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Abstract: This paper presents an extension of the Electric Vehicle Routing Problem with Time Win-
dows and Partial Recharges (EVRPTW-PR), which incorporates the use of parcel lockers as a delivery
method (i.e., self-pickup method). This variant, named the electric vehicle routing problem with
time windows, partial recharges, and parcel lockers (EVRPTW-PR-PL), focuses on minimizing deliv-
ery costs by employing a homogeneous fleet of electric vehicles (EVs) and providing two delivery
methods for serving customers: home delivery and self-pickup methods. We derive a mathemati-
cal formulation and propose an adaptive large neighborhood search (ALNS) algorithm to address
EVRPTW-PR-PL. Moreover, in ALNS, the solution representation is constructed to handle the as-
signment of delivery methods. The performance of our proposed ALNS algorithm is evaluated by
solving EVRPTW-PR benchmark instances. Finally, the results of EVRPTW-PR-PL obtained by using
the GUROBI solver and our ALNS algorithm are provided, accompanied by managerial insights on
the implementation of parcel lockers.

Keywords: electric vehicle; routing problem; partial recharging; parcel locker; adaptive large
neighborhood search

1. Introduction

The COVID-19 pandemic has stimulated the growth of the e-commerce market, which
is projected to exceed US$6.388 trillion in 2024 with an annual growth rate of approximately
13.5% [1]. In addition, the number of people who have used online shopping services
has significantly increased, reaching 3 billion people in 2018, and this growth has further
accelerated due to the challenges of pandemics [2]. Last-mile logistics are a key point for
addressing these bottlenecks. However, last-mile activities are costly and environmentally
polluting, accounting for 13–75% of overall logistics costs [3]. According to a report by
Forum [4], the number of delivery vehicles used is expected to increase by 36%, but effective
solutions can lead to a 30% reduction in waste emissions and a nearly 25% decrease in total
logistics costs. Logistics companies aim to offer diverse services along with faster deliveries
to enhance customer satisfaction and reduce operating costs. Environmental concerns, such
as noise and air pollution, prompt them to invest in and implement alternative systems [5].

To effectively address environmental concerns, there is a growing trend to replace
fuel-consuming vehicles with those powered by sustainable and renewable energy sources.
Electric vehicles (EVs) are widely recognized as one of the cleanest transportation means
for both private and commercial purposes that generate no local greenhouse gas (GHG)
emissions and help reduce noise pollution. Therefore, logistics companies such as DHL,
Amazon, and FedEx have already implemented fleets of EVs into their logistics networks.
From the perspective of operation research, the use of EVs in last-mile delivery networks
to serve customers is studied by ref. [6], which establishes a more sustainable delivery
network. Variants of the electric vehicle routing problem (EVRP) have been developed and
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extended over the past decade. Keskin and Çatay [7] investigate recharge policies to tackle
the limitations of battery capacities with shorter recharging durations, named the electric
vehicle routing problem with time windows and partial recharges (EVRPTW-PR).

The conventional last-mile delivery method (i.e., home delivery method) faces various
challenges in serving customers within the limitations of time windows and dealing with the
possibility of customers being unavailable. Moreover, the problem of urban traffic congestion
further causes delays in delivery. These factors contribute to a significant risk of delivery failures,
resulting in increased air pollution and logistics costs and decreased customer satisfaction levels.
Consequently, logistics companies investigate alternative delivery methods to overcome these
challenges. One of the potential alternatives is the self-pickup method, wherein couriers drop
customers’ parcels at assigned parcel lockers, allowing customers to conveniently retrieve their
packages at any time. In practice, parcel locker systems used for delivery have been successfully
installed and implemented in more than 20 countries, such as the U.S., UK, Germany, and
Canada, which ensure reliable, responsive, and professional delivery experiences [8]. In
addition, this delivery method proves particularly suitable during a pandemic as it eliminates
the need for direct customer interactions [9].

From the perspective of operations research, we study the integration of parcel lockers
into sustainable last-mile delivery networks so as to provide routing plans while minimizing
logistics costs, called the electric vehicle routing problem with time windows, partial
recharges, and parcel lockers (EVRPTW-PR-PL). While the concept of our study has also
been explored by ref. [10], our proposed network differs from them in two features: (1) the
locations of parcel lockers and recharging stations (CSs) are distinguished, and (2) each
customer is associated only with a designated parcel locker if the self-pickup method is
offered. To sum up, our main contributions are highlighted as follows.

• We study the implementation of parcel lockers based on the concepts of EVRPTW-PR,
called the Electric Vehicle Routing Problem with Time Windows, Partial Recharges,
and Parcel Lockers (EVRPTW-PR-PL).

• We formulate a mixed-integer programming (MIP) model and design an adaptive large
neighborhood search (ALNS) for solving both EVRPTW-PR and EVRPTW-PR-PL.

• The performance of the proposed ALNS is shown by solving the EVRPTW-PR bench-
mark instances.

• We provide some managerial insights from the implementation of parcel lockers.

The remaining parts of this study are structured as follows. Section 2 reviews papers
related to EVRPTW-PR and the implementation of parcel lockers. Section 3 formulates
MILP to solve EVRPTW-PR-PL along with a formal description. Section 4 presents an
ALNS algorithm that incorporates operators designed for addressing parcel lockers in the
network. Section 5 conducts numerical experiments related to ALNS performance and the
implementation of parcel lockers. Section 6 discusses the effects of parcel lockers on the
problems. Finally, we give some conclusions and potential research in Section 7.

2. Related Work

The literature on variants of vehicle routing problems (VRPs) related to electric vehicles
(EVs) and delivery methods is presented as follows. Section 2.1 begins with papers that
focus on electric vehicle routing problems (EVRPs). Section 2.2 covers the literature on the
utilization of parcel lockers in VRPs.

2.1. Electric Vehicle Routing Problems

The utilization of EVs is first investigated by ref. [6], where they implement a fleet of EVs
in a classical VRP. The EVs are assumed to recharge to a minimum of 80% battery capacity
with a constant charging rate. The authors devise a mixed-integer non-linear programming
model to present the proposed problem. Schneider et al. [11] expand upon the initial concept
of integrating EVs into VRPs by introducing electric vehicle routing with time windows
(EVRPTW). This model assumes that the batteries of EVs are fully charged when they visit
recharging stations (CSs), while also considering the time required for recharging. An efficient
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mixed integer linear programming (MILP) model is provided that can track the battery status
of EVs at each visited node. In addition, they generate well-known benchmark instances for
EVRPTW, which are widely used in subsequent studies related to EVRPs.

To analyze the effects of different battery strategies in EVRPTW, Keskin and Çatay [7]
investigate a relaxation of the full recharge policy by allowing partial recharges. This relaxation
results in the formulation of a new problem known as the electric vehicle routing problem with
time windows and partial recharges (EVRPTW-PR). The research highlights the benefits of
the partial recharge policy. To effectively solve EVRPTW with both full and partial recharge
policies, Desaulniers et al. [12] propose branch-and-price-and-cut algorithms, which attempt
to obtain optimal solutions for these problems. Hiermann et al. [13] consider a mixed fleet
consisting of three vehicle types: EVs, internal combustion vehicles (ICVs), and hybrid
vehicles. The research shows that utilizing a mixed fleet can reduce total transportation
costs. Furthermore, Cortés-Murcia et al. [14] investigate the use of alternative means such
as walking, bikes, and drones for customer service to leverage the time for recharging
EVs’ batteries.

To enhance the practicality of routing plans for EVs, many studies consider realistic
energy consumption models by providing more accurate estimations of battery charging
and discharging rates. Keskin and Çatay [15] investigate three recharging specifications
with varying recharging speeds and costs, and their results reveal tradeoffs between the
speeds and costs, which highlight the significant benefits of rapid recharges. Rastani and
Çatay [16] focus on the impacts of load-dependent energy consumption on the EVs’ routing
plans, where fleet sizes and the current loading of vehicles are load-dependent factors
when minimizing total energy consumption. Montoya et al. [17] propose a more accurate
charging time estimation (i.e., a piecewise linear approximation) to capture charging
behavior accurately. Froger et al. [18] offer an arc-based formulation and an exact labeling
algorithm to efficiently solve the [17] problem.

A combination of both electrical and fossil engine vehicles is utilized by refs. [19,20]. In
addition, Mancini [21] and Hiermann et al. [13] investigate the use of hybrid vehicles that
switch to consuming fossil fuels when their batteries are fully discharged. Other concepts
of EVRPs are extended, such as time-dependent waiting times at public CSs [22,23], time
synchronization at CSs with recharging policies [22,24,25], the implementation of battery
swapping stations [26–28], and the impact of traffic on EVs’ driving speed [29]. Other
applications of electric vehicles (EVs) in goods distribution appear in the survey conducted
by ref. [30].

2.2. Delivery Options in Last-Mile Delivery

Logistic companies face challenges in the sustainability and efficiency of their delivery
networks due to factors such as traditional vehicles, traffic congestion, and urbanization [31].
A comprehensive review of recent and future last-mile delivery concepts is presented by
ref. [9], who emphasize the significant benefits of alternative delivery options and address
key decision problems using established operations research methods.

Regarding alternative delivery options, the concept of considering multiple time
windows for each customer was first introduced by ref. [32], called VRP with multiple
time windows (VRPMTW). Later, several variants of VRPMTW are studied, such as VRP
with multiple interdependent time windows [33] and VRP with multiple prioritized time
windows [34]. In addition, Belhaiza et al. [35] develop a hybrid variable neighborhood tabu
search heuristic to effectively solve VRPMTW. Reyes et al. [36] further extend VRPMTW
to VRP with roaming delivery locations (VRPRDL), where multiple delivery locations are
provided with different non-overlapping time slots for customers. Ozbaygin et al. [37] offer
an exact algorithm to solve both VRPRDL and the dynamic version of VRPRDL proposed
by ref. [38]. In the dynamic version, routing plans are rescheduled in response to changes
during the transportation execution. Another extension of VRPRDL is proposed by ref. [39],
where parcel lockers are used as shared delivery locations with limited service capacities,
replacing the trunks of cars. In addition, Dumez et al. [40] extend VRP with delivery
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options (VRPDO), where customers’ parcels can be delivered to various locations such as
their private addresses, lockers, or car trunks.

