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Abstract: Most works related to the identification of mathematical nonlinear systems suggest that
such approaches can always be directly applied to any nonlinear system. This misconception is
greatly discouraging when the obtained results are not expected. Thus, the current work hypothesizes
that the more information one has about the mathematical structure of the model, the most precise
the identification result. Therefore, a variant of the Sparse Identification of Nonlinear Dynamics
(SINDY) approach is presented to obtain the full mathematical nonlinear model of a high-order
system with coupled dynamics, namely, a commercial quadcopter. Furthermore, due to its high
sensitivity to inputs, a control system is devised using the identified model to stabilize the quadcopter.
This illustrates the effectiveness of the proposed identification method.

Keywords: Sparse Identification of Nonlinear Dynamics; high-order systems; coupled dynamics

1. Introduction
1.1. Motivation

Understanding the differential equations that govern the dynamics of nonlinear sys-
tems in real-time is always considered advantageous in scientific research. However,
the availability of accurate mathematical models for such systems is not always guaranteed.
Despite the recognized benefits of having access to these equations, practical limitations
and inherent complexities often prevent the simple formulation of mathematical represen-
tations for real-world nonlinear systems. Consequently, many authors have focused their
efforts on the practical identification of mathematical models for nonlinear systems [1].

On the other hand, the continuously growing capabilities of computing and data
acquisition equipment have produced an explosion of data-driven models, which in many
cases are more appealing than those obtained by analytical modeling approaches [2].

Ahead of the data-driven modeling techniques is Deep Learning (DL) [3,4]. DL has
not only shown notable performance in image classification but is also very effective in
predicting the future states of dynamical systems. However, its main drawback is the
difficulty relating the DL models to the governing equations of the physical systems.
A different data-driven approach is based on symbolic regression to obtain the structure of
a nonlinear system from data [5]. Although this method identifies the interpretable physical
models very well, its main drawback is the computational cost of working with a symbolic
regressor, and it grows significantly as the dimension of the problem does. A genetic
algorithm, considering the transition matrix in its fitness function, has been successfully
applied to identify the physics-based longitudinal dynamics of an aircraft. However, its
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main drawback is that it is an iterative process strongly dependent on the size of the search
region for parameters [6].

In [7], the problem has been restated as sparse identification combined with the
Levenberg–Marquardt (LM) algorithm. Tibshirani first introduced the main idea for robust
identification, which combines least squares minimization and discrimination through the
L1 norm, and named it Shrinkage Lasso Selection [8]. However, the problem has been
simplified even more by the Sparse Identification of Nonlinear Dynamics (SINDY), which
combines sparse regression with the advantages of the verified efficacy of the least squares
(LS) approach [9,10].

Brunton et al. [9] proposed a method called Sparse Identification of Non-Linear Dy-
namics in 2016 which transforms a nonlinear model of the form ẋ = f (x, u), where x ∈ Rn

is the state vector and u ∈ Rp is the input vector, into an equivalent linear model of the
form Ẋ = Θ(X, U)Ξ (please refer to Section 2.2 for a more detailed explanation of this
concept). This simplifies the nonlinear identification problem to solving a linear system
with more equations than unknowns, which is a classical problem in linear algebra, namely,
Ax = b. This method offers an elegant approach to identifying nonlinear dynamics from
data. The method can handle complex systems with perfect data from ideal experiments,
as demonstrated in [9]. However, for simulations with imperfect data, the method requires
some modifications, which are explained in [9].

The robustness analysis of the method with respect to the choice of “hyperparameters”
is presented in [11]. The hyperparameters are related to the Lasso-type optimization,
which is a classical optimization problem that uses the L1 norm instead of the L2 norm,
as described in [12]. The extension of the method to systems with control inputs is discussed
in [9]. SINDY has been applied during the identification of the models of complex systems
as chaotic attractors, even in the presence of control signals, in a very successful way [9].

However, the original SINDY algorithm proves inadequate for high-order nonlinear
systems with coupled dynamics, even when the structure of the mathematical model is
known. The limitation arises from the reliance on the least squares approach, favoring
the selection of large values over small. Consequently, the SINDY algorithm may exclude
functions with small coefficients in nonlinear models where coefficients vary significantly
in magnitude. This can result in inaccurate or incomplete models that fail to capture the
true dynamics of the system. For instance, in a recent work [13], the authors proposed a
modification of the SINDY algorithm, aiming to outperform the classical SINDY approach
in constructing a system of ordinary differential equations from stochastic simulations.

