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Abstract: Route planning for autonomous driving is a global road planning method based on a
given starting point and target point combined with current traffic flow information. The optimal
global route can reduce traffic jams and improve the safety and economy of autonomous vehicles.
The current optimization method of route planning for autonomous driving only considers a single
objective or a chain of single objectives, which cannot meet the requirements of drivers. In this paper,
we devise a general framework for the route planning method based on multi-objective optimiza-
tion. Different from planning optimization based on not only traffic information, the framework
considers travel time, distance, cost and personal preference, but focuses more on vehicle status and
driver requirements. We use an improved depth-first search algorithm to find the optimal route.
The evaluations of our method on real-world traffic data indicate the feasibility and applicability of
the framework. Our study contributes to a better understanding of route planning and reveals that
exploitation of personal preference can more flexibly configure the corresponding route according to
the driver’s requirements.

Keywords: route planning; autonomous driving; multi-objective optimization

1. Introduction

An autonomous driving system is a fully automated and highly centralized car opera-
tion system for the work performed by drivers [1–3]. Realizing fully automatic operation
can save energy and optimize the reasonable matching of system energy consumption
and speed. In recent years, with the rapid development and popularization of intelligent
autonomous driving [4,5], it is a foregone conclusion that cars can achieve a higher level
of autonomous driving. In the development process of intelligent driving, the Internet of
vehicles is the key premise to realize intelligent driving and autonomous driving [6–8].
The Internet of vehicles is a huge interactive network composed of vehicle location, speed,
route and other information. Through global positioning systems (GNSS), onboard radars,
sensors, etc., vehicles can complete the collection of their own environment and status
information. Through Internet technology, all vehicles can transmit all kinds of information
to the central processing unit. Through computer technology, the information of a large
number of vehicles can be analyzed and processed, so as to calculate the best route for
different vehicles, provide a timely report concerning the road conditions and arrange the
signal cycle. Route planning, which is closely connected with the Internet of vehicles, is
to plan a global road route based on the current real-time traffic flow information given
the starting point and target point [9–13]. An optimal global route can avoid traffic jams,
reduce fuel consumption and improve the safety of self-driving vehicles, so the selection of
optimal constraints is important when performing route planning.

With the rapid development of Telematics and 5G technologies, each driverless vehicle
is more likely to have access to real-time road traffic information, which supports global
path planning to obtain better routes [14,15]. There are many kinds of studies concerning
path optimization, mainly in the field of road traffic and operations research [16], mostly
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applying one or more optimization objectives for path planning, but how to plan a better
route in terms of time, distance, cost, etc., in real time according to the passenger’s wishes
under the autonomous driving field is also an important issue in this field. Therefore,
developing the best and most reasonable route for autonomous driving systems, taking
into account driver requirements, driving time, cost and other factors, can facilitate people’s
travel while promoting autonomous driving [17–20].

In this paper, a general framework for a route planning method based on multi-
objective optimization, considering four factors (total travel distance, total travel time, total
cost and travelers’ personal preference), is devised. Complex network science is applied to
route planning for modeling and route generation. We summarize the main contributions
of our paper as follows:

1. We address the problem of route planning for autonomous driving in the background
of complex network science. It is shown that the property of the network structure
may seriously influence the performance of the traffic and the efficiency of global
route planning for autonomous driving.

2. We proposed a general framework of route planning method that provides a human–
computer interaction page and inputs the optimal route into the autonomous driving
framework for local planning, completing the overall framework for autonomous
driving.

3. We evaluate the general framework of the route planning method on a real-world
traffic network and the results show that our method can generate a better route
based on four factors, proving the feasibility and applicability of our method and
accelerating the promotion of autonomous driving.

The rest of the paper is organized as follows. A literature review concerning route
planning is introduced in Section 2. In Section 3, a general framework of the route planning
method, where total travel distance, total travel time, total cost and travelers’ personal
preferences are concerned, is provided. Section 4 gives an evaluation on a real-world traffic
network. Finally, the conclusions and future research are presented in Section 5.