Parcel lockers are especially used for proposing a delivery method (i.e., the self-pickup
method where customers pick up the packages by themselves), which provides more
flexibility and efficiency in serving customers. The use of parcel lockers in last-mile deliv-
ery can reduce up to 66% of total delivery costs compared with traditional methods [8].
Applications for parcel lockers for current and future logistics networks have been pre-
sented in a survey conducted by ref. [9]. Zhou et al. [41] investigate parcel lockers into
a two-echelon VRP, where each customer can be served at either their home or a desig-
nated shared location (i.e., parcel locker), but time windows are not considered. Sitek
and Wikarek [42] address alternative delivery methods to accommodate customer prefer-
ences where the capacity of shared locations (i.e., parcel lockers and post offices) is limited.
Enthoven et al. [43] use parcel lockers as covering locations where nearby customers can
pick up their parcels. This problem provides two delivery options: self-pickup and home
delivery. Carotenuto et al. [44] compare the advantages of parcel lockers in reducing pol-
lution by evaluating the results obtained from home delivery systems and parcel locker
systems. Their findings contribute to understanding the positive environmental impact
of parcel lockers as an alternative delivery method. Yu et al. [45] address the use of parcel
lockers in VRPTW, which provides three delivery methods for serving customers. The
concept of delivery methods in this paper is investigated in our problem. Other studies
also investigate the applications of parcel lockers in last-mile delivery, such as automated
parcel locker systems [46] and heterogeneous locker boxes [47].

3. Problem Description and Mathematical Model

With the presence of parcel lockers, there are two delivery methods offered, including
(1) home delivery and (2) self-pickup at parcel lockers. With these delivery methods, we
propose three types of customers for our problem. The first type is home delivery customers
(H), who are required to directly receive parcels at their home locations. The second type is
self-pickup customers (S), who come to the designated parcel lockers to pick up parcels.
Each self-pickup customer is allowed to select a preferred parcel locker, which is convenient
for collecting parcels. The last type is flexible customers (F), who are willing to be served
by either home delivery or self-pickup methods. Note that the preferred delivery method
for each customer is known in advance.

Let C = {CH ∪ CS ∪ CF} be a set of all customers (i.e., consisting of three subsets
of home delivery, self-pickup, and flexible customers, respectively), P denotes a set of
parcel lockers, F denotes the set of recharging stations (CSs), and {0, 0−} is the origin and
destination depots. We define EVRPTW-PR-PL as a directed graph G = (N, A), where the
set of nodes N can be separated into subsets as N = {0, 0

′} ∪ C ∪ P ∪ F
′
. Note that set F

′

includes set F and its copies of each CS to allow multiple visits to CSs. For later formal
expressions, we denote subsets N

′
= N \ {0, 0

′}, N(o) = N \ {0′}, N(d) = N \ {0}, and
F+ = F

′ ∪ {0}. The set of arcs A is defined by A = {(i, j)|i ∈ N(s), j ∈ N(d), i 6= j}. For
each arc (i, j) ∈ A, travel cost and travel time are defined by cij and tij, respectively.

All customers are served by a homogeneous fleet of EVs (denoted by set K) with a load
capacity of Q, battery capacity of B, and electric consumption rate of r. Each utilized EV
starts at the depot with a fully charged battery and ends at the depot. During transportation,
each EV is allowed to recharge its battery at CSs with a charging rate of g. Note that each
CS may serve EVs multiple times. Furthermore, each parcel locker with a capacity limited
by the number of customers (denoted by Q) may serve several self-pickup and flexible
customers and can be visited by one or more vehicles. Let ξ denote the designated parcel
locker of customer i ∈ CS ∪ CF. Consequently, each parcel locker i ∈ P has a subset of
associated customers Ci ⊆ CS ∪ CF, which represents the possible connection between
the parcel locker and customers in the subset. Each customer i ∈ C has a predefined time
window [ei, li], a non-negative demand di, and a service time si. Demand and service time
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of the remaining vertices (i.e., parcel lockers and CSs) are set to 0, while their time windows
are denoted by [0, Tmax], with Tmax as the maximum duration of the routing plan.

Figure 1 presents an illustrative network including 4 home delivery customers (1–4),
4 self-pickup customers (5–8), 4 flexible customers (9–12), 4 parcel lockers (P1–P4),
3 recharging stations (CS1–CS3), and depot 0. Regarding the self-pickup method, the sets
of possible connections for parcel lockers are C1 = {5, 8, 10}, C2 = {9, 11}, C3 = {6, 12},
and C4 = {7} (see hash lines in Figure 1). The figure depicts a routing plan for serving
all customers along with their corresponding delivery methods by using three EVs. All
home delivery customers have their parcels delivered to their homes, while self-pickup
customers receive their parcels at parcel lockers (see red hashed lines in Figure 1). Flexible
customers 9 and 11 are not assigned to the self-pickup method (see black hashed lines in
Figure 1), while customers 10 and 12 take their orders from the parcel lockers. In particular,
route 1 visits parcel locker P4 to drop off parcels for customer 7. Similarly, route 2 delivers
parcels from customers 6 and 12 to parcel locker P3. Finally, route 3 involves a visit to
parcel locker P1, where customers 5, 8, and 10 retrieve their parcels. Some CSs are also
visited by EVs to recharge their batteries.

Figure 1. An illustrative example of EVRPTW-PR-PL.

For seeking the routing plans on EVRPTW-PR-PL, the model uses the following
decision variables: binary variable xij is equal to 1 if arc (i, j) ∈ A is traversed and 0
otherwise. Let oi for all i ∈ CS ∪ CF be a binary variable equal to 1 if the self-pickup
method is chosen for customer i and 0 otherwise (indicating the home delivery method).
The non-negative variable wi for all i ∈ P then determines the total parcels delivered to
the parcel locker i. Regarding the battery level, non-negative variables yi and Yi present
the battery state when coming to and departing from vertex i ∈ N, respectively. Finally,
non-negative variables τi and ui track the service starting time and current load when the
EV arrives at vertex i ∈ N.

Objective function:
Minimize ∑

(i,j)∈A
cijxij (1)

The objective function (1) minimizes the total travel distance of the EVs.
Constraints:

∑
(i,j)∈A

xij = 1, ∀ i ∈ CH (2)

∑
(i,j)∈A

xij = 1− oi, ∀ i ∈ CS ∪ CF (3)

∑
(i,j)∈A

xij ≤ 1, ∀ i ∈ F
′

(4)
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Q ∑
(i,j)∈A

xij ≥ wi, ∀ i ∈ P (5)

∑
(j,i)∈A

xji − ∑
(i,j)∈A

xij = 0, ∀ i ∈ N
′

(6)

∑
(0,i)∈A

x0i ≤ |K| (7)

Constraints (2) and (3) enforce the associated delivery methods for all customers.
Constraint (4) addresses arc connectivity related to CSs. Constraint (5) ensures that the
parcel locker must be visited by vehicles if it keeps parcels for at least one customer.
Constraint (6) conserves EV’s flows at each node within routes. Constraint (7) limits the
number of used electric vehicles.

τi + (tij + si)xij − b0(1− xij) ≤ τj, ∀ i ∈ C ∪ P, (i, j) ∈ A (8)

τi + tijxij + g(Yi − yi)− b0(1− xij) ≤ τj, ∀ i ∈ F
′
, (i, j) ∈ A (9)

ei ≤ τi ≤ li, ∀ i ∈ N \ (CS ∪ CF) (10)

ei(1− oi) ≤ τi ≤ li(1− oi), ∀ i ∈ CS ∪ CF (11)

uj ≤ ui − dixij + Q(1− xij), ∀ (i, j) ∈ A (12)

uj ≤ ui − wixij + Q(1− xij), ∀ i ∈ P, (i, j) ∈ A (13)

ui ≤ Q, ∀ i ∈ N (14)

wi = ∑
j∈Ci

djoj, ∀ i ∈ P (15)

∑
j∈Ci

oj ≤ Q, ∀ i ∈ P (16)

oi = 1, ∀ i ∈ CS (17)

Constraints (8) and (9) track the starting time for serving at each node. Constraints (10)
and (11) impose that vehicles can only visit nodes within their predefined time windows. The
current loading of EVs at each node is recorded by constraints (12) and (13). Constraint (14)
guarantees that a vehicle’s total load does not exceed its capacity. Constraint (15) states that
the actual demand of each parcel locker equals the total demand from customers picking up
their parcels at that specific parcel locker. Constraint (16) limits that the number of customers
assigned to each parcel locker does not exceed the parcel locker’s capacity. Constraint (17)
imposes that each self-pickup customer must be assigned to the self-pickup method.

yj ≤ Yi − rcijxij + B(1− xij), i ∈ F+, ∀(i, j) ∈ A (18)

yj ≤ yi − rcijxij + B(1− xij), i ∈ C ∪ P, ∀(i, j) ∈ A (19)

yi ≤ Yi ≤ B, ∀i ∈ F+ (20)



Appl. Sci. 2023, 13, 9190 7 of 28

Constraints (18) and (19) track the remaining battery capacity when the EVs visit CSs
and the remaining nodes, respectively. Constraint (20) ensures that the battery state of
charge does not exceed its capacity at CSs.

4. Solution Method

To solve EVRPTW-PR-PL, we propose an ALNS algorithm that has successfully solved
a broad range of routing problems, such as pickup and delivery problems [48], the two-
echelon vehicle routing problem (2E-VRP) [49], VRP with handling uncertainty [50], EVRP
variants [7,51,52], and VRP with delivery options (VRPDO) [40]. Schiffer and Walther [52]
derive a set of functions to efficiently check the feasibility of EV routes in O(1) time
complexity. The efficient operators for handling delivery options described in one study [40]
are also utilized in our problem.

A solution of EVRPTW-PR-PL is represented by two arrays. Array 1 represents a set of
sequences that include served customers who may visit some CSs in order. Array 2 is associated
with array 1, which reports the delivery methods for customers. In particular, if a customer
within array 1 is assigned to the self-pickup method, then the designated parcel locker is placed
in the corresponding position of the customer in array 1; otherwise, the remaining positions
are copied from array 1. Based on this representation, the preferred delivery methods are
always ensured for all customers, and the total demand for parcel lockers is also guaranteed.
However, it is possible for infeasible solutions to arise that can violate time window, battery,
and load violations, resulting in penalties (see Section 1). We note that total cost and penalties
are determined based on the second array (see Section 4.4).

Figure 2 presents the solution of the illustrative example (as shown in Figure 1). With
array 1, white cells represent home delivery customers and CSs, while blue and red cells
represent self-pickup and flexible customers, respectively. Array 2 is then associated with
array 1, where all blue cells must be replaced by the designated parcel lockers of self-pickup
customers, and red cells can represent either the customers themselves or the designated
parcel lockers. For example, route 2 is represented as 0 → 11 → CS1 → P3 → 3 → 0,
where the flexible customer 11 is assigned to the home delivery method, while another
flexible customer 12 is assigned to the self-pickup method at parcel locker 3 (as indicated in
array 2). In addition, when two consecutive parcel lockers are the same on a route, we can
combine them when updating the routes.

