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Abstract: Coordinating infrastructure planning for transportation and the power grid is essential for
enhanced reliability and resilience during operation and disaster management. This paper presents a
two-stage stochastic model to optimize the location of electric vehicle fleet charging stations (FEVCSs)
to enhance the resilience of a distribution network. The first stage of this model deals with the decision
to place an FEVCS at the most favorable and optimized location, whereas the second stage aims to
minimize the weighted sum of the value of lost load in multiple potential scenarios with different
faults. Indeed, the second stage is a joint grid restoration scheme with network reconfiguration and
microgrid formation using available distributed generators and fleet electric vehicles. The proposed
model is tested on a modified IEEE-33 node distribution network and a four-node transportation
network. Case studies demonstrate the effectiveness of the proposed model.

Keywords: electric vehicle; fleet electrification; grid resilience; service restoration

1. Introduction

According to the US Environmental Protection Agency, transportation is responsible
for about 27% of the country’s total emissions of greenhouse gases (GHGs) [1] in 2023.
Federal and state governments are implementing policies that will accelerate the adoption
of clean energy sources and transportation electrification to reduce GHG emissions. This has
sparked the interest of academia and the industry in addressing the challenges associated
with the increased adoption of electric vehicles (EVs) and electric buses. Currently, a key
research area is the safe and economic integration of EV charging infrastructure into existing
power systems.

Medium- and heavy-duty trucks contribute to 23% of ground transportation GHG
emissions in 2023 [1]. According to the National Renewable Energy Laboratory’s Fleet
DNA Project, most trucks operate less than 5 h a day [2]. A study conducted by Atlas
Public Policy concluded that to reach 100% sales of new medium- and heavy-duty electric
trucks by 2040, there needs to be a rapid expansion of charging infrastructure through-
out the truck sector [3]. In addition to home chargers for pickups and fleet depots, there
is a need for various on-road charging options, including ultra-high-power stations for
long-haul trucks. Like many other states, commercial fleets in North Carolina have several
federal and state incentives to help make commercial battery EVs and charging stations
more cost-effective [4]. While moving toward the GHG emission reduction target, utilities
could improve the power grid by strategically placing fleet electric vehicle charging sta-
tions (FEVCSs). It is essential to estimate the optimal location of an FEVCS to enhance the
resilience of the distribution network. The aim of this paper is to enhance the distribution
network’s resilience by building FEVCSs at optimal locations.
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1.1. Literature Review

In the realm of power systems, resilience exemplifies the system’s ability to quickly
recover from disasters, including the foresight to predict high-impact, low-probability
(HILP) events, expedite recovery after such disruptions, and enhance both operational
and structural aspects to strengthen preparedness for similar future occurrences [5]. This
paper focuses on post-disturbance degraded states and restoration states of an HILP event.
Akhtar Hussain and Petr Musilek [6] present an in-depth literature review of resilience
enhancement strategies using EVs. The authors emphasize the need to include EVs in
public policies on disaster management. According to Marilyn A. Brown and Anmol
Soni [7], the coordinated transformation of electricity and transportation systems could
enhance the resilience and environmental performance of energy systems. Although battery
degradation and warranty issues are the most important integration challenges, creating
a market for grid services in vertically integrated utility is essential. With the increased
frequency of HILP events, novel grid services to support grid restoration while using
distributed generators (DGs) and EVs should be in place to achieve a resilient power grid.
The comparison between the proposed model presented by ∗ and other work on improving
resilience in distribution networks is provided in Table 1. This paper focuses on finding the
optimal location of FEVCSs to enhance the resilience of the power grid.

Table 1. Comparison between the proposed model and different research works on resilience
enhancements in distribution networks.

Resilience Enhancement Measures

Optimizational
Model

Planning
Measure Operational Measures

FEVCS
Placement

Network
Reconfiguration

Dynamic Microgrid
Formation

Transportation
Network

EV Fleet
Scheduling

[8] 8 8 8 8 8 Stochastic

[9] 8 8 8 8 8 Robust

[10] 8 4 8 4 8 Deterministic

[11] 8 8 8 4 4 Stochastic

[12] 8 8 8 8 8 Stochastic

[13] 8 8 8 8 8 Stochastic

[14] 8 8 8 8 8 Stochastic

[15] 8 4 4 8 8 Stochastic

[16] 8 4 8 8 8 Stochastic and Risk Based

[17] 8 4 4 8 8 Risk Based

* 4 4 4 4 4 Stochastic

1.2. Contributions

The following are the contributions of this paper:

1. This study addresses a novel research problem by exploring the optimal placement
of FEVCSs within a power distribution network. The research aims to enhance grid
resilience, considering both the power distribution and the transportation network,
a perspective that has been largely unexplored in the existing literature.

2. A two-stage stochastic optimization approach with a mixed-integer second-order
cone programming (MISOCP) model is developed for the optimal siting of FEVCSs,
considering EV mobility and the effects of extreme weather events. The first stage
deals with the selection of the most favorable location for FEVCSs, whereas the
second stage minimizes the weighted sum of the value of lost load (VOLL) under
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potential fault scenarios, integrating transportation network considerations into the
grid restoration scheme.