2. Literature Review

Before presenting the description of the method in this paper, several existing methods
are introduced. As discussed in Section 1, the goals of existing research can be roughly
divided into the following optimization objectives: total travel distance, total travel time
and total cost. After a careful review of the related work on the problem of route planning,
it is found that most of the methods only rely on one of the factors or a combination of a
few of them, which would indeed lead to a limitation of the route generation. Some of the
typical route planning methods are chosen to be introduced below.

1. Total travel distance.

In paper [21], a bilevel ant colony optimization algorithm for a capacitated electric
vehicle routing problem is proposed. The vehicle routing problem is classified into two
sub-problems: (1) capacitated vehicle routing problem and (2) fixed route vehicle charging
problem. Assuming a set of the same vehicles, the goal of the vehicle routing problem in
the research is to find an optimal route to minimize the total travel distance. The objective
function of the algorithm is to minimize the total travel distance, which is defined as:

min f (x) = ∑
i∈V,j∈V,i 6=j

dijxij (1)

The constraints of the algorithm contain served times of customer, charging station lim-
itations, capacity constraints, electricity constraint and domain definition. The proposed al-
gorithm performed better than state-of-the-art algorithms in several real-world experiments.

A bi-strategy-based optimization algorithm is derived to solve the dynamic vehicle
routing problem in reference [22]. An effective scheduling generation scheme based on a
permutation array, the k-nearest neighbor (kNN) heuristic based on the location information
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of customers for initialization and two search strategies for representation and scheduling
are proposed. Similarly to the above research, a smaller total travel distance is supposed in
this algorithm.

2. Total travel time.

Paper [23] studies improved formulations and algorithmic components on the ve-
hicle routing problem. An arc-based tracking of the time and the state of charge, which
outperforms the classical node-based tracking of these values, is derived. A path-based
model is proposed to avoid passing by the same station nodes. The objective function of
the algorithm is to minimize the total driving and charging time, which is defined as:

min f (x) = ∑
(i,j)∈A

tijxij + ∑
i∈F′

δi (2)

where A is the set of travel arc, tij is the driving time on arc (i, j) and δi represents the
charging time at node i. The constraints of the algorithm contain served times of customer,
the flow conservation, sufficient energy, limitation of charging time and departure time. Ex-
periments show that taking the optimal or near-optimal charging decision is very important
to produce high-quality solutions.

Paper [24] builds a fuel consumption model related to travel time and calculates the
fuel volume under different travel times through the nodes and edges of the transportation
network and this method effectively balances the relationship between driving time and
fuel consumption under different road traffic networks. Travel time is the optimization
constraint of this algorithm.

3. Total cost.

In the paper [25], an electric vehicle routing problem under time variant energy prices
is addressed and a Lagrangian relaxation and a hybrid heuristic are proposed. The impact
of energy prices, time windows and fleet size are considered in the study. The objective
function of the algorithm is to minimize the total cost, i.e., the total cost of charging the
batteries minus the total reward earned from discharging the batteries, which is defined as:

min
K

∑
k=1

∑
i∈Vs,od

∑
t∈T

[ritkPt
re − ditkPt

dis] +
K

∑
k=1

Pnight[B− bpk − ∑
t∈T

δ(rptk − dptk)] (3)

where Pnight is the cost of charging per unit of time at night, Pt
re is the cost of charging

during period t and Pt
dis represents the reward for discharging during period t. The first

part of the objective function corresponds to the net cost during the planning horizon, while
the second part is the cost of fully recharging all vehicles at night. The constraints of the
algorithm contain served times of customer, no route ending at a customer or a station
node, time feasibility of the edges leaving the customer and the depot nodes, the time
windows, charge state, battery capacity and the demands.

In the paper [26], the route optimization method to balance the needs of passengers
and transport companies under urban traffic is studied and a simple multi-objective op-
timization (SMO) algorithm is proposed to modify the existing route to generate a new
feasible route. The algorithm’s optimization goal is to reduce passengers’ travel time and
the operators’ travel distance.