Figure 2. Solution representation for the illustrative example (see Figure 1).

4.1. Construction Algorithm

Based on the structure of a solution representation, an initial solution for ALNS is
generated by using a modified nearest neighborhood algorithm that includes two stages.
In the first stage, we iteratively select the customer in the set of unassigned customers with
the lowest cost increment (i.e., ∆ fgen = f a f ter

gen − f be f ore
gen ) and then insert it into the solution.

The first stage terminates when all customers are served. In the second stage, an attempt is
then made to reduce the battery violation by implementing the station insertion operator
(see Section 4.4.3).

To find the best insertion, all customers are tested to be inserted into all positions in the
incomplete solution. The customer who results in the lowest cost increment is selected. It is
important to note that the three types of customers are considered in different ways: (1) For
home delivery customers: the customer locations are taken into account when evaluating
cost increments; (2) For self-pickup customers: the designated parcel lockers are considered
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when evaluating cost increments; and (3) For flexible customers: both the aforementioned
cases (i.e., home delivery and self-pickup) are considered when evaluating cost increments,
resulting in a lower cost increment.

4.2. Evaluation of Penalties

To extend the search space, we accept infeasible solutions in terms of time windows,
battery consumption, and vehicle loading, along with adding penalty costs [53]. Let
σ = {V1, . . . , Vn} denote a solution consisting of a set of n routes. The generalized cost
function of a solution σ is denoted by fgen(σ) as follows. Next, the total cost function (1) is
generalized by taking into account three penalty terms related to time windows, battery,
and vehicle load, as shown in the following expression.

fgen(σ) = ∑
V∈σ

fgen(V) = f (σ) + ∑
V∈σ

(ρtwλtw(V) + ρbaλba(V) + ρloλlo(V)) (21)

Here, f (σ) is equivalent to the total cost (1). Values λtw(V), λba(V), and λvl(V) denote
the time window, battery, and load penalties, respectively. These penalties are included
in the generalized total cost with associated weights ρtw, ρba, and ρlo, which are initialized
with ρ0

tw, ρ0
ba, and ρ0

lo. These weights are adjusted during the ALNS procedure with the
ranges [ρmin

tw , ρmax
tw ], [ρmin

ba , ρmax
ba ], and [ρmin

lo , ρmax
lo ]. Based on [53], lower bounds are set as 0.5,

and upper bounds are set as the objective value of the initial solution.
It is worth noting that dynamic penalty weights are used to reduce the occurrence of

infeasible solutions during the execution of our ALNS procedure. More specifically, the
penalty weights are increased to prevent infeasible solutions when the algorithm keeps
failing to explore feasible solutions. This concept has been successfully implemented to
solve EVRP variants such as [52–54].

Load penalty λlo is easily determined in O(1) time complexity [55]. Battery and
time window penalties are more challenging, but Schiffer and Walther [52] propose an
efficient approach by introducing a set of forward and backward variables. For the sake of
calculations, all variables mentioned in this section are used in the same unit as travel time.
We also introduce some supported parameters; i.e., hij = grdij denotes the recharge time
with enough energy to traverse an arc (i, j), and H = gB denotes the time for recharging a
full battery capacity. All variables are applied to concatenation operators for evaluating
these penalties in O(1) time complexity. In more detail, forward and backward functions
are explained as follows.

4.2.1. Forward Functions

We introduce a set of variables for propagating from node i to node j. In particular,
variable amin

j (resp. amax
j ) denotes the earliest allowed arrival time adding the minimum

required (resp. the maximum possible) charging time at previous CSs. Variables ãmin
j

and ãmax
j replace amin

j and amax
j , respectively, when penalties occur in order to avoid over-

penalization. In addition, slack time due to the waiting time before node j is served results
in the available time for charging, denoted by asl

ij . Variable art
j tracks the inverse residual

battery capacity at node j. Finally, variable aadd
ij determines the minimum charging time in

order to reach from node i to node j. Forward equations derived from [52] are shown as
follows. To shorten forward and backward functions, values tij also involve service time at
node i.

amin
j = max{ej, ãmin

i + tij}+ aadd
ij (22)

amax
j =

{
max{ej, ãmin

i + max{0, art
i − si}+ tij} if i ∈ F

max{ej, ãmax
i + tij} else

(23)
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ãmin
j = min{amin

j , amax
j , lj} (24)

ãmax
j = min{lj, ãmin

j + max{amax
j − amin

j , 0}} (25)

asl
ij = max{0, ej − ãmin

i − tij} (26)

art
j =

{
min{H, max{0, art

i − si − asl
j }+ hij} if i ∈ F

min{H, max{0, art
i −min{asl

j , ãmax
i − ãmin

i }}+ hij} else
(27)

aadd
ij =

{
max{0, max{0, art

i − si − asl
j }+ hij − H} if i ∈ F

max{0, max{0, art
i −min{asl

j , ãmax
i , ãmin

i }}+ hij − H} else
(28)

At the starting depot 0, all values (i.e., amin
0 , amax

0 , asl
0 , art

0 , and aadd
0 ) are initialized as

0. Based on the above-mentioned variables, forward battery
−→
λ B and time window

−→
λ T

penalties for each route r are computed as follows.

−→
λ B(V) = ∑

j∈r
max{amin

j − amax
j , 0} (29)

−→
λ T(V) = ∑

j∈r
max{min{amin

j , amax
j } − lj, 0} (30)

4.2.2. Backward Functions

The backward variables consisting of bx, x ∈ {min, max, sl, rt, add}, as well as b̃min

and b̃max are similarly used with the same terminology to update backward penalties. By
considering an arc (i, j), the backward variables are updated backwardly from node j to
node i as the following equations.

bmin
i = min{li, b̃min

j − tij}+ badd
ij (31)

bmax
i =

{
max{li, b̃min

j −max{0, brt
j − sj} − tij} if j ∈ F

max{li, b̃max
j − tij} else

(32)

b̃min
i = max{bmin

i , bmax
i , ei} (33)

b̃max
i = max{ei, b̃min

i −max{bmin
i − bmax

i , 0}} (34)

bsl
i = max{0, b̃min

j − tij − li} (35)

brt
i =

{
min{H, max{0, brt

j − sj − bsl
i }+ hij} if j ∈ F

min{H, max{0, brt
j −min{bsl

i , b̃min
j − b̃max

j }}+ hij} else
(36)

badd
j =

{
max{0, max{0, brt

j − sj − bsl
i }+ hij − H} if j ∈ F

max{0, max{0, brt
j −min{bsl

i , b̃min
j , b̃max

j }}+ hij − H} else
(37)

←−
λ B(V) = ∑

j∈V
max{bmax

j − bmin
j , 0} (38)
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←−
λ T(V) = ∑

j∈V
max{ej −max{bmin

j , bmax
j }, 0} (39)

4.2.3. Concatenation Operators

By utilizing forward and backward variables, concatenation operators allow us to
obtain the penalties in O(1) time complexity for two cases: (1) when inserting a node into
a route, and (2) when removing a node from a route. However, when route segments
(i.e., at least two vertices) are inserted, either forward or backward penalties have to
be updated for the route segment first before implementing the two above-mentioned
cases. (1) Insert a node v into a route V, expressed as V = {0, . . ., x, v, y, . . ., 0}. There
are two partial routes partitioned by node v; i.e., V1 = {0, . . . , x} and V2 = {y, . . . , 0}.
Forward and backward variables at node v are calculated by Equations (22)–(28) and
Equations (31)–(37), respectively. Time window violation (λT(V)) and battery violation
(λB(V)) are then obtained as follows.

λT(V) =
−→
λ T(V1) +

←−
λ T(V2) + max{0, amin

v − lv −max{0, amin
v − amax

v }}+
max{0, min{lv, max{ev, amin

v }} − bmin
v −max{0, bmax

v − bmin
v }}

(40)

λB(V) =
−→
λ B(V1) +

←−
λ B(V2) + max{0, amin

v − amax
v }+ max{0, bmax

v − bmin
v }+ ∆(i) (41)

where ∆(i) =


max{0, art

v + brt
v − H −min{art

v , max{0, max{bmax
v , bmin

v } −min{amin
v , amax

v }}}} if v ∈ F
max{0, art

v + brt
v − H −min{H, max{0, bmin

v − bmax
v }+ max{0, amax

v − amin
v },

max{0, min{lv, max{bmin
v , bmax

v }} −min{amin
v , amax

v }}}} else.

(2) Removing a node v from a route V, we obtain two partial routes V1 = {0, . . . , x}
and V2 = {y, . . . , 0}. First, forward variables at node y are extended by Equations (22)–(28).
Second, Equations (42) and (43) are derived to calculate the time windows and battery
violations, respectively.

λT(V) =
−→
λ T(V1) +

←−
λ T(V2) + max{0, amin

y − ly −max{0, amin
y − amax

y }}

+max{0, max{ey, min{amin
y , amax

y , ly}} − b̃min
y }

(42)

λB(V) =
−→
λ B(V1) +

←−
λ B(V2) + max{0, amin

y − amax
y }+ ∆(r) (43)

where ∆(r) =


max{0, art

y + brt
y − H −min{art

y , max{0, bmin
y −min{amin

y , amax
y }}}} if y ∈ F

max{0, art
y + brt

y − H −min{H, max{0, bmin
y − bmax

y }+ max{0, amax
y − amin

y },
max{0, min{ly, max{bmin

y , bmax
y }} −min{amin

y , amax
y }}}} else.

These operators never underestimate the total time window and battery violations,
although the equations do not provide exact penalty values for each component.