3. The study evaluates the influence of renewable-supported battery energy storage
systems (BESSs) on the optimal placement of FEVCSs and demonstrates the potential
of BESSs to improve the flexibility of the grid.

2. Problem Statement

The total storage capacity of a fleet of 20 medium- or heavy-duty EVs can reach 4 to
8 MWh. Since most trucks operate less than 5 h a day [2], such a fleet can dedicate some
of its EVs to provide services to the grid to enhance the reliability and resilience of the
power grid. HILP events, such as hurricanes, can lead to the failure of distribution network
infrastructure, causing power outages in the network. Grid operators now have new
options to resolve unplanned outages because of the proliferation of distributed resources
on the grid. Utility services monitor significant weather events so that the maintenance
teams can respond to potential faults in the distribution network; after a weather event
has passed, several faults occur in a power distribution network. These faults can create
multiple healthy and faulty sections in the network. A smart grid can use distributed energy
resources (DERs) in the network to form microgrids and power the healthy sections of the
network. EV fleet storage can be used to form and operate islanded networks, minimizing
the effects of customer outages. Medium and heavy-duty EVs can opt to support the
grid during HILP events. FEVCSs in strategic locations can enhance the resilience of the
power distribution network. The time required by the vehicles to charge and move energy
from one node to another should be considered. In this paper, the problem of strategically
placing FEVCSs to enhance the resilience of the distribution network is modeled as a two-
stage stochastic optimization model. Figure 1 presents the proposed two-stage stochastic
optimization model.

Figure 1. Two-stage stochastic optimization model.

A three-node transportation network and a 33-node distribution network for the
second stage model is represented in Figure 2, which presents a scenario with faults on
branches 7–8 and 26–27. The protection scheme on the distribution network is assumed to
isolate faults using reclosers and circuit breakers. With the fault repairs in progress, the next
step is to energize the maximum number of nodes. Microgrids can be established using
DERs such as renewable generators, energy storage systems, and fleet vehicles. The mobility
of fleet vehicles can be considered by using a transportation network. The fleet vehicles can
act as BESSs or move energy from one microgrid to another during grid-service restoration
via microgrid formation. In the scenario shown in Figure 2, three microgrids are used to
power all the nodes of the distribution network. In the real world, there is some flexibility
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in the node that can be used to power an energy consumer. The problem addressed in this
paper is to find the optimal location to connect FEVCS customers to the grid. Building
FEVCSs at strategic locations can improve grid resilience while progressing toward the
goal of reducing GHG emissions.

Figure 2. Service restoration using DERs.

3. Mathematical Formulation

In this paper, a stochastic model is presented as a solution to a planning problem
regarding the resilience of a distribution network. The first stage models the investment
decision with options of hardening and the placement of FEVCS as methods to improve
resilience. Line hardening involves the substitution of overhead lines and poles with
underground cables, a modification aimed at mitigating the grid’s susceptibility to external
disruptions and ensuring consistent and reliable power distribution. In the second stage,
a joint grid restoration scheme with network reconfiguration and microgrid formation is
modeled in the presence of DGs and fleet vehicles. Investing decisions in the first stage are
based on the expected cost of load shedding, weighted by the probability distribution of
line damage scenarios for the second stage.

3.1. First Stage: Distribution System Planning

The distribution planning model minimizes the investment cost required for the
upgrade of the infrastructure as shown in (1). The options for investments to enhance
the resilience provided are distribution line hardening of line l represented by Rl and the
installation of FEVCSs represented by Ee. In the third term, NH represents the number of
HILP events in a year times the weighted sum based on the probability of the objective
function of all fault scenarios in the second stage. Constraint (2) defines the budget limit
in the investment of infrastructure. Constraint (3) indicates each EVCS can be assigned to
only one bus.

min ∑
l

CR
l × Rl + ∑

e
CE

e × Ee + NH ×∑
s

πs × ρ(s) (1)

∑
l

CR
l × Rl + ∑

e
CE

e × Ee ≤ B (2)
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∑
e

Ee ≤ 1, ∀i (3)

3.2. Second Stage: Joint Restoration Scheme

In the event of a natural disaster that affects the grid, there may be line damages in
the distribution network and also a failure in the supply from the transmission substation.
Microgrids play a vital role in grid restoration during this crisis. The grid restoration
scheme considered in the model uses a microgrid formation that incorporates available
DGs and fleet vehicles. The objective function of the joint restoration scheme is to minimize
the expected cost of load shedding, shown in (4).

ρ(s) =min ∑
s

∑
t

∑
i
(VoLLi × sd

i,t,s) + ∑
s

∑
t

∑
j
(lj,t,s × rl) (4)

In the equation, ρ(s) represents the objective function, which is a function of scenario s,
and minimizes the sum of VOLL multiplied by the load shedding and I2r losses. VoLLi
represents VOLL at node i, and sd

i,t,s represents the load shedding at node i in time t of
scenario s. The constraints for the joint restoration scheme are network reconfiguration and
microgrid formation, DG, time–space network (TSN), and fleet vehicle constraints.

3.2.1. Network Reconfiguration and Radiality Constraints

Network reconfiguration constraints define the switching action that segregates the
nodes, ensuring the radiality of the microgrids. The binary variable Ai,m,s will be one if the
i-th node belongs to the microgrid m ∈ SM in the scenario s ∈ SS. Here, SM represents the
set of all microgrids and SS is the set of all scenarios considered in the second stage.

