91 <y < 2.01) phases were generated in the composites and the
favorable synergetic desorption effect from three phases probably results in remarkable de-
hydrogenation kinetics performance of the Mg/MgH, system. However, different particle
sizes existed in the current alloy-catalyzed MgH), systems. The diversity was attributed
to the large grain size of the alloy created by the difficult activation. In particular, the
alloys were often activated after high-temperature processing and then added into MgHj
according to the previous Ti-Cr-V alloy-catalyzed MgH, [33,34]. Here, we adopt Ce-doped
TigCr14Vgy BCC hydrogen-storage alloys via pre-ball milled under hydrogen pressure to
generate the TigCr14VgyCe1Hy hydride; these were then added into MgH, to build the com-
pounded material. The Ce-doped TigCr14Vgp alloy can easily absorb hydrogen under mild
conditions. Pre-ball milling in a hydrogen atmosphere can make it more uniform and cause
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it to have finer hydride particles. It was favorable to form the nano-phase composite. The
micro-morphology, crystal structures and non-/isothermal de-/hydrogenation properties
of the MgH,-TisCr14VgoCe1Hx composite were systematically investigated.

2. Experimental Section
2.1. Preparation of TicCr14Vg9Ce; Hydrogen-Storage Alloy

The raw materials 0.5491 g Ti (sponge, 99.9%), 1.3918 g Cr (granules, 99.9%), 7.7912 g V
(granules, 99.8%) and 0.2732 g Ce (bulk, 99.8%, an additional 2 wt% Ce added to reduce
Ce losses) were selected to prepare as-cast TigCr14VgoCe; alloys (designed as 10 g/pcs)
fabricated via non-consumable vacuum arc melting within a water-cooled copper crucible
in an argon atmosphere (—0.5 bar) purified via individual Ti melting to minimize oxygen
content. To ensure chemical homogeneity, each ingot was subjected to a melting current of
120-140 A, repeatedly flipped over and smelted four times.

2.2. Synthesis of MgH;-TisCr14V g9Ce;Hy Composites

The prepared TigCr14VgoCe; ingot was polished with an electric grinder to remove
impurities and oxide layers. A part of each of them was then mechanically crushed into
chips then loaded into the 250 mL stainless-steel jar, which was charged with 40.0 bar hy-
drogen and transformed into planetary ball mill equipment. The TigCr14VgyCe; chips were
ball milled with the following procedure: 400 rpm with a stainless-steel ball (80% diameter
¢ 6 mm, 20% diameter ¢ 10 mm) with a weight ratio, i.e., ball to sample ratio, equal to
40:1. This was continuously performed for 1 h and then we went back to the glovebox to
take out the synthesized hydrogenated TigCri4VgoCe; powder (named TigCri4VgoCer Hy).
The commercial MgH, (98 wt%, Shanghai Mg Power Technology Ltd., Shanghai, China)
+y wt% TigCr14VgoCe1Hx (v = 0, 3, 5, 10, 15) composites were synthesized via ball milling in
50.0 bar Hj at 450 rpm for 8 h. The ball to sample weight ratio was set as 80:1 (milling balls
were set as 80% diameter ¢ 6 mm, 20% diameter ¢ 10 mm). To avoid local overheating, this
was implemented by alternating milling for 12 min, followed by a pause of 6 min. All the
powder sample handling was carried out in an Ar-filled glovebox (Etelux Lab 2000, Beijing,
China), where the contents of O, and H,O were kept below 0.1 ppm.

2.3. Characterization of Materials

The microcrystal structure and phase composition of the prepared samples were an-
alyzed via X-ray diffraction (XRD, PANalytical X'Pert, Almelo, The Netherlands) using
Cu Ko radiation (40 kV, 40 mA). The powders including Mg/MgH, were covered with a
polyimide film to prevent the oxidization and spontaneous ignition of Mg/MgH, during
transfer and testing. The micro-morphology and compositional analysis were characterized
via a field emission scanning electron microscope (SEM, JEOL JSM-IT800, Tokyo, Japan)
along with energy dispersive spectroscopy (EDS). The microscopic morphology and mi-
crostructure information were obtained via a high-transmission electron microscope (TEM,
FEI Talos-F200s, Waltham, MA, USA) equipped with an energy dispersive X-ray spec-
trometer (EDS). The thermodynamic properties were measured using differential scanning
calorimetry (DSC, Netzsch STA 449F3, Bavaria, Germany) at the heating rate of 2 °C-min!
with Ar as the purge gas.