4.3. Adaptive Large Neighborhood Search

Algorithm 1 presents our proposed ALNS, adopted by ref. [52]. ALNS is an individual-
based algorithm, which works on a current solution σ initialized by the construction
algorithm (see Section 4.1). We set the current best solution σ∗ as σ. While σ∗ accepts
an infeasible solution, σ∗f records the current best feasible solutions. During the ALNS

procedure, we utilize a temporary solution σ
′

to execute removal and insertion operators.
The algorithm terminates when either of the two following conditions is met: (1) the
algorithm reaches ηmax iterations or (2) no improved solution is found after ηnoimp iterations.
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Algorithm 1 ALNS pseudocode
1: σ← initializeSol()
2: σ

′
, σ∗ ← σ, σ∗f ← ∅, ι← 0, ιnoi ← 0, T ← T0

3: if isFeasible(σ) then
4: σ∗f ← σ

5: while (ι < ηmax) and (ι− ιnoi < ηnoimp) do
6: σ

′ ← customerRemovalInsertion() . mentioned in Section 4.4.1
7: if random(0,1) < δL then
8: σ

′ ← lockerRemovalInsertion() . mentioned in Section 4.4.2
9: σ

′ ← stationremovalinsertion() . mentioned in Section 4.4.3
10: if fgen(σ

′
) < fgen(σ) then

11: σ← σ
′

12: if fgen(σ
′
) < fgen(σ∗) then

13: σ∗ ← σ
′

14: if isFeasible(σ
′
) and fgen(σ

′
) < fgen(σ∗f ) then

15: σ∗f ← σ
′

16: ιnoi ← ι
17: else
18: ιnoi ← ιnoi + 1
19: acceptanceWorse(σ, σ

′
, T) . mentioned in Section 4.5

20: if modulo(ι, ηpenalty) = 0 then
21: updatePenaltyWeights()
22: if modulo(ι, ηproba) = 0 then
23: updateSelectionProb()
24: ι← ι + 1, T ← αT
25: return σ∗f

Each iteration starts by implementing customerRemovalInsertion() into the temporary
solution and then applying lockerRemovalInsertion() with a probability of δL. After that,
stationremovalinsertion() is executed to complete the removal and insertion phases. The
obtained temporary solution σ

′
is then compared with the updated solutions in ALNS:

(1) σ
′

replaces σ if σ
′

is better than σ, (2) σ
′

also replaces σ∗ if σ is better than σ∗, and (3) if
a better feasible solution is obtained, then σ∗f is updated with σ. These conditions govern

the updating process at each iteration. However, we still accept a worse solution σ
′

to be σ

with a probability based on the temperature T, denoted by acceptanceWorse(σ, σ
′
, T) (see

Section 4.5).
Dynamic parameters are then updated based on the performance of operators. The

penalty weights are updated (updatePenaltyWeights()) based on the following. If no violation
occurs within ηpenalty iterations, then the associated penalty weight is divided by a constant
ωpenalty; otherwise, the penalty weight is multiplied by ωpenalty. Similarly, the probability of
removal and insertion operators is updated (updateSelectionProb()) after ηproba consecutive
iterations (see Section 4.4). Before proceeding to the next iteration, the temperature of the
acceptance criteria is updated with a cooling rate of α. We note that the cooling rate α and
the initial SA temperature T0 are from [53].

4.4. Removal and Insertion Algorithms

This section introduces three classes of removal and insertion algorithms to address
the features of our problem, i.e., the solution representation takes into account not only
customer nodes, but also parcel lockers and recharging stations (CSs). Removal and inser-
tion algorithms associated with customers are first presented in Section 4.4.1. Section 4.4.2
then introduces removal and insertion mechanisms designed for parcel lockers. Finally,
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Section 4.4.3 proposes station removal and insertion algorithms, which exclusively consider
recharging stations.

4.4.1. Customer Removal and Insertion

Customers are removed from the solution by three removal operators, while they are
re-inserted into the solution by three insertion operators based on array 1 of the solution
representation (denoted by customerRemovalInsertion()). The customer removal and insertion
algorithms are selected in an adaptive manner [53]. The probabilities of selections are re-
computed by a smoothing rate ωprob after a learning period (i.e., ηproba iterations). During
a learning period, when a new solution is generated, the associated removal and insertion
algorithms are rewarded based on their performance. The rewards, denoted as ε f , εb, εi,
and εw, correspond to different scenarios, which are gained when a new best feasible
solution, a new best solution (which may be infeasible), a solution improving the current
solution, and a worse solution, respectively, are found.

For each customer removal operator, ηrem customers are removed. The number of
removed customers ηrem is randomly selected within a range ηrem ∈ [1, |C|]. The following
removal operators are implemented in our ALNS:

• Random removal randomly removes ηrem customers from a given solution.
• Worst removal is adopted by ref. [53], which iteratively removes the customer that

increases the generalized total cost the most, defined by ∆ fgen = f a
gen − f b

gen, where
f b
gen and f a

gen represent the generalized costs before and after removing the customer,
respectively. Moreover, to avoid being trapped at local optimum points, we con-
sider randomness by controlling a randomness level δnoise. Instead of choosing the
highest cost reduction, the brδnoise |Lworst|c-th highest cost reduction is then selected
for removal from the solution, where r is a random variable drawn from a uniform
distribution U[0, 1], and Lworst is a list of customers sorted in descending order by the
cost reduction.

• Shaw removal was first introduced in [56] and aims to remove customers that are
similar to each other with respect to four criteria (i.e., travel distance, time window,
demand, and delivery method). The procedure begins by randomly removing a
customer and storing it in a list (denoted by Lshaw). The removal process is then
repeated until ηrem customers are removed. At every iteration, a customer j in the
route is selected for removal based on its relatedness to a randomly chosen customer i
from the list Lshaw. The relatedness between customers i and j is evaluated using the
following equation:

R(i, j) = φ1dij + φ2|qi − qj|+ φ3|ei − ej|+P(i, j)

Here, the four terms correspond to the relatedness of travel distance, the earliest time,
demand, and delivery method, respectively. For the first three terms, each criterion is
weighted by φ1, φ2, and φ3, respectively. In addition, P(i, j) equals 0 if both customers
are assigned the same delivery method (either home delivery or self-pickup method)
and 1 otherwise. We note that a lower R(i, j) represents more relatedness between
customers i and j.

For each insertion operator, the set of absent customers due to the removals is re-
inserted into the solution. Infeasible solutions in terms of time windows, load, and battery
are taken into account by the generalized objective function (see Section 4.2). The insertion
operators are briefly described as follows.

• Greedy insertion is adopted by ref. [48] and iteratively selects a customer from the
list of absent customers with the best insertion for inserting into the solution until all
customers are re-inserted. In each iteration, the customer with the best insertion is
determined based on the increase in the generalized objective value. Note that for the
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home delivery method, customer locations are considered for insertion, while for the
self-pickup method, parcel locker locations are taken into account.

• k-regret insertion was first described by ref. [48] and aims to anticipate the future
impact of insertion operations. The process involves iteratively inserting the set of
absent customers based on their regret-k cost value. The regret-k value of a customer
is determined by calculating the difference between the sum of costs for inserting the
customer in the n-th lowest-cost position (denoted by cr

i,n, given n = 2 . . . k) and the
cost of inserting the customer in the lowest-cost position (denoted by cr

i,1). Our paper
implements this operator with k = 2 and k = 3.

4.4.2. Locker Removal and Insertion

We adopt a procedure developed in the literature [40] for handling the self-pickup
method. This procedure involves locker removal and re-insertion into the solution based
on array 2 of the solution representation, denoted by lockerRemovalInsertion(). Note that the
locker removal and insertion heuristics must be implemented together to effectively handle
the self-pickup method. In particular, a parcel locker is first removed from the solution,
which consists of one or more associated customers. We then obtain a list of removed
customers. Subsequently, all customers with the designated parcel locker are re-inserted
by using a locker insertion procedure. Locker removal and insertion mechanisms are
presented as follows:

• Locker removal as adopted by ref. [40] is employed to prevent unnecessary repetition
of customer removal and insertion operators without yielding any improvement. The
procedure begins by recording all utilized parcel lockers in the considered solution
that can potentially be removed. Next, a parcel locker is selected based on the highest
reduction in distance cost when it is removed from the solution. Note that the parcel
locker is removed, resulting in the removal of one or more associated customers.
Figure 3 provides an example illustrating the implementation of locker removal, as
described in Figure 2. In particular, there are three parcel locker positions (i.e., P4 in
route 1, P3 in route 2, and P1 in route 3), as indicated by the red boxes in Figure 3a.
Figure 3b shows the incomplete solution after removing parcel locker 3 in route 2.

• Locker insertion is similar to customer greedy insertion, but with the key distinction
that it exclusively considers the self-pickup method for inserting customers into the
solution. Notably, the set of absent customers is designated to a single parcel locker.

Figure 3. An example of implementing the locker removal heuristic.

4.4.3. Station Removal and Insertion

The recharging stations (CSs) are an important component of the problem. Thus,
station removal and insertion heuristics are proposed to improve the solution in terms of
battery violations, which are discussed as follows.

• Station removal is similar to the worst customer removal. In this case, CSs are targeted
for removal instead of customer nodes. This heuristic removes a specified number
of stations, denoted as ηrem, which is determined by ηrem = [1, |CS|], where |CS|
represents the total number of CSs existing in the solution.

• Station insertion is similar to the greedy customer insertion for inserting CSs into the
solution until no further improvement is found.



Appl. Sci. 2023, 13, 9190 14 of 28

4.5. Acceptance Criteria

In our ALNS, we employ the simulated annealing (SA) acceptance criteria to escape
local optima [53]. In particular, not only are improved solutions accepted, but worse
solutions are also accepted with a probability depending on the relative difference between
fgen(σ), and fgen(σ

′
), as well as the SA temperature.

Since infeasible solutions are allowed with dynamic penalty weights ρtw, ρba, ρlo, the
generalized cost strongly depends on the values of penalty weights. Let (ρσ

tw, ρσ
ba, ρσ

lo)

represent the penalty weights used for evaluating fgen(σ) and (ρσ
′

tw, ρσ
′

ba, ρσ
′

lo ) represent the
penalty weights used for evaluating fgen(σ

′
). To compare the generalized cost between σ

and σ
′
, we normalize the penalty weights as follows.

(ρnorm
tw , ρnorm

ba , ρnorm
lo ) =

(
1
2

(
ρσ

tw + ρσ
′

tw

)
,

1
2

(
ρσ

ba + ρσ
′

ba

)
,

1
2

(
ρσ

lo + ρσ
′

lo

))
The probability of accepting a worse solution σ

′
is finally determined as follows.

p(σ, σ
′
, T) = e

−∆ frel (σ
′
,σ)

T where ∆ frel(σ
′
, σ) =

f norm
gen (σ

′
)− f norm

gen (σ)

f norm
gen (σ)

Here, ∆ f (σ
′
, σ) denotes the relative difference between the cost values of σ and σ

′
.

The initial SA temperature and cooling rate are determined by following [53]. Specif-
ically, the initial SA temperature is configured so that a solution worse than the initial
solution by 30% is accepted with a probability of 50%. In addition, the cooling rate is de-
fined to limit the decrease in the temperature to below 0.0001 in the final 20% of iterations.

5. Experimental Results

This section presents the results of numerical experiments to highlight our contribu-
tions. Section 5.1 explains the generation of the EVRPTW-PR-PL instances used in our
experiments. Section 5.2 discusses the calibration of parameters related to ALNS to improve
the solution quality. Section 5.3 discusses the performance of the proposed ALNS versus the
state-of-the-art algorithms. Section 5.4 then describes the implementation of the proposed
ALNS to solve EVRPTW-PR-PL instances. All experiments are conducted on a computer
with an Intel® Core™ i7-9700 CPU at 3.0 GHz. While the GUROBI solver is used to solve
the MILP model, the proposed ALNS algorithm is coded in C++ using Microsoft Visual
Studio 2022, Version 17.2.3.