Ari,s =
SM

∑
m=1

Ai,m,s ≤ 1, ∀i, m, s (5)

The node i can be connected to microgrid m in scenario s if the m-th member of SIDG is
selected as the root bus.

Ai,m,s ≤ Aj,m,s, j ∈ SIDG∀i, m, s (6)

The binary variable Ol,s is set to zero if two nodes of a distribution line do not belong
to the same microgrid. Meanwhile, i′ represents the index for the terminal bus of line l.
Equation (7) is linearized by applying linear methods to Equations (8)–(10). Equation (11)
defines a binary variable Ol,s that is 1 when the branch is active as part of any microgrid in
scenario s.

Ol,s ≤ Ai,m,s × Ai′ ,m,s, ∀i, i′, m, s (7)

Ol,m,s ≤∑
i

Ai,m,s, i ∈ SIB, ∀l, m, s (8)

Ol,m,s ≤∑
i′

Ai′ ,m,s, i′ ∈ STB, ∀l, m, s (9)

Ol,m,s ≥∑
i

Ai,m,s + ∑
i′

Ai′ ,m,s − 1, i ∈ SIB, i′ ∈ STB ∀l, m, s (10)

Ol,s = ∑
m∈SM

Ol,m,s, ∀l, s (11)

Constraints (12)–(14) represent the status of a line and a bus while considering dam-
aged lines during a scenario using the binary variable Fl,s and hardening in the first stage
controlled by the binary variable Rl . Equation (12) controls the effect of hardening on line
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damage. Equations (13) and (14) ensure that the health status of the line and bus generated
during the line damage scenario is applied to the model.

Ol,s ≤ 1− (1− Fl,s)× (1− Rl), ∀l, s (12)

Ol,m,s ≤ LHl,s, ∀l, m, s (13)

Ai,m,s ≤ BHi,s, ∀i, m, s (14)

The radiality of each distribution network is ensured by utilizing a necessary and sufficient
condition from [18]. The necessary condition requires the number of buses minus the
number of branches to be equal to one, which is ensured using Constraints (15)–(17).
The sufficient condition is to ensure connectivity of each microgrid, which is included in
the model employing Constraints (18)–(21). The binary variable ξm,s is one if microgrid
m is selected. Meanwhile, βi,i′ ,l,m,s represents the fictional flow on line l with nodes i & i′.

Finally, β
(2)
i′ ,m,s represents the fictional supply of master DG m.

∑
i

Ai,m,s ≤ M× ξm,s, ∀l, s (15)

ξm,s ≤ M×∑
i

Ai,m,s, ∀l, s (16)

∑
l

Ol,m,s = ∑
i

Ai,m,s − ξm,s, ∀l, s (17)

∑
i∈STB

∑
l

β
(1)
i,i′ ,l,m,s − ∑

i∈SIB

∑
l

β
(1)
i,i′ ,l,m,s = Ai′ ,m,s , i′ 6= SIDG∀m, s (18)

∑
i∈STB

∑
l

β
(1)
i,i′ ,l,m,s − ∑

i∈SIB

∑
l

β
(1)
i,i′ ,l,m,s = −β

(2)
i′ ,m,s , i′ = SIDG∀m, s (19)

−Ol,m,s ×M ≤ β
(1)
i,i′ ,l,m,s ≤ Ol,m,s ×M, i ∈ STB, i′ ∈ SIB∀l, m, s (20)

Ai′ ,m,s ≤ β
(2)
i′ ,m,s ≤ M× Ai′ ,m,s, i′ ∈ SIDG∀m, s (21)

3.2.2. DG Constraints

DGs are used via microgrids as the primary source of energy during restoration to
reduce the load shedding. Equations (22)–(24) model the DG’s active, reactive, and apparent
power limits.

0 ≤ PDG
g,t ≤ PDG,max

g (22)

−QDG,max
g ≤ QDG

g,t ≤ QDG,max
g (23)∥∥∥PDG

g,t QDG
g,t

∥∥∥ ≤ SDG,max
g (24)

3.2.3. Time–Space Network Constraints

The TSN model is used to represent the movement of fleet vehicles along the grid
during a disaster [10]. The binary variable G f ,ee′ ,t is one if the vehicle f is on an arc from
FEVCS e to e′ during time t. Constraint (25) models undergo movement during a period
of time. Equation (26) models the relationship between the state of a vehicle and the
progression of time. Equation (27) defines the initial position of the vehicles.

G f ,ee′ ,t = 1, ∀ f ∈ SF, t ∈ T (25)
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∑
(m,e′)∈K−m

G f ,ee′ ,t = ∑
(m,e′)∈K+

m

G f ,ee′ ,t+1, ∀ f ∈ SF, e ∈ SEVCS ∪ SV , t ∈ T (26)

∑
(m,e′)∈K+

m

G f ,ee′ ,1 = G0
f ,e, ∀ f ∈ SF, e ∈ SEVCS ∪ SV (27)

3.2.4. Operational Constraints of Fleet Vehicles

If Ee is a binary variable which represents the choice to build an FEVCS at the can-
didate location node e, then γe,s is the binary variable that represents an active node
during microgrid formation with an FEVCS installed at node e. Equation (28) is linearized
using (29)–(31).