For hydrogen-storage performance testing, the kinetics and pressure-composition—
temperature (PCT) curves of the TigCri4VgoCe; alloy were determined by utilizing a
Sievert-type apparatus (MH-PCT, GRIMAT Engineering Institute, Beijing, China) over
a temperature range of 5~65 °C. A constant temperature could be maintained with the
circulating water bath (DC-2006, Tenlin, Yancheng, China). The TigCr14VgoCe1Hy catalyzed
MgH, composites” isothermal de-/rehydrogenation curves were tested using a Sievert-
type apparatus (ZDHM-4, Zhejiang University, Hangzhou, China). For non-isothermal
experiments, the composite was heated with a heating rate of 2 °C-min~! using a resistance
furnace in a vacuum. The isothermal hydrogen de-/rehydrogenation experiments were
carried out at 0.001 bar for dehydrogenation and an initial hydrogen pressure of 50.0 bar
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for rehydrogenation. Moreover, the PCT curves and cyclic hydrogen de-/absorption tests
of the composites were measured at corresponding temperatures via a commercialized
Sievert’s apparatus (HPSA-autoPro device, Shanghai, China) along with loading approx-
imately 150 mg of the sample for each test. Cyclic tests were performed at 300 °C and
the duration of each was 10 min for de-/rehydrogenating. The above-mentioned Sievert’s
apparatus was calibrated by loading 1g commercial LaNis powder for measuring the hy-
drogen de-/absorption kinetics and pressure-composition-isothermal temperature (P-C-I)
curves based on the test method outlined in GB/T 33291-2016 [35].

3. Results and Discussion
3.1. The Structural and Morphological Characterization

Figure 1a shows the XRD patterns of the as-cast TigCrj4VgoCe; alloy and the ob-
tained TigCr14VgoCeHy samples after pre-ball milling. It can be found that the prepared
TigCr14VgoCe alloy presents the single BCC phase with a lattice constant of 3.025 A. The
phase structure of the hydrogenated state TigCr14VgyCe1Hy powder after pre-ball milling
in a hydrogen atmosphere transformed into an FCC phase ascribed to the formation of the
VH, phase, which has been reported in the corresponding literature studies [36,37]. Actu-
ally, the BCT phase was presented in the ball milled TigCr14VgyCe; sample (in Figure 1a),
was attributed to the generation of the V,H phase and can be explained from the measured
PCT curves at ambient conditions (shown in Figure S1). The occurrence of hysteresis was
attributed to severe lattice deformation and dislocation existing at the interface of the
solution phase (x-phase) and the hydride phase (8-phase) due to the different equilibrium
volumes of their unit cells resulting from their respective hydrogen accommodation con-
ditions [38,39]. That is, the hysteresis is considered to be derived from the deformation
strain and stress due to the unit cell volume contraction and expansion during the dynamic
hydrogen sorption process. In addition, the as-cast TigCr14VgyCe alloy was observed via
SEM and the elemental compositions were also identified, as shown in Figure 1c. The
EDS results show that each element was homogeneously distributed in the alloy, and the
actual composition coincided with the nominal composition. Moreover, it shows that the
TigCr14VgyCe1Hx powders were composed of several submicron-sized particles in SEM
image (Figure S2a). The XRD patterns of the ball milled MgH,-y wt%TigCr;4VgyCeHx
(y=0,3,5, 10, 15) composite were shown in Figure 1b, which shows that the compound was
composed of the dominant phase of 3-MgH; and a small BCT phase from TigCr;4VgyCe1Hx.
In addition, a small y-MgH, phase was also detected in the composite. The XRD patterns
of the ball milled MgH, and pure MgHj are also compared in Figure S3. The figure indi-
cates that the diffraction peaks of the ball milled state of MgH, subjected to ball milling
for a long time became broader than pure MgH,. Zhang et al. [40] also reported similar
results in MgH,-20 wt%Tig 16Crg24 Vo6 powder synthesized via reactive ball milling. To
better uncover morphology information, the ball milled MgH;-10 wt%TigCr4 VgoCe1Hx
composite was observed. Figure S2b shows that many micro/nano-sized TigCr14VgyCeHx
particles were embedded in the MgH, substrate.