5.1. Test Instances

This section generates EVRPTW-PR-PL instances based on EVRPTW instances pro-
posed by ref. [11]. There are 36 small-size instances (i.e., 12 instances with 5, 10, and
15 customers) and 56 large-size instances with 100 customers. These instances are modified
to address three types of customers and parcel locker facilities in our problem. The instances
are categorized into three classes based on the distribution of customer locations, i.e., clus-
tered (C), randomly distributed (R), and combined clustered and randomly distributed
(RC). Furthermore, instances in each class can be divided into two subsets with different
widths of time windows, resulting in six subsets, namely C-1, C-2, R-1, R-2, RC-1, and RC-2.
The subsets R-1, C-1, and RC-1 have shorter time windows compared with subsets R-2,
C-2, and RC-2. In particular, based on [45], we randomly assign each customer to be one of
three types of customers (i.e., home delivery, self-pickup, and flexible customers) with an
equal probability. There are

⌈
|C|
20

⌉
parcel locker locations generated for each instance. Each

parcel locker is randomly located within the range between the smallest and largest values
of the x- and y-coordinates of customers. Parcel locker’s service time is set to half of the
customer’s service time, and their time window is set the same as the depot. Regarding the
self-up method, for self-pickup and flexible customers, the parcel lockers nearest them are
assigned to be the designated parcel lockers.
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5.2. Parameter Tuning

To tune the parameters of our proposed ALNS, we utilize the one factor at a time
(OFAT) approach, successfully employed in tuning parameters for solving VRP
variants [50,52]. For this experiment, we randomly selected six large EVRPTW-PR-PL
instances (i.e., c103, c202, r110, r205, rc106, and rc207) to evaluate parameter settings.

Table 1 summarizes all the parameters used in the proposed ALNS. In this experiment,
eight parameters (i.e., ωpenalty, ωproba, ηnoimp, ηproba, ηpenalty, εb, ε f , εi, εw, and δL) are
selected for tuning, while the remaining parameters are referenced from previous works. In
particular, parameters related to removal and insertion operators (i.e., φ1, φ2, φ3, and δnoise)
are set based on [53]. Parameters associated with the SA acceptance criteria (i.e., T0 and
α) are discussed in Section 4.5. The initial weight penalties and their ranges are adopted
from [53] (see Section 4.2). To ensure a good trade-off between computational time and
solution quality, the ALNS algorithm is terminated after reaching ηmax = 30, 000 iterations.

Table 1. ALNS parameters and their domains.

Parameter Description Value

ηmax The maximum number of iterations implemented in ALNS 30,000 ∗

ηnoimp The maximum number of consecutive iterations without improvement [1500, 3000, 4500, 6000]
ηproba The number of iterations of a learning period in updateSelectionProb() [50, 75, 100, 125]
ηpenalty The number of iterations for updatePenaltyWeights() [5, 10, 15, 20]
ωproba Smoothing factor in updateSelectionProb() [0.7, 0.75, 0.8, 0.85]
ωpenalty Reaction factor updatePenaltyWeights() [1.1, 1.3, 1.5, 1.7]
ε f A reward when obtaining a new best feasible solution [11, 13, 15, 17]
εb A reward when obtaining a new best (infeasible) solution [5, 7, 9, 11]
εi A reward when obtaining a better current solution [2, 4, 6, 8]
εw A reward when obtaining a worse solution [1, 3, 5, 7]
δL The probability for applying lockerRemovalInsertion() [0.1, 0.3, 0.5, 0.7]
φ1 The weight of travel distance criteria in Shaw removal 6 ∗∗

φ2 The weight of earliest time criteria in Shaw removal 4 ∗∗

φ3 The weight of demand criteria in Shaw removal 5 ∗∗

δnoise The randomness level used for removal operators 6 ∗∗

ρmin
tw , ρmax

tw , ρ0
tw The weights associated with the time window penalty see Section 4.2

ρmin
ba , ρmax

ba , ρ0
ba The weights associated with the battery penalty see Section 4.2

ρmin
lo , ρmax

lo , ρ0
lo The weights associated with the load penalty see Section 4.2

T0 The initial SA temperature of the acceptance criteria see Section 4.5
α The cooling rate of SA temperature over the iteration see Section 4.5

Notes: ∗ The maximum number of iterations is fixed at 30,000 to ensure reasonable computation time for
comparison with the state-of-the-art algorithms. ∗∗ These values are taken from [53].

We next vary the values of the eight selected parameters, which are produced by an
ad hoc trial-and-error procedure [48] (see Column “Value” of Table 1), and their initial
values are randomly selected (see Table 2). All parameters are tuned sequentially, with each
parameter being tuned in turn. The tuning order of parameters follows the order reported
in Table 2.

For each tuned parameter, we consider a set of four candidate values to test each of
them, while the remaining parameters are fixed to their initial values unless their final
values have been found. This therefore provides four different parameter settings for the
ALNS algorithm. The final value of the tuned parameter is selected based on the best
performance observed among the four parameter settings. For each parameter setting, the
performance of the ALNS algorithm is determined based on the average gap of average
solution values after 5 runs, denoted by ∆ f̄avg[%] (see Table 2). This process is repeated until
all parameters are tuned. Table 2 summarizes the detailed results of the tuning procedure.
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Table 2. Parameter setting for the proposed ALNS.

Parameter Value 1 Value 2 Value 3 Value 4 Parameter Value 1 Value 2 Value 3 Value 4

ωpenalty 1.10 1.30 (i) 1.50 1.70 ε f 11 13 15 (i) 17
∆ f̄avg[%] 1.39 0.02 0.00 1.35 ∆ f̄avg[%] 2.27 1.29 0.00 1.64

ωproba 0.70 0.75 0.80 0.85 (i) εb 5 7 9 (i) 11
∆ f̄avg[%] 0.00 0.55 1.13 0.35 ∆ f̄avg[%] 0.28 0.72 0.00 2.69

ηnoimp 1500 3000 4500 6000 (i) εi 2 4 (i) 6 8
∆ f̄avg[%] 2.72 0.51 0.00 0.09 ∆ f̄avg[%] 3.05 0.00 2.52 0.64

ηproba 50 75 (i) 100 125 εw 1 (i) 3 5 7
∆ f̄avg[%] 0.21 1.54 0.00 0.15 ∆ f̄avg[%] 0.00 1.24 0.29 3.27
ηpenalty 5 10 (i) 15 20 δL 0.1 0.3 (i) 0.5 0.7

∆ f̄avg[%] 1.63 0.00 4.61 2.77 ∆ f̄avg[%] 1.83 0.00 0.40 1.42

Notes: The best values are in bold. Superscipt (i) denotes the initial values.

5.3. Results on EVRPTW-PR

This section reports the results obtained by our proposed algorithm (ALNS) on both
EVRPTW-PR small and large instances. These results are then compared with the results
achieved by the state-of-the-art algorithms, including those from Keskin and Çatay [7]
(KÇ), Schiffer and Walther [52] (SW), and Hiermann et al. [13] (HGA). Note that optimal
solutions for EVRPTW-PR small instances are provided by ref. [7].

For the algorithm’s performance analysis, several terms are used: (1) fb represents the
best objective value over 10 replications obtained by each algorithm; (2) ∆ f [%] denotes the
gap measured by the results of our ALNS against those of the state-of-the-art algorithms;
and (3) t̄ denotes the average computational time spent by our ALNS. The details appear in
Tables A1–A7.

Regarding the small-sized instances, we compare the results obtained by our ALNS
algorithm with the optimal solutions provided in [7]. The details are presented in Table A1.
Our ALNS not only achieves optimal solutions for all instances but also operates faster
than the GUROBI solver.

Regarding the large-sized instances, the detailed results of subsets C-1, C-2, R-1, R-2,
RC-1, and RC-2 are provided in Tables A2–A7, respectively. The tables list the best solution
values after 10 runs from all algorithms (i.e., KÇ, SW, HGA, and our ALNS after) as well as the
best-known solutions. Based on these tables, we compare the results of our algorithm against
those of the state-of-the-art algorithms by providing the overall average objective value ( f̄b)
and the overall average gap (∆ f̄ [%]) for each subset, presented in Table 3 and Figure 4.

Based on Table 3 and Figure 4, our ALNS outperforms the HGA algorithm by improv-
ing the solutions by 0.33% on average. It is worth noting that two new best-known solutions
(for c107 and r109 instances) are offered. Our ALNS yields solutions that are worse than
those achieved by KÇ, SW, and the BKSs, but the gaps are not significant (ranging from
0.22% to 1.28%). Moreover, our algorithm gives all the best-known solutions for subset C-2,
and its solutions for subsets C-1, C-2, and R-1 are better than those obtained by the HGA
algorithm by 0.35%, 0.77%, and 1.14%, respectively, on average.

In conclusion, our ALNS algorithm demonstrates effective performance in solving
EVRPTW-PR instances within a reasonable computational time. These results highlight its
potential applicability in addressing the EVRPTW-PR-PL problem, as implemented in the
subsequent section.
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Table 3. Comparison of the results of the large-sized EVRPTW-PR instances among algorithms.

Subset
Average of the Best Solution of 10 Runs ( f̄b) Average Gap (∆ f̄ [%])

t̄(min)
BKS KÇ SW HGA ALNS BKS KÇ SW HGA ALNS

C-1 994.57 1004.04 994.99 1002.25 1005.62 1.13 0.20 0.73 −0.34 0.00 12.64
C-2 629.82 629.95 629.82 640.99 629.82 0.00 −0.02 0.00 −1.77 0.00 5.78
R-1 1199.67 1221.70 1213.96 1239.72 1222.96 1.88 0.09 1.57 −1.41 0.00 15.17
R-2 909.69 927.76 923.09 914.76 918.90 0.98 0.32 0.86 0.40 0.00 11.06

RC-1 1365.25 1403.33 1321.07 1389.71 1404.22 2.70 0.52 2.66 1.05 0.00 15.73
RC-2 1130.90 1140.07 1134.66 1142.61 1142.23 0.98 0.19 0.66 0.06 0.00 10.74

Average 1038.32 1054.48 1036.27 1055.01 1053.96 1.28 0.22 1.08 −0.33 0.00 11.86

Figure 4. Comparison results on EVRPTW-PR instances among algorithms.