γe,s = Are,s × Ee,s, ∀e, s (28)

γe,s ≤ Are,s, ∀e, s (29)

γe,s ≤ Ee,s, ∀e, s (30)

γe,s ≥ Ee,s + Ae,s − 1, ∀e, s (31)

Similarly, α f ,e,t,s connects the active EVCS node to the fleet vehicle’s movement along the
grid. The variable G f ,ee,t,s represents the active arc ee of the fleet vehicle f at a time t in the
scenario, where s means that the vehicle is connected to a node e of the TSN. Constraint (32)
is linearized using (33)–(35).

α f ,e,t,s = γe,s × G f ,ee,t,s, ∀ f , s (32)

α f ,e,t,s ≤ γe,s, ∀ f , s (33)

α f ,e,t,s ≤ G f ,ee,t,s, ∀ f , s (34)

α f ,e,t,s ≥ G f ,ee,t,s + γe,s − 1, ∀ f , s (35)

The charging and discharging of fleet vehicles are represented by Constraints (36)–(47).
Constraints (36) and (37) restrict the charging and discharging of fleet vehicles to happen
only at an active node with FEVCS when the vehicle is on the arc e− e. Constraints (38)–(40)
control the charging or discharging of vehicles over a period of time. Constraint (41) defines
a single variable that represents the power transfer of the fleet vehicle. Constraint (42)
represents the apparent power limit of the fleet vehicles.

0 ≤ PFV,ch
f ,e,t,s ≤ α f ,e,i,s × PEVCS,max

e , ∀ f , t, s (36)

0 ≤ PFV,dch
f ,e,t,s ≤ α f ,e,i,s × PEVCS,max

e , ∀ f , t, s (37)

0 ≤ PFV,ch
f ,e,t,s ≤ Ych

f ,t,s × PEVCS,max
e , ∀ f , t, s (38)

0 ≤ PFV,dch
f ,e,t,s ≤ Ydch

f ,t,s × PEVCS,max
e , ∀ f , t, s (39)

Ydch
f ,t,s + Ych

f ,t,s ≤ α f ,e,i,s, ∀ f , t, s (40)

PFV
f ,e,t,s =

PFV,dch
f ,e,t,s

ηdch − ηdchPFV,ch
f ,e,t,s , ∀ f , t, s (41)
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∥∥∥PFV
f ,e,t,s QFV,dch

f ,e,t,s

∥∥∥ ≤ α f ,e,i,s × SEVCS,max
f (42)

The constraints related to the state of charge (SOC) of the fleet vehicles are modeled in
(43)–(47). Constraint (43) defines the relationship of the initial SOC of the EV with a SOC of
the second hour, which is activated by α f ,e,t,s. Constraint (44) defines the relationship of
the SOC of the EV when t is not equal to one. The relationship between the SOC of the EV
when the EV is not connected to an FEVCS is shown in (45) and (46). The upper and lower
limit of the SOC of the EV is defined in Constraint (47).

−M(1− α f ,e,t,s) ≤ SOCFV
Initial − SOCFV

f ,t,s − PFV
f ,e,t+1,s ≤ M(1− α f ,e,t,s), ∀ f , t = 1, s (43)

−M(1− α f ,e,t,s) ≤ SOCFV
f ,t−1,s − SOCFV

f ,t,s − PFV
f ,e,t+1,s ≤ M(1− α f ,e,t,s), ∀ f , t 6= 1, s (44)

−M ∑
e

α f ,e,t,s ≤ SOCFV
Initial − SOCFV

f ,t,s − PFV
f ,e,t+1,s ≤ M ∑

e
α f ,e,t,s, ∀ f , t = 1, s (45)

−M ∑
e

α f ,e,t,s ≤ SOCFV
f ,t−1,s − SOCFV

f ,t,s −×PFV
f ,e,t+1,s ≤ M ∑

e
α f ,e,t,s, ∀ f , t 6= 1, s (46)

SOCmin
f ≤ SOC f ,t+1,s ≤ SOCmax

f , ∀ f , t, s (47)

3.2.5. Power Flow Constraints

The nodal active power balance is modeled using Constraint (48) [18]. Since pFV
f ,e,t,s

in (48) is the product of PFV
f ,e,t,s and α f ,e,t,s, Constraints (49)–(51) are used to linearize the

equation. Constraints (52) and (53) define the decision variables for switchable loads.
Constraint (54) defines a decision variable to represent load shedding at each node in
each scenario.

∑
i∈N1(j)

(pij,t − lij,trij)− ∑
k∈N2(j)

pjk,t + ∑
m∈SM

[
∑

g∈SG

PDG
g,t + ∑

f∈SFV

pFV
f ,e,t,s − pd

j,t

]
= 0 (48)

pFV
f ,e,t,s ≤ PEVCS,max

e , ∀ f , t, s (49)

pFV
f ,e,t,s ≤ PFV

f ,e,t,s, ∀ f , t, s (50)

pFV
f ,e,t,s ≥ PFV

f ,e,t,s − PEVCS,max
e , ∀ f , t, s (51)

pd
j,t = Arj,s × DP

j,t, ∀j, t, s (52)

qd
j,t = Arj,s × DQ

j,t, ∀j, t, s (53)

sd
j,t = DP

j,t − pd
j,t, ∀j, t, s (54)

Similarly, the nodal reactive power balance is modeled using Constraint (55), which
is linearized by (56)–(58).