Moreover, there are studies that tackle artificial intelligence, the technology of multi-
agent systems and applications for other industries in the route problems. The paper [27]
applies Automated Vehicle Guide (AGV) to the milk-run of factory logistics and improves
the efficiency and economy of logistics by setting the path of AGV. In the framework of the
concept of Industry 4.0, the paper [28] uses multi-agent systems to improve the efficiency
of the logistic supply chain, taking into account the heterogeneous, time-varying factors.

Although there have been many studies on route planning, people’s preferences are
still less taken into account, which will greatly affect the optimality of planned routes. In
addition, a single goal cannot meet the practicality of route planning under the condition
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of autonomous driving. Therefore, it is an urgent problem to build a route planning
framework for autonomous driving based on various factors.

3. Proposed Method

Given the limitation of only one or a combination of several factors, we propose to
generate the optimal route considering four factors: travel time, travel distance, travel cost
and personal preference. Since the personal preference would be quite different at each
time for the same traveler in reality, we design a general framework for the route planning
method, where a personal preference would be set for each trip. Generally, our framework
for the route planning method could be applied to autonomous driving, which has an
interactive interface that needs personal preference input; at the same time, the traffic
information in the vehicle Internet needs to be transmitted to the ground control center.
After inputting the starting point, ending point and personal preferences, the framework
outputs the optimal route and transmits the route to the automatic driving framework for
trajectory planning in real time.

To solve the route planning problem for autonomous driving, a complete direct graph
G = (V, L) is used, where V is the set of all nodes in the network and L represents the set
of all links in the network. In this paper, the nodes and links in the transportation network
have many attributes. Let Vc

i be the capacity of node i, and Lc
ij be the capacity of the link

between node i and j. Dij stands for the travel demand between nodes i and j, which
would be the major factor influencing the planned route. Each link Lij has another two
characteristics: the distance (dij) between nodes i and j and the travel time (tij) between
nodes i and j.

We assume that the driverless vehicles mentioned in this paper are all fuel vehicles,
which will cause increased fuel consumption when encountering traffic jams. At the same
time, each vehicle has load capacity and mileage capacity and the mileage capacity of each
vehicle can complete the journey it needs. At the beginning of route planning, each vehicle
is located at a node in the transportation network. The time of node passing through the
intersection is positively correlated with the number of intersections at the intersection.
There can be no duplicate sections in the planned route and each node can only be accessed
once at most. Every car can obtain instant information about road conditions at any time
through the Internet of vehicles.

Based on the above problem definitions and assumptions, the goal of autonomous
driving route planning can be set to minimize the comprehensive cost synthesized in four
aspects (travel time, travel distance, travel cost and personal preference). The specific
objective equation is as follows:

min αNor(TTij)× xij + βNor(TDij)× yij + γNor(TCij)× zij (4)

where Nor(TTij), Nor(TDij), Nor(TCij) are the normalization of travel time, travel distance,
travel cost respectively; α, β, γ are the manually input variables of personal preferences on
the normalization values; xij, yij, zij represent the limited parameters of personal preference
concerning time, distance and cost. These parameters (containing α, β, γ, xij, yij, zij) need
to be input and determined in advance before the route planning process. The purpose
of normalization is to compress the data within the range of [0, 1], whose calculation
formula is:

Nor(X) =
X− Xmin

Xmax − Xmin
(5)

The settings and constraints of the general framework of route planning would be
introduced separately as travel time, travel distance, travel cost and personal preference
as follows.

3.1. Travel Time

Whether highway sections or daily commuting, driving time is a critical issue for
travelers. Through the investigation of the actual road sections in the city, this paper divides
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the driving time into the following three parts: road driving time, intersection signal time
and intersection traffic time.