5.4. Results on EVRPTW-PR-PL

This section presents an analysis of the effectiveness of our proposed ALNS for solving
EVRPTW-PR-PL instances. We first find solutions to the EVRPTW-PR-PL instances by
solving the model presented in Section 3 using a commercial solver (i.e., GUROBI). While
optimal solutions are found for small-sized instances, no feasible solution is obtained after
2 h for large-sized instances. Our ALNS is then implemented to solve these instances,
especially large ones.

Tables A8–A10 present the results obtained by both GUROBI and ALNS for small-sized
instances with 5, 10, and 15 customers, respectively. Here, optimal solutions are provided
by GUROBI. Our ALNS algorithm also provides optimal solutions for all instances within
an average computational time of 0.51 seconds.

For large-sized instances, the detailed results of subsets C-1, C-2, R-1, R-2, RC-1, and
RC-2 are in Tables A11–A16, respectively. Each table presents the best solutions fb and the
average solutions fa after 10 runs. To assess the algorithm’s performance, we calculate the
gap between the average cost value ( fa) and the best cost value ( fb), denoted by ∆ f(a−b).
This gap indicates the algorithm’s stability in finding solutions. Our ALNS performs
stability and efficiency analyses when solving large EVRPTW-PR-PL instances with an
average gap ∆ f(a−b) of 3.33%.
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We also evaluate the impacts of lockerRemovalInsertion() operators by varying the value
of δL within a range of {0.1, 0.2, . . . , 1.0} for solving large-sized instances. Table 4 presents
the results from ALNS with different δL values. The table includes the overall best objective
values obtained for all instances after 10 runs ( f̄b) and the average computational time (t̄).
For each value of δL, the gap between f̄b and the minimum of all f̄b values is calculated by

∆ f̄b = f̄b−min( f̄b)
min( f̄b)

. Based on these results, Figure 5 shows that the lockerRemovalInsertion()
operators significantly improve the performance of our ALNS in solving EVRPTW-PR-
PL. In particular, ALNS without using the lockerRemovalInsertion() (i.e., δL = 0) provides
the worst results among all cases, with a gap of 1.02%. It is worth noting that the best
performance of ALNS is achieved at δL = 0.3.

Table 4. Results of EVRPTW-PR-PL obtained from our ALNS algorithm with different values of δL.

δL 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f̄b 723.31 721.27 720.07 715.98 718.06 718.58 716.85 718.13 719.28 722.99 722.32
∆ f̄b[%] 1.02 0.74 0.57 0.00 0.29 0.36 0.12 0.30 0.46 0.98 0.89

t̄(s) 45.13 43.43 43.56 49.98 44.28 44.20 43.93 56.60 58.64 56.04 56.58

Note: min( f̄b) = 715.98.

Figure 5. Impact of locker removal and insertion heuristics on the performance of ALNS.

The search process of our ALNS is also analyzed by observing an example of solving
instance c101, as shown in Figure 6. The blue line represents the values of the best solution fb
over 30,000 iterations, while the red line shows a linear increase in computational time over
iterations. It can be seen that the ALNS algorithm rapidly improves the solution quality at
the beginning of the search and achieves convergence after approximately 10,000 iterations.
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Figure 6. Search process of the proposed ALNS for solving instance c101.

6. Discussion

We further conduct an evaluation to compare the results obtained from EVRPTW-PR
and EVRPTW-PR-PL (with δL = 0.3) in terms of the cost ratio “CR” and the difference in the
number of used vehicles ∆|K|. The cost ratio “CR” is computed as the ratio between the best
cost value fb of EVRPTW-PR and the best cost value fb of EVRPTW-PR-PL. The difference
in used vehicles ∆|K| is calculated as the number of used vehicles |K| in EVRPTW-PR
minus the number of used vehicles |K| in EVRPTW-PR-PL. Therefore, in Tables A8–A16,
we recall the results of EVRPTW-PR instances in Section 5.3 and report terms "CR" and
∆|K| in the right-most columns.

A summary of the results of the average cost ratio “CR” and the average difference in
the number of used vehicles for each subset is provided in Table 5. For the results from the
large-sized instances, the patterns of “CR” and ∆|K| are illustrated in Figure 7 by sorting the
subsets in ascending order of “CR” values. The figure helps highlight some features, as follows.

Table 5. Comparison of the results of EVRPTW-PR and EVRPTW-PR-PL instances.

Size Subset
EVRPTW-PR-PL EVRPTW-PR

CR ∆|K|
|K| f̄b |K| f̄b

Small-sized
5C 1.42 106.80 1.42 188.90 2.10 0.00

10C 2.08 156.10 2.08 301.49 2.17 0.00
15C 2.67 191.27 2.67 357.80 2.11 0.00

Large-sized

C-1 11.00 945.82 10.56 1005.62 1.08 −0.44
C-2 4.00 526.97 4.00 629.82 1.20 0.00
R-1 10.42 741.90 12.67 1222.96 1.66 2.25
R-2 3.27 492.36 2.64 918.90 1.87 −0.64

RC-1 12.38 1030.82 12.75 1404.22 1.38 0.38
RC-2 4.00 600.15 3.13 1142.23 1.89 −0.88

Average 5.69 532.47 5.77 796.88 1.72 0.07
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Figure 7. The effects of parcel lockers on the routing plans.

• The implementation of parcel lockers in delivery networks significantly reduces travel
costs for routing plans; i.e., the overall cost ratio is 1.72. Figure 8 provides routing plans
obtained from instance c101 for EVRPTW-PR and EVRPTW-PR-PL, which illustrates
the differences between the two routing plans.

• Considering customer locations, subsets with randomly distributed locations (i.e.,
subsets (R) and (RC)) show higher “CR” values. For example, the “CR” value for subset
C-1 is only 1.08, while those for subsets R-1 and RC-1 are 1.38 and 1.66, respectively.
This implies that utilizing parcel lockers becomes more effective when the locations
are randomly scattered.

• Considering time windows, subsets with wider customer time windows (i.e., C-1, R-1,
and RC-1 subsets) provide higher “CR” values than those with stricter time windows
(i.e., C-2, R-2, and RC-2 subsets). This means that instances with wider customer time
windows have more potential to find cost-effective solutions when implementing
parcel lockers.

• Values of ∆|K| are not significant for all subsets; i.e., 0.07 vehicles on average. However,
for subset R-1, the number of used vehicles is significantly reduced by 2.25 vehicles.
This occurs when the customer locations are randomly distributed and the time
windows are wider.

The insights noted above can be valuable in reality for delivery companies when
making decisions regarding the deployment of parcel lockers in their last-mile delivery
networks, aiming to leverage the cost-saving benefits. Specifically, companies can prioritize
implementing parcel lockers in areas that reflect customer location patterns of “R” and
“RC” subsets, as doing so provides great potential for cutting travel costs.
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Figure 8. Routing plans of (a) EVRPTW-PR and (b) EVRPTW-PR-PL for instance c101.

7. Conclusions

This paper addresses an extension of EVRPTW-PR by adding the self-pickup method
for serving customers. As a result, there are three types of customers considered: (1) home
delivery customers, (2) self-pickup customers, and (3) flexible customers. We formulate a
mixed-integer programming (MIP) model and develop an ALNS algorithm adopted by
ref. [52] for efficiently solving both EVRPTW-PR and EVRPTW-PR-PL instances. Numerical
experiments are conducted to test the performance of our proposed ALNS.

To provide comprehensive managerial insights regarding the implementation of parcel
lockers in delivery networks, we have conducted sensitivity analyses based on the results
obtained from EVRPTW-PR and EVRPTW-PR-PL. From our observations, the utilization of
parcel lockers can lead to additional cost reductions in serving customers. The extent of
cost reduction is influenced by various factors, such as the time windows and locations
of customers in each instance. Furthermore, in subset R-1, where customer locations are
randomly distributed and wider time windows are provided, we observe a decrease in the
number of used vehicles for routing plans.

The generality of our algorithm could help tackle other similar problems. For instance,
customers’ compensation schemes can be investigated by modifying the objective function,
which would support policymakers to incentivize customers and enhance delivery network
sustainability. Moreover, the cost of allocating parcel locker facilities can be included in the
objective function. This provides a more comprehensive model that would help delivery
companies make decisions for designing last-mile delivery networks with the use of parcel
lockers. However, our research still has some limitations: (1) the scope of the study is
limited to analyzing benchmark instances, and no real-world instances have been studied;
and (2) the evaluation of the algorithm’s performance is challenging due to a lack of results
from the existing algorithms or benchmarks for EVRPTW-PR-PL instances.

Some potential future research directions are as follows. First, alternative delivery
locations and customers’ compensation schemes can be investigated to address a more com-
prehensive delivery network. More specifically, we could add additional costs (i.e., fixed
costs for lockers and compensation costs) to the objective function to align with practical
businesses. This model would help policymakers decide compensation strategies for more
efficient routing plans and enhance customer satisfaction. Second, in realistic scenarios, the
impacts of uncertain factors (e.g., travel time and charging/discharging consumption rates)
are also worth studying to capture hidden costs within overall delivery costs. This also
poses an interesting challenge through the implementation of stochastic programming or
robust optimization. Finally, the applicability of our proposed problem can be enhanced by
addressing practical delivery networks and offering more managerial insights.
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Appendix A. Detailed Results

Table A1. Detailed results on EVRPTW-PR small-size instances.

Instance
KÇ (Optimal) ALNS

∆ f [%] Instance
KÇ (Optimal) ALNS

∆ f [%]
f t̄ (s) fb t̄(s) f t̄(s) fb t̄(s)

C101-5 257.75 0.31 257.75 0.13 0.00 R201-10 241.52 11.4 241.52 0.48 0.00
C103-5 175.37 2.73 175.37 0.27 0.00 R203-10 218.21 1.62 218.21 0.60 0.00
C206-5 242.56 5.38 242.56 0.17 0.00 RC102-10 423.51 3.07 423.51 0.29 0.00
C208-5 158.48 1.37 158.48 0.17 0.00 RC108-10 345.93 2.9 345.93 0.59 0.00
R104-5 136.69 0.47 136.69 0.06 0.00 RC201-10 412.86 ∗ - 412.86 0.48 0.00
R105-5 156.08 3.39 156.08 0.05 0.00 RC205-10 325.98 3.26 325.98 0.62 0.00
R202-5 128.78 0.95 128.78 0.09 0.00 C103-15 348.46 1008 348.46 0.66 0.00
R203-5 179.06 1.12 179.06 0.06 0.00 C106-15 275.13 0.47 275.13 0.82 0.00

RC105-5 233.77 3.06 233.77 1.75 0.00 C202-15 383.62 24.07 383.62 0.65 0.00
RC108-5 253.93 3.76 253.93 0.14 0.00 C208-15 300.55 0.92 300.55 0.70 0.00
RC204-5 176.39 2.17 176.39 0.17 0.00 R102-15 412.78 ∗ - 412.78 0.75 0.00
RC208-5 167.98 1.05 167.98 0.14 0.00 R105-15 336.15 1.39 336.15 0.65 0.00
C101-10 388.25 50.26 388.25 0.39 0.00 R202-15 358 462.89 358.00 0.59 0.00
C104-10 273.93 5.15 273.93 0.57 0.00 R209-15 313.24 610.64 313.24 0.47 0.00
C202-10 304.06 7.52 304.06 0.51 0.00 RC103-15 397.67 20.27 397.67 0.77 0.00
C205-10 228.28 2.01 228.28 0.63 0.00 RC108-15 370.25 101.45 370.25 0.93 0.00
R102-10 249.19 1.83 249.19 0.45 0.00 RC202-15 394.39 113.43 394.39 0.58 0.00
R103-10 206.12 6.76 206.12 0.49 0.00 RC204-15 403.38 ∗ - 403.38 0.55 0.00

Average 282.73 74.70 282.73 0.48 0.00

* Solutions obtained are suboptimal even after running for 2 h.