∑
i∈N1(j)

(qij,t − lij,txij)− ∑
k∈N2(j)

qjk,t + ∑
m∈SM

[
∑

g∈SG

QDG
g,t + ∑

f∈SFV

qFV
f ,e,t,s − qd

j,t

]
= 0 (55)

qFV
f ,e,t,s ≤ QEVCS,max

e , ∀ f , t, s (56)

qFV
f ,e,t,s ≤ QFV,dch

f ,e,t,s , ∀ f , t, s (57)
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qFV
f ,e,t,s ≥ QFV,dch

f ,e,t,s −QEVCS,max
e , ∀ f , t, s (58)

The upper and lower limits for nodal voltages of active nodes are modeled using (59).
The voltages of the master DGs are set using Constraint (60). The nodal voltage drop
constraints bound via the Big-M method are modeled using (61). The relation between
power flow, current, and voltage is defined using (62). Constraint (63) is used to model the
limits of branch current flow in the distribution network. Constraints (64) and (65) model
the active and reactive power flow through the closed branches of the distribution network.

Ai,m,s × (V(i,min))
2 ≤ ui,t ≤ Ai,m,s × (V(i,max))

2, ∀i, t, s (59)

ui,t = Ai,m,s × (VDG,set
m )2, ∀i ∈ SIDG , ∀i, t, s (60)

−M× (1−Ol,s) ≤ ui,t,s − uj,t,s − 2(rij pij,t + xijqij,t) + ((rij)
2 + (xij)

2)lij,t ≤
M× (1−Ol,s), ∀l, t, s (61)

∥∥2pij,t 2qij,t (lij,t − ui,t)
∥∥ ≤ (lij,t + ui,t) (62)

0 ≤ ll,t,s ≤ Ol,s × (IMax)2, ∀l, t, s (63)

−Ol,s × (pMax
ij ) ≤ pij,t,s ≤ Ol,s × (pMax

ij ), ∀i, t, s (64)

−Ol,s × (qMax
ij ) ≤ qij,t,s ≤ Ol,s × (qMax

ij ), ∀i, t, s (65)

The model of BESS used in [19] was used to represent the behavior of BESS during
grid service restoration.

Objective function (1) constrained by (2) and (3) forms the stage 1 model of the
two-stage stochastic model. Stochastic objective function (4) constrained by (5)–(65) forms
the MISOCP stage 2 of the two-stage stochastic problem. Combined objective functions
of both the above-mentioned stages constrained by their respective constraints form the
two-stage stochastic optimization approach with a MISOCP model. In a two-stage stochas-
tic model, the first stage makes decisions before the realization of uncertainty, creating a
framework for optimal decision making, while the second stage adapts these decisions
post-realization, ensuring a robust and flexible response to various possible scenarios.

3.3. Scenario Generation and Reduction

Figure 1 shows that the distribution network’s line damage scenarios post-HILP event
links the first stage to the second stage of the model. Since hurricanes are addressed
in the problem, the wind speed data from Atlantic Oceanographic and Meteorological
Laboratory’s hurricane database [20] was fed into a custom PDF sampler and reconstructor
by Pantelis Sopasakis [21]. This custom PDF reconstructor was used to generate wind
speeds that create hurricane wind speeds. Fragility functions from [15] were employed
to generate 100 line damage scenarios. The program scenred [22] was used to reduce the
100 scenarios to three scenarios.

4. Numerical Results
4.1. Feeder and Case Description

The model was tested on a modified IEEE-33 node distribution network and a four-
node transportation network, as shown in Figure 3. The feeder has residential loads
connected to nodes 1–22, commercial loads from nodes 22 to 33, and a hospital at node 30.
Figure 4 shows the load profiles used for the different load types. The loads and VOLL
for all the nodes in the case are shown in Figure 5. The 33-node network is divided into
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four zones, shown as Z1, Z2, Z3, and Z4 in Figure 3. The distributed generation available
in the network includes three solar farms across nodes 18, 22, and 25, and a conventional
gas generator of 1 MW at node 33. A candidate node from each zone was selected as
a potential FEVCS location. The selected candidate nodes for FEVCS are presented as
nodes connected by a road network in the figure. Nodes 18, 22, 25, and 33 were selected
as the search window for the optimal location of the FEVCS. It is assumed that the fault
is active for 8 h, and during a fault, the upstream substation does not provide power to
the network. Furthermore, it is assumed that the FEVCS has more than three charging
ports available for the support of grid restoration. Only three representative EVs—several
fleets of EVs with the same routing behavior—are considered in all cases to incorporate
the variation in usable EV storage with a minimal computational load. Moreover, the size
of the chargers can be varied to incorporate the increase or decrease in usable EV storage;
the considered FEVCS is made up of 125 kW capacity chargers, vehicles are considered to
have usable storage of 300 kWh each, and six fleet vehicles are considered available for grid
restoration. To reduce the computational load, two fleet vehicles are assumed to follow
the same behavior; therefore, the representative EV considered for the base cases has a
storage of 600 kWh and a charger rating of 250 kW. Cases 0, 1, and 2 are cases with zero,
one, and two FEVCSs on the distribution network, respectively. The aforementioned cases
do not have any BESS in the network. Cases 3, 4, and 5 are cases with zero, one, and two
FEVCSs with solar farms supported by BESS. The probabilities of the line damage scenarios
after scenario reduction are 0.277, 0.388, and 0.333 respectively. The results of scenario 2 of
the second stage are presented as it is the most probable scenario and will have the most
influence, while the first stage model decides the location of the FEVCS. The rest of the
scenarios do not have faults that interrupt the power flow to cause any load loss. In the
analysis below, the SOC has been mentioned in terms of stored energy in kWh.