The road driving time is closely related to the traffic busy degree of the road section.
After observing and investigating some actual road sections, it is found that when the
number of vehicles in the road section is less than 60% of the capacity, vehicles can usually
pass at the free flow speed (v f ). When the number of vehicles in the road section is less
than 80% of the capacity, vehicles can usually pass at 60% of the free flow speed. When the
number of vehicles in the road section is saturated, vehicles can usually pass at 35% of the
free flow speed.

The intersection signal time is closely related to the driving direction of the vehicle
at the intersection. Through the observation of the signal lights at several actual traffic
intersections, it can be seen that the vast majority of intersections do not need to wait for
the traffic signal lights when turning right and the average signal time of straight sections
is lower than that of turning left.

The intersection traffic time is related to the capacity of the intersection, the number of
vehicles at the intersection and the number of turnouts. The less the traffic volume at the
intersection accounts for its capacity, the shorter the traffic time. The greater the number of
intersections, the more complex the traffic behavior at the intersection and the longer the
traffic time.

Based on the above considerations, there should be several constraints as below:

tij 6
dij

0.35v f
(6)

tnode(x) 6 tnode(y) ∀degree(x) 6 degreey (7)

tright 6 tstraight 6 tle f t (8)

where tij represents the travel time between nodes (i, j), dij is the distance between nodes
(i, j), degree(x) represents the number of intersections at node x, tnode(x) represents the time
to pass through node x, tright represents the right turn time, tstraight represents the time to
go straight through the intersection and tle f t represents the left turn time. Constraints (6)
ensure that the car avoids traffic jams. Constraints (7) and (8) limit the two situations of the
intersection signal time.

3.2. Travel Distance

Travel distance is another indicator that can measure the optimality of the route
planning method. Although the travel cost is not completely determined by distance, many
people still measure the economic consumption of this journey by travel distance. Travel
distance is easy to calculate after the planned route is determined. The constraints resulting
from travel distance should be:

Ecar > Pcar × Distance (9)

where Ecar represents the economic consumption of the car, Pcar represents petrol consump-
tion rate, Distance represents the travel distance. Constraints (9) ensure that the remaining
fuel of the car can cover this distance.

3.3. Travel Cost

As mentioned above, some travelers consider the travel cost to be only related to
the travel distance. However, fuel consumption varies greatly at different speeds and
fuel consumption will also occur when the car stops at a traffic post. In addition, fuel
consumption when starting a vehicle and when braking is high, which makes the more
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turnouts in a planned route, the greater the fuel consumption. The constraints resulting
from travel cost should be:

Ccar = ∑
s∈State

Cs State = [travel, stop, Start, brake] (10)

Chigh > Clow (11)

where Ccar represents the car fuel consumption, CS represents the car fuel consumption in
different states, Chigh represents the car fuel consumption at high speed and Clow represents
the car fuel consumption at low speed. Constraints (10) ensure that the fuel consumption
of the car is distinguished according to the running state. Constraints (11) distinguish fuel
consumption at low speed and high speed.

3.4. Personal Preference

Personal preference is the most important factor in our general framework of the route
planning method, since the other three factors (travel time, travel distance and travel cost)
are affected by personal preference. Personal preference should be entered into the auto
drive system as known conditions before route planning begins, including: α, β, γ, xij, yij,
zij. α, β, γ are the manually input variables of personal preference on the normalization
values; xij, yij, zij represent the limited parameters of personal preference concerning
time, distance and cost. α, β, γ calculate the weight parameters of the comprehensive
cost. xij, yij, zij represent drivers’ more specific needs for time, distance and cost. For
instance, xij could represent an upper limit value of the travel time of one traveler; yij limits
whether the candidate planned route could be chosen; zij could be the expected value of
fuel consumption. The constraints in this paper should be:

α, β, γ ∈ [0, 1] (12)

α + β + γ = 1 (13)

xij =

{
∞ tij > tlimit

1 tij < tlimit
(14)

yij =

{
∞ dij > 1.5dmin

1 dij < 1.5dmin
(15)

zij =

{
∞ Eij > Elimit

1 Eij < Elimit
(16)

where tlimit is the maximum travel time between nodes (i, j) set by the driver, dmin is the
minimum travel distance between nodes (i, j) set by the driver and Elimit is the maximum
travel cost between nodes (i, j) set by the driver. Constraints (12) and (13) ensure that the
weight parameters meet the basic conditions. Constraints (14)–(16) define the specific needs
of autonomous driving.