Table A2. Detailed results on EVRPTW-PR large-size instances of subset C-1.

Instance
Best Solution of 10 Runs ( fb) Gap (∆ f [%])

t̄(min)
BKS KÇ SW HGA ALNS BKS KÇ SW HGA

c101 1043.38 1043.38 1043.38 1044.51 1043.38 0.00 0.00 0.00 −0.11 8.05
c102 1017.7 1032.49 1029.44 1033.8 1029.48 1.14 −0.29 0.00 −0.42 16.53
c103 971.19 973.39 971.86 1001.13 989.53 1.85 1.63 1.79 −1.17 9.58
c104 884.38 886.72 884.38 893.04 924.20 4.31 4.06 4.31 3.37 23.41
c105 1015.79 1037.78 1048.06 1052.95 1033.95 1.76 −0.37 −1.36 −1.84 8.85
c106 1009.33 1024.18 1010.56 1043.5 1028.04 1.82 0.38 1.70 −1.50 9.23
c107 1046.5 1058.11 - - 1036.17 −1.00 −2.12 - - 11.51
c108 1022.48 1033.5 1031.85 - 1025.48 0.29 −0.78 −0.62 - 12.61
c109 940.38 946.84 940.38 946.84 940.38 0.00 −0.69 0.00 −0.69 14.02

Average 994.57 1004.04 994.99 1002.25 1005.62 1.13 0.20 0.73 −0.34 12.64
Bold numbers indicate new best solutions. - We ignore solutions using a different number of vehicles.
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Table A3. Detailed results on EVRPTW-PR large-size instances of subset C-2.

Instance
Best Solution of 10 Runs ( fb) Gap (∆ f [%])

t̄(min)
BKS KÇ SW HGA ALNS BKS KÇ SW HGA

c201 629.95 629.95 629.95 658.11 629.95 0.00 0.00 0.00 −4.47 3.18
c202 629.95 629.95 629.95 645.39 629.95 0.00 0.00 0.00 −2.45 6.39
c203 629.95 629.95 629.95 643.45 629.95 0.00 0.00 0.00 −2.14 10.03
c204 628.91 629.95 628.91 636.43 628.91 0.00 −0.17 0.00 −1.20 10.37
c205 629.95 629.95 629.95 638.17 629.95 0.00 0.00 0.00 −1.30 3.14
c206 629.95 629.95 629.95 635.38 629.95 0.00 0.00 0.00 −0.86 4.05
c207 629.95 629.95 629.95 632.8 629.95 0.00 0.00 0.00 −0.45 5.04
c208 629.95 629.95 629.95 638.17 629.95 0.00 0.00 0.00 −1.30 4.05

Average 629.82 629.95 629.82 640.99 629.82 0.00 −0.02 0.00 −1.77 5.78

Table A4. Detailed results on EVRPTW-PR large-size instances of subset R-1.

Instance
Best Solution of 10 Runs ( fb) Gap (∆ f [%])

t̄(min)
BKS KÇ SW HGA ALNS BKS KÇ SW HGA

r101 1606.98 1636.69 1615.5 1630.14 1642.86 2.18 0.38 1.67 0.77 12.63
r102 1461.23 1461.38 1429.8 1521.33 1471.88 0.72 0.71 2.86 −3.36 12.91
r103 1212.37 1262.75 1244.15 1264.81 1261.76 3.91 −0.08 1.40 −0.24 19.07
r104 1051.41 1078.99 1056.87 1089.92 1081.43 2.78 0.23 2.27 −0.79 11.06
r105 1347.8 1373.94 1347.8 1396.8 1375.04 1.98 0.08 1.98 −1.58 16.49
r106 1256.19 1310.46 1268.25 1281.09 1294.95 2.99 −1.20 2.06 1.07 16.92
r107 1108.47 1118.91 1110.95 1127.71 1127.02 1.65 0.72 1.43 −0.06 20.39
r108 1020.52 1031.14 1020.52 1042.8 1039.59 1.83 0.81 1.83 −0.31 11.41
r109 1185.77 1193.76 1186.99 1265.82 1184.68 −0.09 −0.77 −0.19 −6.85 10.01
r110 1070.99 1090.92 1070.99 1095 1092.22 1.94 0.12 1.94 −0.25 18.15
r111 1072.46 1084.13 - 1147.23 1102.33 2.71 1.65 - −4.07 20.43
r112 1001.79 1017.31 1001.79 1013.95 1001.79 0.00 −1.55 0.00 −1.21 12.57

Average 1199.67 1221.70 1213.96 1239.72 1222.96 1.88 0.09 1.57 −1.41 15.17
Bold numbers indicate new best solutions. - We ignore solutions using a different number of vehicles.

Table A5. Detailed results on EVRPTW-PR large-size instances of subset R-2.

Instance
Best Solution of 10 Runs ( fb) Gap (∆ f [%])

t̄(min)
BKS KÇ SW HGA ALNS BKS KÇ SW HGA

r201 1255.81 1262.1 1255.81 1261.64 1280.65 1.94 1.45 1.94 1.48 8.53
r202 1051.46 1052.32 1051.48 1051.46 1058.61 0.68 0.59 0.67 0.68 11.99
r203 895.54 895.54 895.96 900.6 904.09 0.95 0.95 0.90 0.39 15.74
r204 780.91 - - 783.53 793.88 1.63 - - 1.30 11.24
r205 987.22 987.36 988.55 987.36 987.18 0.00 −0.02 −0.14 −0.02 9.19
r206 922.7 922.7 922.83 924.48 927.36 0.50 0.50 0.49 0.31 15.56
r207 843.2 846.59 843.2 846.53 853.23 1.18 0.78 1.18 0.79 7.95
r208 736.12 736.12 736.12 736.64 740.12 0.54 0.54 0.54 0.47 9.03
r209 863.36 868.95 863.36 867.8 880.45 1.94 1.31 1.94 1.44 12.35
r210 843.36 843.36 846.33 845.27 849.69 0.74 0.74 0.40 0.52 13.46
r211 826.88 862.56 827.29 857.1 832.60 0.69 −3.60 0.64 −2.94 6.64

Average 909.69 927.76 923.09 914.76 918.90 0.98 0.32 0.86 0.40 11.06
- We ignore solutions using a different number of vehicles.

Table A6. Detailed results on EVRPTW-PR large-size instances of subset RC-1.

Instance
Best Solution of 10 Runs ( fb) Gap (∆ f [%])

t̄(min)
BKS KÇ SW HGA ALNS BKS KÇ SW HGA

rc101 1661.53 1743.9 - 1725.73 1727.07 3.79 −0.97 - 0.08 19.97
rc102 1510.16 1555.5 1510.16 1540.26 1557.11 3.02 0.10 3.02 1.08 10.65
rc103 1346.83 - - 1388.72 1358.88 0.89 - - −2.20 19.63
rc104 1175.06 1202.93 1175.06 1181.26 1175.06 0.00 −2.37 0.00 −0.53 21.10
rc105 1446.3 1458.49 1450.82 1463.49 1494.69 3.24 2.42 2.94 2.09 9.41
rc106 1383.14 1417.4 1385.96 1397.55 1438.59 3.85 1.47 3.66 2.85 11.18
rc107 1244.83 1261.03 1250.3 1255.03 1275.38 2.40 1.13 1.97 1.60 18.02
rc108 1154.14 1184.06 1154.14 1165.6 1206.96 4.38 1.90 4.38 3.43 15.89

Average 1365.25 1403.33 1321.07 1389.71 1404.22 2.70 0.52 2.66 1.05 15.73
- We ignore solutions using a different number of vehicles.
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Table A7. Detailed results on EVRPTW-PR large-size instances of subset RC-2.

Instance
Best Solution of 10 Runs ( fb) Gap (∆ f [%])

t̄ (min)
BKS KÇ SW HGA ALNS BKS KÇ SW HGA

rc201 1443.07 1446.84 1445.17 1446.03 1448.78 0.39 0.13 0.25 0.19 9.78
rc202 1403.32 1416.96 1408.08 1434.18 1431.88 1.99 1.04 1.66 −0.16 8.56
rc203 1060.32 1069.27 1060.32 1061.12 1069.12 0.82 −0.01 0.82 0.75 13.43
rc204 884.75 886.23 884.75 887.1 904.66 2.20 2.04 2.20 1.94 14.50
rc205 1249.56 1262.22 1259.69 1289.08 1263.53 1.11 0.10 0.30 −2.02 6.29
rc206 1187.4 1206.09 1189.11 1200.74 1194.28 0.58 −0.99 0.43 −0.54 10.47
rc207 985.67 993.26 997.04 985.67 987.93 0.23 −0.54 -0.92 0.23 11.21
rc208 833.12 839.71 833.12 836.93 837.69 0.55 −0.24 0.55 0.09 11.71

Average 1130.90 1140.07 1134.66 1142.61 1142.23 0.98 0.19 0.66 0.06 10.74

Table A8. Detailed results on EVRPTW-PR-PL small-size instances with 5 customers.