Thus, despite the simplicity of SINDY, it requires constant modifications and improve-
ments tailored to each new application. As a result, customized variants of the SINDY
algorithm have begun to emerge in the recent literature [14–18].

1.2. Contribution

With this in mind, in the context of a known structure for a high-order nonlinear sys-
tem with coupled dynamics, this work presents a significant contribution by introducing
a simple modification of the SINDY methodology. Specifically, this modification allows
the identification of missing coefficients within the known system structure. What distin-
guishes this contribution is not only its effectiveness but also its minimal computational
cost. By seamlessly integrating into the existing SINDY framework, this modification offers
a practical solution to a challenging problem, improving the applicability and accuracy of
the method without imposing significant computational overhead. Therefore, in addition
to improving SINDY’s capabilities for system identification, this work also underlines the
importance of efficiency in algorithmic improvements within the field of nonlinear dynami-
cal systems [19,20]. A comparison between the performance of the original algorithm and
modified one was carried out by applying both to the identification of the mathematical
model of a commercial quadcopter.
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1.3. Manuscript Organization

The rest of this paper is organized as follows: In Section 2, the mathematical and
numerical tools considered throughout the study are briefly reviewed. In Section 3, the clas-
sical SINDY algorithm is employed to identify the high-order nonlinear system with
coupled dynamics. In Section 4, the modified algorithm is introduced and employed for
the identification of the same system. In Section 5, some important points are discussed.
Finally, Section 6 presents the concluding remarks.

2. Mathematical Tools
2.1. LS

The least squares method was introduced by Adrien-Marie Legendre in 1805 [21].
Roughly speaking, the least squares solution for the problem Ax = b, where A ∈ Rm×n,
x ∈ Rn, and b ∈ Rm, is a vector x̂ such that dist(b, Ax̂) ≤ dist(b, Ax), for all other vectors
x ∈ Rn, where dist(b, Ax̂) = ∥b− Ax̂∥ is the square root of the sum of the squares of the
elements of the vector b− Ax̂. Therefore, a least squares solution minimizes the sum of the
squares of the errors between b and Ax̂, hence its name [22].

When the columns of A are linearly independent, the least squares solution of

Ax = b (1)

is unique and it is given by [22]:

x̂ = (AT A)−1 ATb. (2)

Equivalently, if the n columns of A, namely, a1, a2, . . ., an, are orthogonal, then the
least squares solution of (1) is [22]:

x̂ =

(
a1 · b
a1 · a1

,
a2 · b
a2 · a2

, . . . ,
an · b
an · an

)
. (3)

Moreover, the QR factorization can be applied to the matrix A, and the Gram–Schmidt
algorithm can be used to obtain the orthogonal Q and upper triangular R matrices, which
can be used to obtain the least squares solution of (1). For a thorough analysis of the least
squares method, the QR factorization and the Gram–Schmidt algorithm, the reader can
refer to [22,23].

2.2. SINDY

In 2016, Brunton et al. [9] introduced Sparse Identification of Nonlinear Dynamics
(SINDY), which consists of the simple idea of solving the classical linear problem Ax = b
but transforming it into

Ẋ = Θ(X, U)Ξ, (4)

where the nonlinear model to be estimated has the form ẋ = f (x, u), with x ∈ Rn and
u ∈ Rp. In this formulation, X ∈ Rm×n, where the i-th column of X corresponds to a vector
formed by the m samples of the i-th state of x, the same applies for Ẋ, and U ∈ Rm×p,
where the i-th column of U corresponds to a vector formed by the m samples of the i-th
control input of u. On the other hand, Θ(X, U) ∈ Rm×q, where each column of Θ(X, U) is
a candidate function depending on x and/or u, which is evaluated at each one of the m
sample instants, and the columns of Ξ ∈ Rq×n are sparse vectors of coefficients.