Through constraints (6)–(8), the travel time of a car under different traffic flows, inter-
sections and turning directions can be limited and the set travel time is more reasonable.
Through constraint (9), it is possible to check whether the travel distances meet the con-
straint after route planning and remove unreasonable routes. The travel cost under different
driving conditions can be set by constraints (10) and (11). The weight values of personal
preference can be defined by constraints (12) and (13) and the critical values of travel time,
travel distance and travel cost can be set by constraints (14)–(16).

As shown in Algorithm 1, after all possible paths and personal preference values are
given, all possible paths are traversed and the travel times, travel distances and travel costs
between nodes are calculated to obtain the comprehensive cost for a specific path, and then
costs of all possible paths are sorted to return to the best path and the lowest cost.
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Algorithm 1 Optimization method procedure

Input: value
Output: bestset

1: α, β, γ, dmin, Elimit ← value
2: mincost, bestindex ← In f , 0
3: n← number of (the length of set)
4: while i ≤ n do
5: m← number of (the length of set[i])
6: for j in m do
7: cost← αNor(TTj)× xj + βNor(TDj)× yj + γNor(TCj)× zj
8: if mincost ≤ cost then
9: mincost← cost

10: bestindex ← i
11: end if
12: end for
13: end while
14: bestset← set[i]
15: return bestset

4. Experiments and Results

In this section, we evaluate the effectiveness of the general framework of the route
planning method based on multi-objective optimization on a real-world transportation
network of Sioux Falls, the largest city in South Dakota, USA [29]. We introduce network
analysis into the traffic network. The intersections are abstracted as nodes and the streets
are abstracted as links; there are a total of 24 nodes, 76 links and 360,600 trips in the Sioux
Falls network, which is shown in Figure 1 as the network structure in the map and the
complex network model.

Figure 2 shows basic statistics for the traffic network used in our paper, where traffic
flow is given in the number of vehicles per day. The number of branches at an intersection
is called the degree to describe the complexity of the intersection. In Figure 2a, the degree
of the nodes in the traffic network is 2, 3, 4, 5, respectively, and only node 10 has the largest
degree of 5. More than half of the nodes have degree 3; the complexity distribution of nodes
is reasonable. The ratio of the number of times that a node acts as the intermediate node of
the shortest path between other nodes to the total number of paths is called betweenness;
it indicates the importance of one node to other nodes. In Figure 2b, most of the nodes’
betweenness is less than 0.15 and only two nodes have a betweenness between 0.21 and 0.24;
this shows that the number of times each node acts as the center is uniform. In Figure 2c, as
for traffic flow in the network, the numbers distribute from 4000 to 24,000, and 25 links is
the only the number of links with flow between 8000 and 10,000; this is the only one that
occupies more than 10 links. The data used in this paper have obvious characteristics of
urban traffic network, information flow and so on and can be used as a dataset to verify
autonomous driving route planning.

To show the effectiveness of our work on different trips in the transportation network,
we evaluate the methods with six different OD (Origin Destination) pairs, (7, 24), (1, 20),
(1, 19), (2, 22), (9, 19), (16, 24). Since personal preference would significantly influence
the comprehensive cost of the route planning process, which is the objective function of
our method, the same tlimit, dmin and Elimit are used to compare the cost under different
typical weights α, β, γ in this experiment. We search for all the candidate routes by
performing a variant of Breath-First Search on each OD pair. Table 1 presents the optimal
comprehensive costs for six different OD pairs with four parameter settings, which are
(0.33, 0.33, 0.33), (0.2, 0.4, 0.4), (0.3, 0.2, 0.5), (0.5, 0.3, 0.2). After comparing the values with
different parameters, it is shown that the optimal comprehensive costs of the same OD pair
with different parameters are quite different. In addition, the optimal comprehensive costs
of different OD pairs with the same parameter setting are very similar in the table. It is
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notable that the parameter of α, which is related to the total distance of the route, has the
most influence on the values, since the traffic jam data are missing in the dataset and this
would influence the travel time and travel cost seriously.