Instance
EVRPTW-PR-PL EVRPTW-PR

∆|K| CRGUROBI ALNS
∆ f [%] |K| fb

|K| f t(s) fb t̄(s)

C101-5 2 62.72 0.02 62.72 0.06 0.00 2 257.75 0 4.11
C103-5 1 105.69 0.03 105.69 0.06 0.00 1 175.37 0 1.66
C206-5 1 200.1 0.08 200.10 0.14 0.00 1 242.56 0 1.21
C208-5 1 93.13 0.03 93.13 0.12 0.00 1 158.48 0 1.70
R104-5 2 100.00 0.05 100.00 0.06 0.00 2 136.69 0 1.37
R105-5 2 100.22 0.03 100.22 0.35 0.00 2 156.08 0 1.56
R202-5 1 112.65 0.03 112.65 0.11 0.00 1 128.78 0 1.14
R203-5 1 183.23 0.09 183.23 0.20 0.00 1 179.06 0 0.98

RC105-5 2 64 0.03 64.00 1.11 0.00 2 233.77 0 3.65
RC108-5 2 62.8 0.01 62.80 0.05 0.00 2 253.93 0 4.04
RC204-5 1 126.74 0.09 126.74 0.13 0.00 1 176.39 0 1.39
RC208-5 1 70.26 0.03 70.26 0.06 0.00 1 167.98 0 2.39

Average 1.42 106.80 0.04 106.80 0.20 0.00 1.42 188.90 0.00 2.10

Table A9. Detailed results on EVRPTW-PR-PL small-size instances with 10 customers.

Instance
EVRPTW-PR-PL EVRPTW-PR

∆|K| CRGUROBI ALNS
∆ f [%] |K| fb

|K| f t(s) fb t̄(s)

C101-10 3 224.23 0.16 224.23 0.38 0.00 3 388.25 0 1.73
C104-10 2 227.53 0.22 227.53 1.92 0.00 2 273.93 0 1.20
C202-10 1 147.57 0.09 147.57 0.26 0.00 1 304.06 0 2.06
C205-10 2 182.04 0.2 182.04 0.29 0.00 2 228.28 0 1.25
R102-10 3 88.32 0.05 88.32 0.14 0.00 3 249.19 0 2.82
R103-10 2 99.88 0.19 99.88 0.14 0.00 2 206.12 0 2.06
R201-10 1 59.92 0.06 59.92 0.15 0.00 1 241.52 0 4.03
R203-10 1 196.02 0.22 196.02 0.32 0.00 1 218.21 0 1.11

RC102-10 4 220.12 0.16 220.12 0.20 0.00 4 423.51 0 1.92
RC108-10 3 147.35 0.13 147.35 0.23 0.00 3 345.93 0 2.35
RC201-10 1 115.33 0.09 115.323 0.24 0.00 1 412.86 0 3.58
RC205-10 2 164.94 0.27 164.94 0.38 0.00 2 325.98 0 1.98

Average 2.08 156.10 0.15 156.10 0.39 0.00 2.08 301.49 0.00 2.17

Table A10. Detailed results on EVRPTW-PR-PL small-size instances with 15 customers.

Instance
EVRPTW-PR-PL EVRPTW-PR

∆|K| CRGUROBI ALNS
∆ f [%] |K| fb

|K| f t(s) fb t̄(s)

C103-15 3 167.05 0.27 167.05 0.39 0.00 3 348.46 0 2.09
C106-15 3 239.85 0.55 239.85 0.93 0.00 3 275.13 0 1.15
C202-15 2 106.02 0.22 106.02 0.42 0.00 2 383.62 0 3.62
C208-15 2 161.14 0.22 161.14 0.96 0.00 2 300.55 0 1.87
R102-15 5 245.52 2.83 245.52 1.80 0.00 5 412.78 0 1.68
R105-15 4 105.2 0.45 105.2 1.54 0.00 4 336.15 0 3.20
R202-15 2 189.4 0.77 189.4 1.13 0.00 2 358 0 1.89
R209-15 1 145.95 1.11 145.95 0.48 0.00 1 313.24 0 2.15

RC103-15 4 267.93 3.78 267.93 1.38 0.00 4 397.67 0 1.48
RC108-15 3 344.55 3.2 344.55 0.52 0.00 3 370.25 0 1.07
RC202-15 2 130.24 0.11 130.24 0.35 0.00 2 394.39 0 3.03
RC204-15 1 192.44 2.63 192.44 1.20 0.00 1 403.38 0 2.10

Average 2.67 191.27 1.35 191.27 0.93 0.00 2.67 357.80 0.00 2.11
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Table A11. Detailed results on EVRPTW-PR-PL large-size instances of subset C-1.

Instance
EVRPTW-PR-PL EVRPTW-PR

∆|K| CR
|K| fb fa ∆ f(a−b) t̄ |K| fb

C101 11 870.83 925.722 6.3 49.40 12 1043.38 1 1.20
C102 11 1079.29 1112.66 3.09 61.80 11 1029.48 0 0.95
C103 11 983.09 988.27 0.53 43.40 10 989.53 −1 1.01
C104 11 713.44 724.412 1.54 37.00 10 924.2 −1 1.30
C105 11 1129.97 1162.672 2.89 49.60 11 1033.95 0 0.92
C106 12 965.29 989.214 2.48 47.40 11 1028.04 −1 1.07
C107 11 1110.96 1164.492 4.82 40.80 10 1036.17 −1 0.93
C108 11 799.33 827.026 3.46 47.40 10 1025.48 −1 1.28
C109 10 860.16 885.192 2.91 47.00 10 940.38 0 1.09

Average 11.00 945.82 975.52 3.11 47.09 10.56 1005.62 −0.44 1.08

Table A12. Detailed results on EVRPTW-PR-PL large-size instances of subset C-2.

Instance
EVRPTW-PR-PL EVRPTW-PR

∆|K| CR
|K| fb fa ∆ f(a−b) t̄ |K| fb

C201 4 567.59 579.034 2.02 31.60 4 629.95 0 1.11
C202 5 522.02 522.958 0.18 35.40 4 629.95 −1 1.21
C203 3 487.72 494.3 1.35 53.00 4 629.95 1 1.29
C204 4 523.67 523.918 0.05 46.60 4 628.91 0 1.20
C205 4 478.12 479.392 0.27 43.40 4 629.95 0 1.32
C206 4 620.97 630.752 1.58 57.00 4 629.95 0 1.01
C207 4 473.37 474.394 0.22 34.00 4 629.95 0 1.33
C208 4 542.27 561.37 3.52 71.60 4 629.95 0 1.16

Average 4.00 526.97 533.26 1.15 46.58 4.00 629.82 0.00 1.20

Table A13. Detailed results on EVRPTW-PR-PL large-size instances of subset R-1.

Instance
EVRPTW-PR-PL EVRPTW-PR

∆|K| CR
|K| fb fa ∆ f(a−b) t̄ |K| fb

R101 12 806.21 827.956 2.7 45.20 18 1642.86 6 2.04
R102 10 723.69 730.41 0.93 66.20 15 1471.88 5 2.03
R103 11 776.12 818.944 5.52 47.00 13 1261.76 2 1.63
R104 9 757.79 795.534 4.98 53.80 11 1081.43 2 1.43
R105 12 807.09 863.804 7.03 28.60 14 1375.04 2 1.70
R106 14 742.53 787.044 5.99 29.00 13 1294.95 −1 1.74
R107 10 753.41 803.188 6.61 43.80 12 1127.02 2 1.50
R108 8 557.93 600.61 7.65 38.00 11 1039.59 3 1.86
R109 10 681.17 730.158 7.19 49.60 12 1184.68 2 1.74
R110 9 715.32 756.246 5.72 41.80 11 1092.22 2 1.53
R111 9 781.97 815.734 4.32 39.80 11 1102.33 2 1.41
R112 11 799.56 849.464 6.24 35.60 11 1001.79 0 1.25

Average 10.42 741.90 781.59 5.41 43.20 12.67 1222.96 2.25 1.66

Table A14. Detailed results on EVRPTW-PR-PL large-size instances of subset R-2.

Instance
EVRPTW-PR-PL EVRPTW-PR

∆|K| CR
|K| fb fa ∆ f(a−b) t̄ |K| fb

R201 5 671.93 675.182 0.48 46.00 3 1280.65 −2 1.91
R202 4 591.99 592.742 0.13 51.40 3 1058.61 −1 1.79
R203 3 455.31 456.358 0.23 31.60 3 904.09 0 1.99
R204 3 409.46 412.376 0.71 35.20 2 793.88 −1 1.94
R205 4 534.39 538.784 0.82 44.20 3 987.18 −1 1.85
R206 3 492.25 494.724 0.5 46.00 3 927.36 0 1.88
R207 3 470.36 470.36 0 30.80 2 853.23 −1 1.81
R208 2 369.42 372.222 0.76 39.80 2 740.12 0 2.00
R209 3 465.58 468.302 0.58 56.80 3 880.45 0 1.89
R210 3 474.84 476.172 0.28 44.00 3 849.69 0 1.79
R211 3 480.47 485.254 1 43.00 2 832.6 −1 1.73

Average 3.27 492.36 494.77 0.50 42.62 2.64 918.90 −0.64 1.87
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Table A15. Detailed results on EVRPTW-PR-PL large-size instances of subset RC-1.

Instance
EVRPTW-PR-PL EVRPTW-PR

∆|K| CR
|K| fb fa ∆ f(a−b) t̄ |K| fb

RC101 15 1109.8 1210.066 9.03 26.80 15 1727.07 0 1.56
RC102 12 1011.42 1119.514 10.69 33.40 14 1557.11 2 1.54
RC103 12 1262.12 1379.778 9.32 27.00 12 1358.88 0 1.08
RC104 10 905.39 965.9 6.68 35.00 11 1175.06 1 1.30
RC105 17 1156.29 1302.744 12.67 29.80 14 1494.69 −3 1.29
RC106 10 874.47 979.792 12.04 33.20 13 1438.59 3 1.65
RC107 11 829.04 860.446 3.79 40.00 12 1275.38 1 1.54
RC108 12 1098.05 1183.874 7.82 34.00 11 1206.96 −1 1.10

Average 12.38 1030.82 1125.26 9.01 32.40 12.75 1404.22 0.38 1.38

Table A16. Detailed results on EVRPTW-PR-PL large-size instances of subset RC-2

Instance
EVRPTW-PR-PL EVRPTW-PR

∆|K| CR
|K| fb fa ∆ f(a−b) t̄ |K| fb

RC201 5 688.6 689.12 0.08 58.00 4 1448.78 −1 2.10
RC202 4 639.58 641.706 0.33 50.20 3 1431.88 −1 2.24
RC203 4 614.19 616.414 0.36 44.40 3 1069.12 −1 1.74
RC204 3 472.48 483.358 2.3 35.20 3 904.66 0 1.91
RC205 5 698.37 698.514 0.02 49.20 3 1263.53 −2 1.81
RC206 4 607.79 620.66 2.12 41.60 3 1194.28 −1 1.96
RC207 4 580.51 584.89 0.75 53.60 3 987.93 −1 1.70
RC208 3 499.65 505.134 1.1 56.80 3 837.69 0 1.68

Average 4.00 600.15 604.97 0.88 48.63 3.13 1142.23 −0.88 1.89
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