The micro phase and morphology details of the ball milled MgH5-10 wt%TigCr14 VgyCe; Hx
composite were further characterized via TEM and HRTEM, as shown in Figure 2. Figure 2a
shows that there are different interplanar spacings corresponding to the different phase
structures identified in the composite. Lattice fringes with interplanar spacings of 2.501 A
and 2.490 A can be determined to be the (101) planes of 3-MgHj;. The corresponding
selected area diffraction pattern (SADP) from Figure 2b is also displayed in Figure 2c, which
demonstrates there was 3-MgH,; and BCC phase of TigCr14 VgoCe;. The corresponding EDS
elemental mapping images were also produced and we demonstrated that Ti, Cr, V and Ce
elements are homogeneously distributed on the surface of MgH, powder. According to the
Mg, Ti, Cr, V and Ce elemental mappings results, it can be inferred that the TigCr14VgoCe; Hx
located in the glossy white area was uniformly dispersed in the MgH, substrate from the
dark area in the HAADF image (in Figure 2d).
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Figure 1. XRD patterns of the as-cast TigCri4VgyCe; alloy and the TigCri4VggCe;Hy hydride
by pre-ball milled under hydrogen pressure (a); XRD patterns of the ball milled MgH,-y
wt%TigCri4VgyCe1Hx (v = 3, 5, 10, 15) composite (b); scanning electron microscopy (SEM)-EDS
analysis of the TigCr14VgyCe; alloy (c).

Figure 2. The HRTEM images (a,b) and the SADP image (c) and the corresponding EDS mapping
images (d) of the MgH,- 10 wt%TigCr14VgoCe1Hx composite.
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3.2. Hydrogen de-/Absorption Properties

The TigCr14 Vg alloy after Ce doping has a superior ability to rapidly absorb hydrogen
at room temperature without going through activation at 400 °C. This is because cerium
can effectively reduce the oxygen concentration in the alloy. Figure 3 presents the hydrogen
de-/absorption kinetics curves of the TigCr14VgyCe; alloy at 5-65 °C without any activation
through a high-temperature process. It can be evidently observed that there is a very short
initial incubation period for absorbing kinetics in Figure 3a. The TigCr14VgpCe; alloy can
rapidly absorb 3.7 wt% Hj at 25 °C within 15 min. However, the maximum hydrogen
absorption capacity at 65 °C is approximately 2.3 wt%. In addition, we measured the
hydrogen-absorption properties of the undoped-Ce TigCr14 Vg alloy when processed by
ball milling; the measurement suggests that it is unable to absorb hydrogen. In addition,
the desorption kinetics curves at the corresponding temperature of the TigCr14VgyCe; alloy
after absorption saturation are shown in Figure 3b. The dehydrogenation capacity of the
alloy reaches 1.32, 2.10, 1.90 and 0.91 wt% within 30 min at 5, 25, 45 and 65 °C, respectively.
It can be observed that the hydrogen capacity decreases when the temperature increases.
This is because the hydrogen absorption of the alloy is an exothermic reaction while the
hydrogen desorption process is an endothermic reaction. From the PCT curves (shown in
Figure S1), it can be seen that the content of the residual hydrogen can almost be matched,
which is derived from the V,H phase being difficult to release. This is in good agreement
with relevant reports.
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Figure 3. The hydrogen-absorption (a) and -desorption (b) curves of the TigCr14VgyCe; alloy at
5-65 °C without activation through high temperature.