Table 1. The optimal comprehensive cost for six different OD pairs with four parameter settings.

Origin/Destination Pairs (7, 24) (1, 20) (1, 19) (2, 22) (9, 19) (16, 24)

(0.33, 0.33, 0.33) 0.32 0.31 0.30 0.27 0.29 0.30
(0.2, 0.4, 0.4) 0.19 0.18 0.20 0.18 0.17 0.21
(0.3, 0.2, 0.5) 0.31 0.27 0.28 0.26 0.26 0.31
(0.5, 0.3, 0.2) 0.48 0.46 0.46 0.45 0.43 0.46

(a)

1 2

3 4 5 6

789

101112

13

14 15

16

17

18

19

2021

2223

24

(b)

Figure 1. Transportation network used for experiments, (a) Map of Sioux Falls, (b) Complex network
model of Sioux Falls.

Figure 3 visualizes the optimal routes for six different OD pairs with parameters of
(0.3, 0.3, 0.3). After a series of optimization operations, we obtained the optimal route
of the six OD pairs shown in Figure 3 when the parameter is set to (0.3, 0.3, 0.3). In the
experiment shown in the figure, we set the influence weight parameters of travel distance,
travel time and travel cost on the optimization objectives to be equal and the route scheme
under this parameter setting is more in line with the situation that people need to measure
and consider many aspects in their daily life. For example, in Figure 3e, the route (9, 10,
15, 19) and the route (9, 10, 17, 19) are very similar in terms of the travel distance and the
number of intersections, but since intersection 17 has fewer branches (road complexity)
than intersection 15, the route in Figure 3e is the optimal route.
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(a) (b) (c)

Figure 2. Basic statistics for traffic network of Sioux Falls, (a) Degree distribution, (b) Betweenness
distribution, (c) Traffic flow distribution.

Through the above analysis of the results, it can be found that our framework can meet
the requirements of designing better routes for travelers concerning travel distance, travel
time, travel cost, personal preference and other aspects after the road traffic information
has been collected. Compared with the paper [21–28], our framework comprehensively
considers multiple objectives, generates the optimal route that meets the driver’s require-
ments and balances the relationship between total costs and personal preferences, which
proves the feasibility and applicability of the general framework, completes the automatic
driving framework and improves the safety and economy of automatic driving vehicles.
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(c)

Figure 3. Cont.
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24

(f)

Figure 3. Optimal routes for six different OD pairs with parameters of (0.3, 0.3, 0.3). (a) Optimal
route of OD pair (7, 24), (b) Optimal route of OD pair (1, 20), (c) Optimal route of OD pair (1, 19),
(d) Optimal route of OD pair (2, 22), (e) Optimal route of OD pair (9, 19), (f) Optimal route of OD pair
(16, 24).

5. Conclusions

In this paper, we proposed a general framework of the route planning method based
on multi-objective optimization, considering four factors: travel time, travel distance, travel
cost and personal preference. The route planning problem for autonomous driving is
abstracted as an optimization problem with multiple variable parameters. We evaluate
our general framework of route planning on a real-world transportation network with
different settings of the parameters and OD pairs. The general framework shows its good
performance on the change of the traveler’s demands. Our work provides a route planning
method that can be adjusted on demand so that pedestrians can get the best route in
many aspects according to their own needs and thus makes an important contribution
to the development of high-level and reasonable autonomous driving. However, in this
paper, only one road was tested and no migration experiments or comparative experiments
were conducted. In the future, we should continue to improve the relevant work and
introduce the traffic jam data into the model calculation to make the overall framework
more convincing.
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