The goal is to find the matrix Ξ by means of least squares such that the residual error is
minimized. The Ξ is a matrix of coefficients that determine the active terms in the nonlinear
model ẋ = f (x, u), which can be approximated by a linear combination of candidate
functions depending on x and/or u. The pseudocode for SINDY and its interpretation are
presented in Appendix A.1 [9,12].
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2.3. Mathematical Model of a Quadcopter

A quadcopter or quadrotor is a type of unmanned aerial vehicle (UAV) that has four
rotors mounted on a rigid frame. The rotors can generate both lift and torque, which are
used to control the position and orientation of the quadrotor. The mathematical model of a
quadrotor can be derived using Newtonian and Euler’s laws and applying basic principles
of physics. This derivation gives the equations that govern the motion of a quadrotor, both
concerning the body frame and the inertial frame.

The configuration space of a quadcopter is defined by six variables: x, y, z, ϕ, θ, and ψ,
where (x, y, z) are the coordinates of the center of mass in an inertial frame, and (ϕ, θ, ψ)
are the Euler angles that represent the orientation of the body frame with respect to the
inertial frame. The actuation space of a quadrotor is defined by four variables: u1, u2, u3,
and u4, where ui is the angular velocity of the i-th rotor. The schematics of this aircraft
are given in Figure 1. In aeronautics, the convention of measuring elevation or altitude
through the negative part of the Z-axis is often a matter of mathematical and geometric
consistency. The convention is motivated by the right-hand coordinate system commonly
used in aviation and engineering: the X-axis points forward (along the longitudinal axis
of the aircraft), the Y-axis points to the right (along the lateral axis), and the Z-axis points
downward (along the vertical axis) [24].

The dynamics of a quadcopter can be expressed as [25–28]:

ẋ = f (x, u), (5)

where x = [x1 . . . x12]
T , u = [u1 . . . u4]

T , and

ẋ1 = x7, (6)

ẋ2 = x8, (7)

ẋ3 = x9, (8)

ẋ4 = x12, (9)

ẋ5 = x11, (10)

ẋ6 = x10, (11)

ẋ7 =
β1

m
(sin(x4) sin(x6) + cos(x4) cos(x6) sin(x5)), (12)

ẋ8 = − β1

m
(cos(x4) sin(x6)− cos(x6) sin(x4) sin(x5)), (13)

ẋ9 =
β1

m
(cos(x5) cos(x6)) + 9.81, (14)

ẋ10 =
1

Ixx

(
β2 + (Iyy − Izz)x11x12

)
, (15)

ẋ11 =
1

Iyy
(β3 + (Izz − Ixx)x10x12), (16)

ẋ12 =
1

Izz

(
β4 + (Ixx − Iyy)x10x11

)
, (17)

with β1 as the force responsible for throttle movement, β2 as the torque responsible for
roll movement, β3 as the torque responsible for pitch movement, and β4 as the torque
responsible for yaw movement, given by

β1 = b(u2
1 + u2

2 + u2
3 + u2

4), (18)

β2 = b(u2
4 + u2

3 − u2
1 − u2

2), (19)

β3 = b(u2
2 + u2

3 − u2
1 − u2

4), (20)

β4 = d(u2
1 + u2

3 − u2
2 − u2

4), and (21)

Ω = u1 − u2 + u3 − u4. (22)
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Figure 1. Body diagram of the quadcopter.

Notice that u1, u2, u3, and u4 are the frequencies of rotors 1, 2, 3 and 4, respectively,
i.e., they are the implicit control inputs and they are given in rad/s . The variables x1,
x2, and x3 represent the linear displacements along the earth fixed axes Xe, Ye, and Ze,
respectively, and they are in meters. On the other hand, the variables x4, x5, and x6 describe
the angular displacements around the body axes Zb, Yb, and Xb, respectively, and they
are in radians. The remaining state variables describe the linear and angular velocities,
and they can be easily deduced from (5)–(22).

2.4. Simulink Support Package for Parrot Minidrones

The Simulink Support Package for Parrot Minidrones version 20.2.3 is a toolbox that
enables users to design and deploy flight control algorithms for Parrot minidrones using
Simulink. Users can wirelessly connect to the minidrones via Bluetooth and access their
onboard sensors and camera. Users can also use additional tools such as the Aerospace
Blockset and Simulink Coder to enhance their simulations and code generation. The toolbox
also includes an example that shows how to model and simulate the 6-DOF equations of
motion for the minidrones [29,30]. In Figure 2, the physical quadcopter simulated by the
Simulink Support Package for Parrot Minidrones is depicted.