To evaluate the catalytic effects of the TigCr14VgyCe; Hy alloy compounded with MgHj,
non-/isothermal hydrogen-desorption curves of the corresponding composites were con-
structed. Figure 4a displays the temperature programmed desorption (TPD) curves of
the composites, and demonstrates that the initial dehydrogenated temperature was re-
duced to approximately 160 °C when the TigCr14VgoCe1Hx powder was incorporated.
However, there is a slight distinction in the initial dehydrogenated temperature when
different amounts of TigCri4VgyCeiHx were introduced. Further, the DSC curves at a
heating rate of 2 °C-min~! for the MgH;-TigCr14VgoCe1 Hx composite are also displayed
in Figure 4b; the peak dehydrogenated temperature was identified as 265.6, 258.8, 254.3
and 257.2 °C for MgH;-3 wt%TigCri4VgoCe1Hy, MgH;-5 wt%TigCri4VgoCe1 Hyx, MgH,-
10 wt%TigCr14VgoCe1 Hy and MgH»-15 wt%TigCr14VgoCe1Hy, respectively. These results
suggest the incorporation of TigCri4VgoCejHy remarkably enhances the dehydrogenation
performance of MgH,.
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Figure 4. Non-isothermal dehydrogenation curves of the MgH-y wt%TigCr14VgoCe1Hy (v =0, 3, 5,
10, 15) composites (a); DSC curves of the MgH,-y wt%TigCry4VgyCeHy (3, 5, 10, 15) composites at a
heating rate of 2 °C-min~! (b).

Figure 5a shows the isothermal hydrogen-absorption curves of the MgH;-10 wt%
TigCr14VgoCe1Hy composite. It shows that 2.0 wt% Hj could be uptaked within 1 h even
at room temperature and 4.86 wt% Hj; was recharged within 10 s at 125 °C. Figure 5b—f
demonstrate the isothermal dehydrogenation curves for the MgHy-y wt%TigCr14VgoCeHx
(y=0,3,5, 10, 15) composite at various temperatures. Hydrogen could be liberated from the
ball milled pristine MgH, when the procedure was performed at above 275 °C, as illustrated
in Figure 5b. When 3 wt% TigCr14VgyCeiHy was introduced (shown in Figure 5c¢), the
composite can release 6.60 and 6.85 wt% H, within 20 min at 230 and 250 °C, respectively.
In addition, the MgH»-5 wt% TigCr14VgyCe1Hx composite can release 6.91 and 7.15 wt% Hp
within 12 min at 230 and 250 °C (depicted in Figure 5d), respectively. It is worth noting that,
as illustrated in Figure 5e, the dehydrogenation capacity reached 6.67 wt% °C at 230 °C
for 8 min and at 250 °C for 5 min when 10 wt% TigCry4VgyCe1 Hx was added into MgHo,.
Furthermore, the duration was 8 min for complete dehydrogenation capacity of 6.2 wt% at
250 °C in the MgH»-15 wt% TigCr14VgyCe; Hyx composite, as presented in Figure 5f. The
above-mentioned results reveal that the TigCrj4VgoCe;Hy catalysts with varying addition
amounts can significantly accelerate the liberation of hydrogen of MgH,, and the total
amount of hydrogen desorption decreased as TigCr14VgyCe;Hy increased. Overall, the
MgH;-10 wt%TigCri4 VgoCe Hy composite demonstrated the best catalytic effect based on
the desorption rate and amount of hydrogen at varying temperatures.