Figure 3. Four-node transportation and IEEE-33 distribution network of the test case.
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Figure 4. Load profiles for different load types.

Figure 5. Load and VOLL for different nodes.

4.2. Simulation Results and Analysis

The results of the distribution system planning model presented in Section 3.1 are
based on the stochastic objective function of all three scenarios of the joint restoration
scheme presented in Section 3.2. As the scenario with the highest probability, scenario 2
is used to present the results and analysis of the second stage of the model. The faults in
scenario 2 are on branches 16–17, 17–18, 21–22, 6–26, 9–15, and 22–12. The model’s response
to these faults for Case 0 is shown in Figure 6. Acting as the grid forming generator, the gas
turbine generator GT4 forms microgrid MG4 energizing the loads on nodes 18 and 26–33.
While GT4 acts as the master generator in MG4, the PV generator PV1 acts as a slave
generator providing active power when available and reactive power support to improve
the voltage of the system.

4.2.1. Case 1: Optimal Location of the FEVCS

The optimal location of the first FEVCS for the presented network is node 25. As shown
in Figure 7, nodes 18 and 25–33 are active during the fault. As there are no other EVCSs in
this case, node 25 was selected because the FEVCS can act as energy storage to power node
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25, which was added to the active grid because the VOLL of the nodes in zones Z3 and Z4 is
higher. Figure 8 shows the generation, load, and vehicle-to-grid during the fault. The SOC
of the fleet vehicles and the power of vehicle-to-grid is shown in Figure 9. In Section 4.2.2,
the model solves the problem of the second-best location for the FEVCS of the network in
the presence of an FEVCS at node 25.

Figure 6. Grid service restoration by microgrid formation for fault in Scenario 2, Case 0.

Figure 7. Grid service restoration by microgrid formation for fault in Scenario 2, Case 1.
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Figure 8. Generation load balance in microgrid 3 with optimal EVCS in Case 1.
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Figure 9. Variation in SOC and charging power of fleet EVs in Case 1.

4.2.2. Case 2: Second-Best Location for FEVCS

The second-best location of the FEVCS is estimated to be at node 22. In Case 2, FEVCSs
at nodes 22 and 25 act as energy storage for the grid; compared with Case 1, one more node
is active in the network, reducing the VOLL of Case 1. The mobility of the fleet vehicles is
presented in Table 2. As shown in the Figure 10, two master DGs form microgrids MG2 and
MG3 to energize the active grid sections. While the generators PV2 and PV3 act as master
DGs, GT4 follows the generator PV3. Moreover, both FEVCSs support the mircogrids
in moving energy from an energy surplus microgrid to an energy deficient microgrid.
The fleet vehicle EV-1 is not used for restoration during 14:00–16:00 h; instead, the vehicle
is located at node 3 of the transportation network, which overlaps with the distribution
network at node 25. From Figure 11, EV-1 is used from 18:00 to 21:00 h, during which the
storage of EV-1 reduces to the minimum value. Mobility is used by the model for vehicles
EV-2 and EV-3. The demand to upkeep microgrid 3, controlled by the DG at node 25, is
higher than the demand for microgrid 2, controlled by node 22. Therefore, the model uses
EV-3 at node 25 for 16:00 to 17:00 h and then sends EV-3 to node 22 because the available
storage cannot provide sufficient energy to node 25. Then EV-2, which has higher storage,
is used to energize node 25 to provide sufficient energy to manage the supply–demand
balance of the presented configurations.
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Table 2. Mobility of fleet vehicles in the transportation network in Case 2.

Time
15:00 16:00 17:00 18:00 19:00 20:00 21:00

EV#1 2-3 3-2 2-3 3-3 3-3 3-3 3-3
EV#2 1-1 1-2 2-2 2-2 2-3 3-3 3-3
EV#3 4-3 3-3 3-3 3-2 2-2 2-2 2-2

Figure 10. Grid service restoration by microgrid formation for fault in Scenario 2, Case 2.
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Figure 11. Variation in SOC and charging power of fleet EVs in Case 2.

4.2.3. Effects of BESS on the FEVCS Location

A BESS of 1 MW capacity and 2.5 MWh storage was added to all solar farms in
Cases 0, 1, and 2 to obtain Cases 3, 4, and 5. The network configuration of the restored
grid is presented in Figure 12. The active nodes in the restored distribution network have
increased from Case 2. In Case 4, the model solved the optimal location of the FEVCS in the
presence of renewables backed by the BESS. The optimal location of the FEVCS is node 25
in the distribution network.
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Figure 12. Grid service restoration in fault for Scenario 2, Case 3.