Figure 2. Rolling Spider by Parrot Minidrones.
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This package includes a Controller Project template designed as a framework for
crafting a personalized controller or adapting it to specific needs. The template integrates
a robust plant model simulation for both the Parrot Rolling Spider and Parrot Mambo
drones. This simulation streamlines the evaluation of model outcomes before deployment,
empowering users to scrutinize and refine their controller designs prior to applying them to
the physical hardware. The template supports the modeling of equations of motion with six
degrees of freedom (6-DOF), facilitating the simulation of aircraft behavior under diverse
flight and environmental conditions. Figure 3 depicts the VRML environment employed
by the Simulink Package for Parrot Minidrones.

Figure 3. Capture of the VRML environment provided by the Simulink Support Package for Par-
rot Minidrones.

It is worth mentioning that the Simulink Support Package for Parrot Minidrones
has undergone extensive validation, confirming its high accuracy in approximating the
real-time behavior of the Parrot Minidrones. As a result, the identification of the quad-
copter’s mathematical model in this study relies heavily on the results generated by the
Simulink package.

3. Identification of a High-Order Nonlinear Systems with Coupled Dynamics Using the
Classical SINDY Algorithm

In this section, the Algorithm A1 is used to obtain the mathematical model of a quad-
copter from the data generated by the Simulink Support Package for Parrot Minidrones.

For the sake of simplicity, throughout the remainder of this study, it is assumed
that the Rolling Spider MiniDrone depicted in Figure 2 can be effectively modeled using
Equations (5)–(17). In other words, the drone’s controls are considered to be β1, β2, β3,
and β4, instead of u1, u2, u3, and u4. Adopting this perspective streamlines the required
library of functions for SINDY, specifically the matrix Θ(X, U). Despite this simplification,
the resulting nonlinear system maintains sufficient complexity to reveal the limitations
of the conventional SINDY approach. This underscores the advantages of the proposed
modification, particularly in the identification of high-order nonlinear systems with cou-
pled dynamics.

The Simulink Support Package for Parrot Minidrones is employed to simulate a 10-s
flight sequence of the drone, with the sampling time T = 0.005 s . Throughout this duration,
the drone undergoes takeoff and ascends to an altitude of 1.5 m. Meanwhile, the controls
β1, β2, β3, and β4 are subtly perturbed to excite all four independent degrees of freedom of
the drone. These inputs are shown in Figure 4.
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Figure 4. Input signals used to excite the four degrees of freedom of the drone.

During this simulated flight, the vectors x1, . . . , x12, ẋ1, . . . , ẋ12, β1, . . . , β4 ∈ Rm are
formed by reading the linear and angular displacements, linear and angular velocities,
linear and angular accelerations, and controls. Clearly, m = 2001.

So, to correctly formulate Equation (4), consider that the matrix Ẋ is:

Ẋ = [ẋ1, . . . , ẋ12], (23)

while the matrix Θ(X, U) is

Θ(X, U) = [ f1 f2 . . . f16], (24)

with f1 = 1, f2 = x7, f3 = x8, f4 = x9, f5 = x10, f6 = x11, f7 = x12, f8 = β1 · (sin(x4) ·
sin(x6)+ cos(x4) · cos(x6) · sin(x5)), f9 = β1 · (cos(x4) · sin(x6)− cos(x6) · sin(x4) · sin(x5)),
f10 = β1 · cos(x5) · cos(x6), f11 = β2, f12 = x11 · x12, f13 = β3, f14 = x10 · x12, f15 = β4,
f16 = x10 · x11, where, as mentioned above, ẋ1, . . . , ẋ12, f1, . . . , f16 ∈ R2001. Thus, the un-
known matrix Ξ has a dimension of 16× 12.

The MATLAB code for the classical SINDY algorithm, with Theta = Θ(X, U),
dXdt = Ẋ, lambda = 1× 10−3, and n = 12, is given in Appendix A.2.