To further study the dehydrogenated reaction kinetics of the TigCr14VgyCe1 Hy-modified
MgHy, it is essential to analyze kinetic models during the de-/absorption process. In gen-
eral, with the classical Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, the nucleation
and growth mechanism is suitable for describing the hydrogen de-/absorption behav-
iors [41,42]. Equation (1) is as follows:
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In[—In(1 — «&)] = nlnk + nint 1)

where « is the reaction fraction via f (« is the ratio of de-/absorption to the total capacity at
any moment), k is the rate constant of hydrogen de-/absorption. # is the Avrami exponent
for reaction order. k can be obtained from the intercept by establishing the linear relationship
between In[—In(1 — &)] and Int.
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Figure 5. Isothermal rehydrogenation curves of the MgH,-10 wt%TigCr14VgyCe;Hyx compos-
ite at different temperature (a); isothermal dehydrogenation curves of MgH, (b), the MgH,-3
wt%TigCr4VgoCe1Hx (c), MgH,-5 wt%TigCrq4VgyCe1Hx (d), MgH,-10 wt%TigCri4 VgoCe1 Hy (e) and
MgHj,-15 wt%TigCr14VgoCe1Hx (f) composites.

Thus, the activation energy (E;) of the composite during the de-/absorption process
can be achieved through the Arrhenius Formulas (2) and (3):

k= Ae &t @)
nk=-L% 4 ina 3)
T RT

where A is the pre-exponential factor and E, is the activation energy. By plotting Ink (cal-
culated from Equation (1)) against 1/T, the E; can be evaluated. In accordance with the
isothermal dehydrogenated kinetics experimental data in Figure 5b—f, we plotted the data
with 0.2 < & < 0.8 at different temperatures. Figure 6a—e exhibit the JMAK model fitting
results of In[—In(1—a)] vs. Int for dehydrogenation of the MgH;-y wt%TigCr14VgoCe Hy
(y =0, 3, 5, 10, 15) composites at the corresponding temperatures. It can be seen that
the reaction order (#, the slope) value for dehydrogenation is approximately 1~2, which
infers that the dehydrogenated rate-limiting steps of the composite are determined to
be the diffusion-controlled growth model [43]. After fitting the Ink vs. 1000/T values,
the apparent dehydrogenated activation energies (E;) of the relative composites were
calculated and are presented in Figure 6f. It was found that the E, of the compos-
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ites with non-/doping, 3, 5, 10, 15 wt% TigCr14VgoCe1Hy is 119.56 £ 4.9, 83.89 + 2.1,
65.54 & 1.1, 62.62 & 5.1 and 71.90 + 6.8 kJ-mol~'Hj, respectively. It can be found that the
MgH;-10 wt%TigCri4VgoCe1 Hx composite exhibits the lowest dehydrogenated activation
energy during them. Obviously, the introduction of the TigCr;4VgyCe; Hy catalyst can signif-
icantly decrease the E; of MgHy; in particular, the E, is reduced by 52% when doping with
10 wt%TigCr14VgoCeHy. The comparison of the corresponding reported catalyst-modified
MgH, is listed in Table S1.
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Figure 6. JMAK fitting results (0.2 < a < 0.8 at different temperatures) of the MgH,-y
wt%TigCr14VgoCe1Hyx (¥ = 0, 3, 5, 10, 15) composites based on the isothermal desorption experi-
mental data (a—e); the calculated dehydrogenated activation energies (E;) via Arrhenius plots (Ink vs.
1000/T plots) of the corresponding composites (f).

Reversable isothermal de-/rehydrogenation tests were performed covering 100 cycles
to evaluate the cyclic stability of the MgH»-10 wt%TigCr14VgyCeHx composite at 300 °C
with the initial hydrogen pressure of 50.0 bar. Figure 7a,b depicted that the composite
maintains 84% retention along with the first dehydrogenated capacity of 6.28 wt% and
the final dehydrogenated capacity of 5.27 wt% after 100 cycles. The loss of the hydrogen
capacity was ascribed to the residual hydrogen generated from the TigCri4VgoCe; catalyst,
which could not be completely released within 15 min. The desorption kinetics of the first,
10th, 50th and 100th cycles of the composite are shown in Figure 7c; it was found that the
dehydrogenation rate after several cycles was obviously accelerated. Therefore, it can be
deduced that the ‘autocatalytic effect’ originating in TigCr14VgoCe1Hx plays a crucial role
in boosting the de-/hydrogenation performance of MgH.
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Figure 7. One-hundred cycles of hydrogen absorption and desorption of the MgH,-10 wt%TigCr14VgyCe Hx
composite (a,b); the desorption kinetic curves of the 1st, 10th, 50th and 100th cycles of the MgH,-10
wt%TigCrq4VgyCe1Hyx composite after dehydrogenation (c).