Figure 13 shows that, when compared to Case 3, Case 4 adds node 24 and sheds
node 26. Node 24 has a higher VOLL compared to node 26 because of the commercial
load capacity on node 26. Compared with Case 2, EV-1 and EV-2 charge when there is
surplus energy during some hours to support the grid during other hours. As shown in
Figure 14, EV-1 discharges during 17:00 h, charges during 18:00 h, and discharges during
19:00–21:00 h. Adding a BESS for the solar farm at node 25 has provided the network with
this flexibility compared with Case 2.

The model solved the problem in Case 5 for the best two locations for the FEVCS on
the presented network in the presence of renewables backed by BESS, with a MIPGap of
0.13%. The best two locations for the FEVCSs are node 25 and node 22. In comparison
to Case 4, Case 5 powers a lower number of nodes because the model prioritizes loads
with higher VOLL. Both microgrids have one FEVCS each. The configuration after service
restoration of the distribution network in Case 5 is shown in Figure 15. Table 3 shows
the mobility and variation in the SOC of the EVs. EV-1 is called to node 3 at 16:00 h.
At 17:00 h, EV-1 is in the arc 3-3 of the TSN, indicating that EV-1 is connected to node 3
of the transportation network, which is node 25 of the power distribution network. EV-1
discharges at 17:00 and 18:00 h, supporting microgrid 3. At 19:00 h, EV-1 is called to node 2
to support microgrid 2 during 20:00–21:00 h. EV-2 is called to node 25 at 15:00 h, discharges
at node 25 to support microgrid 3, and is called to node 22 to charge from microgrid 2 at
18:00 h. EV-2 goes back to node 25 during 19:00 h and supports microgrid 3 in 20:00 and
21:00 h. EV-2 transports energy from microgrid 2 to microgrid 3 to power more critical loads
on microgrid 2. Similarly, EV-3 is called to node 22 at 14:00 h. EV-3 supports microgrid 2
during 15:00 h, recharges during 16:00 h, and supports microgrid 3 during 18:00–20:00 h.
Figure 16 shows the variation in the objective function for all cases. Adding a BESS to the
mix has increased the effects of the FEVCS in improving the objective function.
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Figure 13. Grid service restoration in fault for Scenario 2, Case 4.
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Figure 14. Variation in SOC and charging power of fleet EVs in Case 4.

Table 3. Mobility and SOC of fleet vehicles in the transportation network in Case 5.

Time
15:00 16:00 17:00 18:00 19:00 20:00 21:00

EV#1 1-4 4-3 3-3 3-3 3-2 2-2 2-2
EV1_SOC (kWh) 600.0 600.0 350.0 100.0 100.0 81.8 56.3

EV#2 2-3 3-3 3-2 2-2 2-3 3-3 3-3
EV2_SOC (kWh) 600.0 350.0 350.0 555.8 555.8 305.8 55.8

EV#3 2-2 2-2 2-3 3-3 3-3 3-3 3-4
EV3_SOC (kWh) 513.3 600.0 600.0 427.6 216.8 50.0 50.0
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Figure 15. Grid service restoration in fault for Scenario 2, Case 5.
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Figure 16. Objective function of Cases 0–5.

4.3. MISOCP Relaxation Gap and Simulation Setup

The accuracy of MISOCP relaxation was tested to compare the power flow obtained
from conic relaxation with the original nonconvex model by evaluating the relaxation error
defined as

Gap = max∀(i,j)
∣∣∣p2

ij + q2
ij − (lijui)

∣∣∣ (66)

The SOC gap for the case is the order of 10−9 MW. Simulations were carried out on an Apple
Macbook with 32 GB RAM and an Apple M2 Pro CPU with 12 cores. The problem was
modeled using MathWorks’ MATLAB with YALMIP and Gurobi addons. The MIPGap and
the solution time of all simulated cases are shown in Table 4. In the context of the presented
results, “MIPGap” is a parameter set to define the tolerance level for the difference between
the lower and upper objective bounds, allowing the algorithm to terminate once this relative
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gap is attained, thereby ensuring that the obtained solution is close to optimality within
this threshold.

Table 4. MIPGap (%) and solution time.

Case MIP GAP Solution Time (hours)

0 0 0.004

1 0 0.261

2 0.001 17.534

3 0 0.597

4 0.078 55.437

5 0.13 70.579

5. Conclusions and Future Works

The present study provides a comprehensive assessment of a two-stage stochastic
model for optimizing the location of the FEVCS within a distribution network. This
innovative approach aims to improve network resilience and reliability, particularly during
operational faults or disaster management scenarios. The model was thoroughly tested on
a modified IEEE-33 node distribution network and a four-node transportation network,
which included various types of loads and DGs.

The optimal location of the FEVCS, as identified by the model, was at node 25. This
node was selected because of its potential to act as energy storage for powering the node and
its influence on zones Z3 and Z4 with higher VOLL. Furthermore, the second-best location
was determined to be node 22, which added an active node to the network and reduced
VOLL compared with the first case. This scenario also showed a strategic use of the mobility
and storage capabilities of the fleet vehicles, providing an energy supply–demand balance.

