
Citation: Nicanor, L.D.; Madrid, A.B.;

Hernández, J.E.M.; Juárez, I.A.

Performance of API Design for

Interoperability of Medical

Information Systems. Appl. Sci. 2024,

14, 3944. https://doi.org/10.3390/

app14093944

Academic Editor: Hariton-Nicolae

Costin

Received: 1 March 2024

Revised: 23 April 2024

Accepted: 28 April 2024

Published: 6 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Performance of API Design for Interoperability of Medical
Information Systems
Leticia Dávila Nicanor 1,*, Abraham Banda Madrid 1, Jesús E. Martínez Hernández 2 and Irene Aguilar Juárez 2

1 Laboratorio de Evaluación y Calidad de Software, Centro Universitario UAEMex Valle de México, Boulevard
Universitario s/n. Predio de San Javier, km 11.5, Atizapán de Zaragoza 54500, Mexico; abandam@uaemex.mx

2 Centro Universitario Texcoco, Universidad Autónoma del Estado de México UAEMex, Av. Jardín Zumpango
s/n. Fraccionamiento El Tejocote, Texcoco 56259, Mexico; jmartinezh016@alumno.uaemex.mx (J.E.M.H.);
iaguilarj@uaemex.mx (I.A.J.)

* Correspondence: ldavilan@uaemex.mx

Abstract: After the experience of the COVID-19 pandemic, it has become evident that efficient
and secure interoperability of medical information is crucial for effective diagnoses and medical
treatments. However, a significant challenge arises concerning the heterogeneity of the systems
storing patient information in medical centers or hospitals. Memory management becomes a pivotal
element for the effective operation of the proposed API, as it must seamlessly execute across various
devices, ranging from healthcare units, such as mobile phones, to servers in cloud computing. This
proposal addresses these issues through techniques designed to enhance the performance of the
software architecture in creating a medical interoperability API. This API has the capacity to be
cloned and distributed to facilitate the exchange of data related to a patient’s medical history. To
tackle heterogeneity, efficient memory management was implemented by utilizing an object-oriented
approach and leveraging design patterns like abstract factory and wrapper. Regarding the evaluation
of the proposal, this study showed an estimated performance of 94.5 percent, which was indirectly
demonstrated through the assessment of operation sequences. This result suggests a satisfactory
level based on complexity and coupling.

Keywords: API; application programming interface; information medical interoperability; performance
design; design patterns; HL7

1. Introduction

The transition from paper-based medical records to electronic health records (EHRs)
holds significant potential benefits. One such advantage is the redundancy mitigation
when sharing patient information across medical facilities. Additionally, the adoption of
EHRs contributes to an enhancement in service quality. Through the sharing of patients’
medical histories, doctors and specialists can make more informed and accurate decisions,
ultimately improving the speed of their responses [1–3].

However, a substantial challenge arises when linking information systems due to
the existing heterogeneity between data and processes related to health records (EHRs).
Various standards have been proposed for the exchange of medical information, includ-
ing openEHR [4], NANDA-I [5], ISO/IEEE 11073-PHD [6,7], and X73PHD [8] based on
ISO/IEEE 11073, that are widely accepted. Notably, the HL7 standard has garnered atten-
tion; nowadays, there has been a global adoption of the HL7 protocol in the development of
information systems applied to the clinical area [9–16]. The HL7 organization, which was
established in 1987 for electronic data exchange in the health field (HL7, 2024), had these
standards approved by the American National Standards Institute (ANSI) in 2003 [17].
Different versions of HL7, such as HL7 v2.x and HL7 v3, exhibit differences in structure and
approach, although HL7 v2.x is more commonly used in current clinical practice. The latest
version, HL7 Fast Healthcare Interoperability Resources (FHIR) [11], is built on versions

Appl. Sci. 2024, 14, 3944. https://doi.org/10.3390/app14093944 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14093944
https://doi.org/10.3390/app14093944
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14093944
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14093944?type=check_update&version=1

Appl. Sci. 2024, 14, 3944 2 of 14

2.x and 3.x. FHIR boasts a simplified implementation, offering the advantage of using
the HTTP protocol and RESTful principles for the development of efficient services. It
utilizes HTML and cascading style sheets to generate graphical interfaces, providing the
flexibility to integrate the user interface into a broader environment. Additionally, FHIR
allows for the selection between JSON, XML, or RDF to represent detailed information in
the resulting data.

Despite its strengths, FHIR has faced technical criticism, particularly in the develop-
ment of API interoperability applications, where its implementation can become complex.
In another critique, RIM version 3 is characterized as a standard with challenges in imple-
mentation, usability, scope, documentation, and marketing [18].

The proposed approach sought to address the following research questions, which are
considered primary contributions:

1. Is an object-oriented-design-based API following the HL7 CDA standard a viable
solution for addressing the heterogeneity of legacy medical systems?

2. How can design patterns enhance the architectural design performance of the API to
provide interoperability on medical information systems?