3.3. The Catalytic Mechanism

To further explore the catalytic mechanism of the remarkable hydrogen de-/absorption
kinetics from the TigCri4VgoCe1Hx-catalyzed MgH;, XRD and TEM were applied to eluci-
date the structure evolution of TigCr14VgoCe1Hx at different states. The XRD pattern results
of the ball milled de-/re-hydrogenated state of the 10 wt% TigCri4VgoCe1Hx-catalyzed
MgH,; are shown in Figure 8a. The BCT phase of the alloy naturally emerged in the ball
milled composite due to its desorption plateau pressure features, which is confirmed in
Figure S1. Although 3-MgH, has undisputedly become the dominant phase of the ball
milled and rehydrogenated state, some Mg phases could be detected in the hydrogenated
sample. This was because the interior of an Mg particle is not easily fully hydrogenated due
to the agglomeration phenomenon. TigCr14VgyCej Hy after dehydrogenation will transform
into a BCC phase and return to a FCC phase when rehydrogenated. Furthermore, the XRD
results of the 10 wt% TigCr14 VgoCe1Hx-catalyzed MgH, after the different dehydrogenated
temperatures are depicted in Figure 8b. It can be clearly observed that there is a peak lo-
cated at 42 ° which corresponds to the (110) plane of the BCC phase from the TigCr14VgoCeq
alloy. It is also proved that TigCry4VgoCe1Hx has a superior catalytic effect on dissociation
of Mg-H bonds even at 200 °C, as reflected in the XRD patterns.
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Figure 8. XRD patterns of the ball milled, rehydrogenated, dehydrogenated state of the MgH,-10
wt%TigCr14VgoCe1 Hx composite (a); XRD patterns of the MgH;-10 wt%TigCr14VgoCeHyx composite
under different dehydrogenated temperatures (b).

To further investigate the microstructural characteristics of the composite, TEM obser-
vations on the dehydrogenated composite were obtained. As shown in Figure 9a,b, the Mg
phase (P63/mmc (194)) is observed in HRTEM images (Figure 9c) with lattice spacing of
0.245 nm. Besides, it can be also observed that there are apparent interfaces between Mg and
the TigCr14VgoCe; with the BCC phase in Figure 9c. As depicted in Figure 9d, the diffraction
spot lattice of the Fourier transform pattern exhibits the typical BCC phase (110) zone axis.
Furthermore, it can be clearly observed that there are jointed interfaces from Mg and BCC
phases, which presents the obvious layer fault in HRTEM images (Figure 9¢c). This suggests
that massive dislocation defects were generated during the high-energy ball milling. Figure 9
shows the angle annual dark-field (HAADF) images of the dehydrogenated sample and the
corresponding EDS mappings. It can be seen that the TigCry4VgoCe; particles with an average
grain size of 200 nm are dispersed in the Mg/MgH, matrix. The Ti, V, Cr and Ce elements
were homogeneously distributed on the surface of Mg/MgH,. The brighter nanoparticles are
considered as the TigCr14VgoCe; alloy introduced in the MgH,.

-112 002

-110 gop

BCC [110]