In addition, renewable generators supported by a BESS were also considered. The
model demonstrated an increased number of active nodes in the restored distribution
network, with the optimal FEVCS location remaining at node 25. The presence of the
BESS allowed for greater flexibility in the network, allowing the vehicles to charge during
periods of surplus energy and support the grid during other hours. When two FEVCSs
were present alongside BESS-backed renewables, the model prioritized loads with higher
VOLL, resulting in powering a fewer number of nodes, but catering to more critical loads.

The proposed stochastic model presents a potential path for strategic planning and
optimization of the FEVCS in a distribution network, enhancing the resilience and reliability
of the network. The results highlight the valuable role of an FEVCS, particularly when
combined with a BESS, in responding to network faults and managing supply–demand
balances. Future work further explores other factors that influence the model and test
the model on larger or more complex network configurations and to use a stochastic
distribution control approach to assess the robustness of the optimization by controlling
the probability density function (PDF) shape of the concerned objective functions. In this
context, the narrower and sharper PDF of the optimized objective functions would indicate
the strong robustness of the optimization.
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Nomenclature

Sets and Indices
j ∈ SIDG Root nodes of the distribution network
i/i’ ∈ SIB/STB Nodes of distribution network
l ∈ SL Branches of distribution network
g ∈ SDG Distributed generation units
e ∈ SEVCS Fleet charging stations
f ∈ SFV Fleet vehicles
m ∈ SM Microgrids in the distribution network
s ∈ SS Scenarios in the second stage
K+

m Set of arcs in TSN starting from m.
K−m Set of arcs in TSN ending at m.

Parameters
CR

l Cost of hardening line l ($)
CE

e Cost of FEVCS installation at node e ($)
NH Average number of storms in a year
πs Probability distribution of each scenario
B Budget for infrastructure planning ($)
VoLLi Value of lost load at node i ($)
LHl,s Status of line health
BHi,s Status of bus health
M A large number
rij Resistance of branch ij (ohms)
xij Reactance of branch ij (ohms)
PDG,max

g /QDG,max
g Active Power Output Limit of DG g (MW).

QDG,max
g Reactive Power Output Limit of DG g (Mvar).

SDG,max
g Apparent Power Capacity of Limit of DG g (MVA).

G0
f ,e Initial position of fleet vehicle f is at node e.

DP
j,t/DQ

j,t Active/Reactive power load at node j of the ADN at time t (MW/MVAr)
Vi,min Lower limit of voltage at node i (V)
Vi,max Upper limit of voltage at node i (V)
PEVCS,max

e Maximum charging power of EVCS e (kW)
SEVCS,max

f Maximum charging capacity of EVCS e (kVA)
ηdch Efficiency of EVCS e (%)
SOCFV

Initial Initial SOC of the fleet vehicle (MWh)
SOCmax

f Maximum SOC of the fleet vehicle f (MWh)
SOCmin

f Minimum SOC of the fleet vehicle f (Mvar)
Variables
Rl Line l was hardened during planning
Ee EVCS is installed at node e.
sd

j,t Active power load shedding at node j of the ADN at time t (MW/MVAr)
Ari,s Status of node i in scenario s
Ai,m,s Bus i belongs to microgrid m in scenario s

http://energy.gov/downloads/doepublic-access-plan
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Ol,s Line l is active in scenario s
Ol,m,s Line l belongs to microgrid m in scenario s
Fl,s Line l is healthy after a hurricane in scenario s
ξm,s Binary variable is 1 if microgrid m is active in scenario s.
PDG

g,t /QDG
g,t Active / Reactive Power Output of DG g at time t (MW/Mvar).

κl,s Fictitious flows on the distribution line
γe,s Active distribution node with an FEVCS e installed
βi,i′ ,l,m,s Fictitious flow in line ii′

βi′ ,m,s Fictitious supply of master DG
G f ,eu Status is 1 if the fleet vehicle f is in the arc (e, u) at time t
α f ,e,t,s Status is 1 if vehicle f is in FEVCS e
PFV,ch

f ,e,t,s Charging power of the fleet vehicle f at node

PFV,ch
f ,e,t,s Discharging power of the fleet vehicle f at nodee in time t of scenario s

PFV
f ,e,t,s Bidirectional active power transfer of fleet vehicle f at node e in time t of

scenario s
QFV

f ,e,t,s Reactive power transfer of fleet vehicle f at node e in time t of scenario s
Ych

f ,t,s Charging status of fleet vehicle f in time t of scenario s
Ydch

f ,t,s Discharge status of fleet vehicle f in time t of scenario s
SOCFV

f ,t,s State of charge of the fleet vehicle f at time t in the scenario s (%)
pij,t Active power flow from node i to node j of the distribution network

(MW/MVAr)
qij,t Reactive power flow from node i to node j of the distribution network

(MW/MVAr)
lij Square of current from node i to node j
uj,t Square of voltage at node j at time t
pd

j,t/qd
j,t Served Active/Reactive power load at node j of the ADN at time t

(MW/MVAr)
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