The matrix Ξ produced is:

Ξ =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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−0.01 0.18 4.8 1.1 1.1 −0.076
0.21 0.2 0.13 1.2 5.6 −0.053

9.1× 10−3 0.018 −1.5× 10−3 −0.12 −2.4 0.095
0.051 2.3× 10−3 −0.096 0.63 −1.3 −0.21
0.034 −0.14 0.093 −0.67 −1.2 −0.4

0.12 −0.071 0.11 −0.12 −3.8 0.12
0.072 0.064 0.18 1.7 −0.14 −1.1

15.0 1.3 −0.1 −8.3 −8.5 −2.0
−0.066 −14.0 1.0 −5.5 1.6 −1.1
−0.015 0.27 7.5 2.0 2.9 0.11

1.1 0.52 5.7 8.2× 103 −90.0 −6.7
−0.068 −0.027 −0.054 −2.5 −6.2 −0.46
−0.77 −1.1 6.4 2.0 5.9× 103 84.0
0.033 0.13 0.041 4.5 −9.6 0.48

2.4 2.3 6.4 30.0 39.0 4.1× 103

−0.048 0.069 −0.073 1.7 −2.2 0.2



(25)

It is noteworthy that the obtained identification does not exhibit sparsity, as each
function considered in Θ(X, U) emerges between the seventh and twelfth equations in
the identified model, even when the parameter lambda is not very small (e.g., 1× 10−3).
However, even if one were to consider the identified model as a potential representation
of the nonlinear dynamics of the drone, a significant limitation becomes apparent: the
resulting model is non-controllable. This poses a fundamental issue, given that drones are
recognized as controllable systems in the literature [31]. This discrepancy underscores the
need for further refinement in the modeling approach to ensure an accurate representation
of the controllable nature inherent to drone dynamics.

This example demonstrates that, in general, it is not sufficient to know the functions
appearing in the model to be identified for SINDY to yield correct results. The following
section addresses and mitigates this drawback.

4. Identification of a High-Order Nonlinear Systems with Coupled Dynamics through
the Modified SINDY Algorithm
4.1. GenesisXi Algorithm

At this point, it becomes clear that simply knowing the functions within the model is
insufficient. It is also crucial to determine which differential equation each function should
correspond to. This shift from model identification to coefficient (parameter) identification
is significant, particularly for real-world nonlinear problems.

As a result, modifying the traditional SINDY algorithm involves integrating this
additional information. The goal is to refine the results obtained so that they closely
resemble known models, such as those from quadrotors, thus improving the applicability
and accuracy of the algorithm in real-world scenarios.

To achieve this objective, it is necessary to formulate an initial matrix Ξ0 wherein the
positions of all candidate functions contained in Θ(X, U) within the differential equations
of the mathematical model are defined. To automate this process, namely, obtaining the
aforementioned matrix Ξ0, the GenesisXi algorithm is proposed. The pseudocode for
this algorithm is described in Appendix A.3, while the corresponding MATLAB function,
with Theta_L = ΘL, is given in Appendix A.4.
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Thus, after applying GenesisXi algorithm, and in accordance with (5)–(17), the result-
ing matrix Ξ0 is:

Ξ0 =



0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1



. (26)

Notice that the columns of Ξ0 represent the differential equations in the nonlinear
model, while the rows of Ξ0 represent the candidate functions included in Θ(X, U). Thus,
the matrix (26) indicates that f1 appears in the ninth differential equation, f2 appears only
in the second differential equation, and so forth.

4.2. Modified SINDY Algorithm

Now, the location of the candidate functions in the matrix Ξ0 is passed as a param-
eter to the modified SINDY function, as illustrated in the MATLAB code presented in
Appendix A.5.

The matrix Ξ obtained by applying the MATLAB function provided in Appendix A.5
to the data described in the previous section is:

Ξ =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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0 0 4.725 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

14.32 0 0 0 0 0
0 −14.29 0 0 0 0
0 0 7.302 0 0 0
0 0 0 8169.0 0 0
0 0 0 −2.442 0 0
0 0 0 0 5939 0
0 0 0 0 −7.961 0
0 0 0 0 0 4087
0 0 0 0 0 0.09223



. (27)

Unlike the matrix presented in (25), this matrix corresponds to the sparse identifi-
cation of a high-order nonlinear system characterized by coupled dynamics, specifically
exemplified in the context of drone dynamics. Then, the identified nonlinear system is
given by:

ẋ1 = x7 (28)