Figure 9. The TEM and HRTEM images (a—c), the corresponding FFT image (d), the HAADF image (e) and
the corresponding EDS mapping of the dehydrogenated MgH5-10 wt%TigCr;4VgoCe; Hy composite.
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Based on the above discussions, the catalytic process of the TigCry4VgyCe;Hy com-
pounded with MgH, can be speculated on. The pre-ball milled TigCr;4VgoCe; alloy
transformed into TigCry4VgyCeiHy hydrides under hydrogen pressure. The obtained
TigCr14VgoCe1Hy ball milled with MgH, stayed as the BCT phase in the composite in
ambient conditions. After dehydrogenation, the catalyst TigCr14VgyCeHy transformed
into the BCC phase and returned into the FCC phase when it was rehydrogenated. The
structure evolution of the TigCri4VgyCe; alloy was in accordance with that of the reported
V-based BCC-type hydrogen-storage alloys [44,45]. In terms of the hydrogen-storage alloy
with the BCC phase, the inherent features of superior de-/absorption kinetics contribute
to the remarkable catalytic effect on MgH,. We called it the ‘autocatalytic effect” of the
hydrogen-storage alloy, and it had a fast de-/absorption rate and was the priority of the
hydrogen diffusion during the hydrogen dissociation and recombination in the compos-
ite. The autocatalytic reaction was also reported by Zhu et al. [46]. They studied melted
MmNis5_, (CoAlMn)y alloy milling with Mg to form a nano-phase composite by fitting the
kinetic curve and found that it matched with the rate equation of the autocatalysis process.
On one hand, the TigCr;4VgoCe;Hy nano-particles act as the active sites to de-/absorb hy-
drogen and dissociate from H atoms. The de-/absorption behavior of the TigCr14VgyCeHx
particles can thus trigger the migration of H atoms into the Mg/MgH, matrix. One the
other hand, the generated plentiful dislocations offer extra stacking fault energy and distor-
tion energy, which provide massive hydrogen diffusion channels in the composite. The
elements Ti, Cr, V and Ce of TigCr14VgoCe1Hx have lower electronegativity than Mg, which
significantly weakens the Mg-H bonds and further facilitates the dehydrogenation reaction.
Consequently, the favorable self-absorption or desorption hydrogen kinetics characteristics
from the TigCr14VgoCei H particles and the structure transitions significantly enhance the
de-/hydrogenation kinetic performance of MgH.

4. Conclusions

The Ce-doped TigCr14VgyCe; hydrogen-storage alloy was prepared via arc melting
and hydrogenated into TigCr4VgyCe1Hy hydrides via ball milling in a hydrogen atmo-
sphere. The MgH, + y wt%TigCr4VgyCe1Hx (y = 0, 3, 5, 10, 15) nano-composites were
prepared via ball milling to explore the catalytic effect of the TigCrq4VgyCe;Hy alloy on
the hydrogen de-/absorption properties of MgH,. Experimental results exhibit that the
10 wt% TigCrq4VgoCe1Hx-catalyzed MgH, showed an initial dehydrogenated temperature
of 160 °C and can absorb 2.0 wt% H; within 1 h at room temperature. Moreover, the compos-
ite can rapidly release 6.73 wt% H, within 8 min at 230 °C. Meanwhile, the composite has a
reversible de-/absorption hydrogen capacity retention of 84% after 100 cycles at 300 °C.
In addition, the calculated dehydrogenated activation energy of the composite via the
JMAK model was identified to be 62.62 k] mol~!. A catalytic mechanism analysis revealed
that the reversible phase transformation (BCC-FCC) originating in the TigCry4VgyCeHx
hydrides can offer more diffusion pathways for hydrogen migration and act as the active
nucleation sites for Mg/MgH,. In addition, plentiful of dislocations and defects originating
in the connected interfaces from TigCry4VgyCe1Hyx and MgH,; can provide extra interface
energy and effectively weaken the Mg-H bonds. This work offers an effective strategy for
fabricating a hydrogen-storage alloy compounded with MgH, with superior hydrogen
sorption kinetics characteristics.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/met14050572/s1, Figure S1. The PCT curves of the as-cast TigCr14VgyCey
alloys at the different temperature. Figure S2. The SEM image of the TigCry4VgyCe;Hx hydride by
pre-ball milled under hydrogen pressure (a); The SEM image and EDS mapping results of the ball
milled MgHj,-10 wt%TigCr14VgoCe1 Hx composite (b). Figure S3. The XRD patterns of the pure MgH,
and the ball milled MgH, Table S1. Comparison of different catalysts-doped on dehydrogenation
kinetics of MgHj Refs. [32,42,47-49] are cited in the Supplementary Materials,
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