ẋ2 = x8 (29)

ẋ3 = x9 (30)

ẋ4 = x12 (31)

ẋ5 = x11 (32)

ẋ6 = x10 (33)

ẋ7 = 14.32β1(sin(x4) sin(x6) + cos(x4) cos(x6)sin(x5)) (34)

ẋ8 = −14.29β1(cos(x4) sin(x6)− cos(x6) sin(x4) sin(x5)) (35)

ẋ9 = 7.302β1 cos(x5) cos(x6) + 4.725 (36)

ẋ10 = 8169β2 − 2.442x11x12 (37)

ẋ11 = 5939β3 − 7.961x10x12 (38)

ẋ12 = 4087.0β4 + 0.09223x10x11. (39)

Notice that the gravity value in Equation (36) is calculated as 4.725, which is 2.076 times
smaller than 9.81. This implies that the entire equation is scaled by 2.076−1. However, as per
Equations (12)–(14), when the identified model is analyzed at the equilibrium, i.e., when
all linear and angular displacements, velocities, and accelerations are zero, and the mass
m is computed using Equations (34)–(36) multiplied by 2.076, it results in m = 0.0698,
m = 0.0699, and m = 0.0659, respectively, which are very close to the nominal value found
in the literature of m = 0.068 [29,30].

Now, based on these equations, a linear stabilizer is designed. To achieve this,
Equations (28)–(39) are linearized at the equilibrium xeq = [0 0 0 0 0 0 0 0 0 0 0 0]T ,
resulting in:

ẋ = Ax + Bu, (40)
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with

A =



0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1.0 0 0
0 0 0 0 −9.27 0 0 0 0 0 0 0
0 0 0 0 0 9.247 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



, (41)

and

B =


0 0 0 0 0 0 0 0 7.302 0 0 0
0 0 0 0 0 0 0 0 0 8169 0 0
0 0 0 0 0 0 0 0 0 0 5939 0
0 0 0 0 0 0 0 0 0 0 0 4087


T

. (42)

The stabilizer u = −Kx is obtained using the Linear Quadratic Regulator (LQR)
approach, which combines the control energy and the state deviations in the cost function
of the form:

J =
∫ ∞

0

(
xTQx + uT Ru

)
dt, (43)

where Q and R are positive definite matrices determining the compromise between min-
imizing the state deviations and the control energy [31]. In this case, Q = I[12×12],
and R = 1 × 106 · I[4×4]. Thus, with matrices A, B, Q, and R as above, the gain K is
computed using the MATLAB function lqr, resulting in:

K =


0 0 0.001 0 0 0
0 0.001 0 0 0 0.006795

−0.001 0 0 0 0.007291 0
0 0 0 0.001 0 0

0 0 0.01658 0 0 0
0 0.001571 0 0.001632 0 0

−0.001604 0 0 0 0.001859 0
0 0 0 0 0 0.00122

 (44)

Then, the stabilizer u = −Kx is applied to the nonlinear model within the Simulink
Support Package for Parrot Minidrones to assess the effectiveness of the identified model.
In this example, the quadcopter reaches an altitude of 1 m using the linear stabilizer.
The numerical results are presented in Figures 5 and 6. Figure 5 illustrates the drone’s
response to the linear stabilizer, while Figure 6 displays the corresponding input signals.

Please note that the goal of this work is not to design sophisticated controllers for
complex drone behavior. Instead, the primary contribution of this work is to introduce an
alternative method for obtaining the mathematical model of a high-order nonlinear system
with coupled dynamics based on real-time measured data.
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Figure 5. Quadcopter’s four degrees of freedom with the linear stabilizer.
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Figure 6. Input signals produced by the linear stabilizer.

5. Discussion

1. In the specific case study, the outcomes achieved through the classical SINDY algo-
rithm do not align with physics-based identification. Moreover, they do not qualify as
sparse identification, as all candidate functions are present in the matrix Ξ.

2. Based on the knowledge of the structure of the complex system to be identified, a more
precise algorithm has been introduced without a significant increase in computational cost.

3. Although the identified model appears to have significant differences from the related
model found in the literature, it enables the design of a controller capable of stabiliz-
ing the original high-order nonlinear system with coupled dynamics. This, in turn,
demonstrates its notable approximation degree.

4. The primary drawback of the proposed approach is that the identification problem
transforms into a coefficient identification task. Nevertheless, in many real-world
applications, this outcome may still be appealing because, in numerous cases, it is
impossible to precisely determine the coefficients of a specific system, even when the
structure of its mathematical model is available.

6. Conclusions

This study presents a modification of the classical SINDY algorithm, facilitating the
identification of mathematical models for high-order nonlinear systems with coupled dy-
namics. Despite its negligible computational cost compared to the benefits it offers, a key
requirement is the prior knowledge of the nonlinear model’s structure to generate the
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template Ξ0 for correctly placing the nonlinear functions within the respective differential
equations. The efficacy of the proposed approach was confirmed through the application
of a linear controller, designed based on the identified model, to the real system. Looking
ahead, applying this approach to real-time quadcopter data, as opposed to the data pro-
vided by MATLAB, would be advantageous. However, this endeavor exceeds the current
scope of the study.

Author Contributions: Conceptualization, R.D.V.-S. and J.A.M.-C.; formal analysis, R.P.-G., R.D.V.-S.,
J.O.E.-A. and R.T.-H.; investigation, J.O.E.-A., R.T.-H. and J.A.M.-C.; methodology, J.O.E.-A., R.T.-H.
and J.A.M.-C.; project administration, J.A.M.-C.; writing—original draft, J.A.M.-C.; writing—review
and editing, R.D.V.-S., J.O.E.-A., R.P.-G., R.T.-H. and J.A.M.-C. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors gratefully acknowledge the partial support provided for this
research by the Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCYT) through
the SNI (Sistema Nacional de Investigadores) scholarship. Additionally, the Instituto Politécnico
Nacional contributed to this work through research projects 20230023 and 20240025, as well as by
providing scholarships under the programs EDI (Estímulo al Desempeño de los Investigadores),
COFAA (Comisión de Operación y Fomento de Actividades Académicas), and BEIFI (Beca de
Estímulo Institucional de Formación de Investigadores).

Conflicts of Interest: The authors declare no conflicts of interest.

Definitions

A Coefficient matrix for the least squares problem.
b Vector of observed or measured values for the least squares problem.
x Vector of unknowns for the least squares problem.
x̂ Estimate or optimal solution for the least squares problem.

X
Matrix whose columns are the states of the system, and the rows are the values of these
states at different sampling instants.

Ẋ
Matrix whose columns are the first-time derivatives of the states of the system, and the
rows are the values of such derivatives at different sampling instants.

U
Matrix whose columns are the input signals of the system, and the rows are the values
of such inputs at different sampling instants.

Θ(X, U)

Matrix whose columns constitute the library of candidate functions, dependent on the
states and/or inputs of the nonlinear system. The rows represent the values of these
functions at various sampling instants.

Ξ
Sparse coefficient matrix that characterizes the importance or contribution of each term
in the library of candidate functions (represented by Θ(X, U) ) to the dynamics of the
system.

Ξ0 Template for Ξ, representing the structure of the nonlinear systems.

Appendix A. Pseudocodes and MATLAB Functions

Appendix A.1. Classical SINDY Algorithm

The following is a verbal description of Algorithm A1:

1. Given a series of snapshots x ∈ Rn, u ∈ Rp and the corresponding time derivatives
ẋ of a dynamical system ẋ = f (x, u), arrange them into matrices X, Ẋ ∈ Rm×n,
and U ∈ Rm×p where m is the number of samples, n is the dimension of the state
vector, and p is the dimension of the input vector.
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Algorithm A1 SINDY algorithm

Require: Data matrix X, U, and derivative matrix Ẋ
Ensure: Sparse model ẋ = ΞΘ(X, U)

1: Construct a library of candidate functions Θ(X, U)
2: Solve the sparse regression problem Ẋ = Θ(X, U)Ξ using a sparsity-promoting tech-

nique (e.g., LASSO)
3: Identify the active terms and coefficients in Ξ that form the model

2. Construct a library of nonlinear candidate functions Θ(X, U) of size m× q, where
q is the number of candidate functions. These functions can be constant, polynomial,
trigonometric, or more exotic functions of the x and u.

3. Solve the sparse regression problem Ẋ = Θ(X, U)Ξ, where Ξ is a matrix of coefficients
of size q× n, by minimizing the objective function

min
Ξ
∥Ẋ−Θ(X, U)Ξ∥2

F + λ∥Ξ∥1, (A1)

where ∥ · ∥F is the Frobenius norm, ∥ · ∥1 is the l1 norm, and λ is a regularization
parameter that controls the sparsity of Ξ.

4. Identify the sparse set of active terms in Θ(X, U) by selecting the rows of Ξ that have
nonzero entries. These terms form the governing equations of the dynamical system:

ẋ = f (x, u) =
q

∑
i=1

ξiθi(x, u), (A2)

where ξi is the i-th row of Ξ and θi(x, u) is the i-th candidate function.

Appendix A.2. Classical SINDY (MATLAB Code)

Listing A1. MATLAB function for the classical SINDY.

1 function Xi = sparsifyDynamics(Theta ,dXdt ,lambda ,n)
2 % Copyright 2015, All Rights Reserved
3 % Code by Steven L. Brunton
4 % For Paper , "Discovering Governing Equations from Data:
5 % Sparse Identification of Nonlinear Dynamical Systems"
6 % by S. L. Brunton , J. L. Proctor , and J. N. Kutz
7

8 % compute Sparse regression: sequential least squares
9 Xi = Theta\dXdt; % initial guess: Least -squares

10

11 % lambda is our sparsification knob.
12 for k=1:10
13 smallinds = (abs(Xi)<lambda); % find small coefficients
14 Xi(smallinds)=0; % and threshold
15 for ind = 1:n % n is state dimension
16 biginds = ~smallinds(:,ind);
17 % Regress dynamics onto remaining terms to find sparse Xi
18 Xi(biginds ,ind) = Theta(:,biginds)\dXdt(:,ind);
19 end
20 end

Appendix A.3. GenesisXi Algorithm

The following is the description of Algorithm A2:

1. Given the vector ΘL ∈ Rq, whose elements contain the number of the differential
equation where the corresponding candidate function should be located, and n, which
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is the dimension of the nonlinear system to be estimated, the matrix Ξ0 ∈ Rq×n is set
to zero. For this case, ΘL = [9 1 2 3 6 5 4 7 8 9 10 10 11 11 12 12].

2. The vector ΘL is traversed from its first element to the last using the index k, simulta-
neously placing a “1” at the position (k, ΘL(k)) in the matrix Ξ0.

Algorithm A2 GenesisXi algorithm

Require: Data vector ΘL and n
Ensure: Initial matrix Ξ0

1: Ξ0 ← 0[q,n]
2: for k = 1 to q do
3: Ξ0(k, ΘL(k))← 1
4: end for

Appendix A.4. GenesisXi (Matlab Code)

Listing A2. MATLAB function for the GenesisXi algorithm.

1 function Xi_0 = GenesisXi(Theta_L ,n)
2 % Construction of Xi_0
3

4 q=size(Theta_L ,1); % Assuming that Theta_L is a column vector.
5 Xi_0=zeros(q,n);
6 for k=1:q
7 Xi_0(k,Theta_l(k))=1;
8 end

Appendix A.5. Modified SINDY (Matlab Code)

Listing A3. MATLAB function with modifications to classical SINDY.

1 function Xi = sparsifyDynamics_mod(Theta ,dXdt ,lambda ,n,Xi0)
2 % Modified SINDY
3

4 Xi = Theta\dXdt;
5 Xi=Xi.*Xi0; %Modification
6 for k=1:10
7 smallinds = (abs(Xi)<lambda);
8 Xi(smallinds)=0;
9 for ind = 1:n

10 biginds = ~smallinds(:,ind);
11 Xi(biginds ,ind) = Theta(:,biginds)\dXdt(:,ind);
12 end
13 end

Roughly speaking, the modifications consist of removing the functions that wrongly
appear in the differential equations after the first guess of the matrix Ξ in line 4. To achieve
this, the MATLAB operator “.∗” is applied to multiply each element of the matrix Ξ obtained
in line 4 by the corresponding element of the matrix Ξ0. In other words, Ξ0 is used as
a template for the desired matrix Ξ. The remainder of the program follows exactly the
structure of the classical SINDY function presented in Listing A2.
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