3. Can valid measures of complexity and coupling be employed to assess the efficiency
of the API’s architectural design?

2. Related Work

After the experience of the COVID-19 pandemic, it was found that the efficient and
secure interoperability of medical information is of great importance to provide a good
medical diagnosis and treatment of patients [1]. There is a need to exchange clinical records
to improve the knowledge base and efficiency of care in the health sector. Electronic health
records (EHRs) are a collection of information about a person’s health status [3]. This
standard focuses on the distinction between the representation of health information and
its technical implementation. This separation enables the development of more flexible
and adaptable electronic health systems over time, which, in turn, significantly contributes
to the continuous improvement of patient healthy [2,19]. This has a great impact on
society’s health since it is used to carry out assertive diagnoses in medical treatments.
The information interoperability in the health sector from an international approach is
intended to be resolved through interoperability standards and robust interoperability
platforms [1,2,20]. The big problem when linking information systems are the coexisting
heterogeneity between data and processes related to health records. Many countries have
complex health systems; the use of standards and their automation must support the
complexity that represents the interoperability of information from clinical records in the
various systems that constitute the complex health systems of these regions.

2.1. Medical Information Interoperability

Shin [15] described the development of a mobile application for the transmission of
biosignals in the health field through the HL7 protocol. The proposed solution is optimized
for the home healthcare (uHealthcare) environment and uses ubiquitous computing tech-
nologies to monitor health at home. The main components of a ubiquitous medical system
are identified, including detection, transmission, diagnosis, and prescribing. This paper
describes a specific approach to developing an HL7 API using LabVIEW, emphasizing
its role in the transformation of medical data and its capability to transmit this data to
other systems via a radio frequency. In this application, data are transmitted from the
SpO2 sensor’s biosignal to a mobile phone using a serial approach. The mobile phone
converts raw data to the HL7 standard and sends it to other PCs via Bluetooth or a WLAN.
In the system development, the structure of the abstract message was defined as part
of the message-modeling material. The research area of health monitoring systems has
transitioned from the simple reasoning of wearable sensor readings to advanced data
processing, with the aim to provide more valuable information to end users. In Banaee
H.‘s study [21], emphasis was placed on the significant role of data mining techniques in

Appl. Sci. 2024, 14, 3944 3 of 14

extracting valuable insights from data collected by wearable sensors in health monitoring
systems. These techniques include anomaly detection, the prediction of future trends based
on historical sensor data, making informed decisions about individual health status, and
processing continuous time series measurements. However, these advancements also pose
challenges and concerns, such as ensuring the reliability and accuracy of collected data,
data processing efficiency, and validation in practical healthcare settings.

In Viangteeravat’s work [16], a prototype for the HL7 mapping function in version
v3-RIM was introduced to integrate distributed clinical data sources using R-MIM classes.
This prototype was integrated as a module within the Clinical Data Management System
(CDMS) clinical databases. During testing with the legacy CDMS, the authors argued for
a significant improvement in the information delivery. The unique identifications of the
message, interaction identifier, injection event, and receiver responsibilities is achieved
through the root element. In the system architecture, the wrapper or decorator design
pattern was employed to encapsulate information defined by the interaction code (IN). The
IN displayed in the actual message consists of the injector event, message type, transmission
container, decorator template of the control act, sender, and receiver. The initializing event
and the control act decorator represent another layer of encapsulation around the actual
message, providing information on the date and time the event occurred and the individuals
responsible. A notable advantage is that HL7 v3 uses the XML data model, unifying data
and metadata in a consistent format and operating as a real-time protocol. However, it is
crucial to note that the transaction time in clinical database transactions continues to be a
critical aspect in this context.

In Nicholson’s work [20], the challenge of interoperability in population-based pa-
tient registries (PBPRs) was addressed, proposing the use of a federated semantic MDR
framework. Given the complexity of healthcare infrastructures, health data systems, and
the need to interact with legacy systems, it was emphasized that resolving all interoper-
ability issues through a single health data standard is unlikely. According to the authors,
this proposed framework can operate across standards, facilitate data linkage between
disparate systems, and encourage data federation, eliminating the need for centralized
data collection processes. While the framework’s potential is highlighted, some obstacles
are mentioned. Achieving interoperability between PBPR domains requires agreement on
common data elements (CDEs) at the inter-domain level. Additionally, each metadata and
data provider must establish a local semantic master data repository (MDR) and config-
ure RESTful services, which may pose a challenge for smaller or underfunded registries.
Another proposed framework is AIoTES [1], which offers semantic interoperability at the
platform level, enabling different platforms, technologies, and standards to coexist and
communicate effectively. This facilitates the development of applications and services that
operate across multiple platforms, promoting the exchange and adoption of cross-platform
services and applications for active and healthy aging (AHA). The AIoTES API serves as
a single entry point to access the framework’s functionality. It provides unified RESTful
operations that allow access to internal components, such as the semantic interoperability
layer, data lake, and data analytics. Additionally, it offers consolidated access to the user
interfaces of the tools, ensuring security in transactions.

Cheng’s proposal [22] outlines an architecture focused on the development of a REST-
ful API service. This API, upon access, verifies personal login rights in electronic health
records (EHRs), REDCap login rights, REDCap project permissions, institutional review
board (IRB) project approval status, and key study personnel status each time an end user
logs into a REDCap project. The implemented standard is HL7 FHIR [11], which has been
used to develop a new REDCap module that facilitates data extraction for case report form
(CRF) studies, registries, and data repositories. This proposed module has been utilized in
various high-profile studies at Vanderbilt University Medical Center and has been shared
with institutions utilizing REDCap.

Appl. Sci. 2024, 14, 3944 4 of 14

2.2. Application Programming Interface Challenges

An application programming interface (API) is a set of rules and tools that allows dif-
ferent software applications to communicate with each other [23]. APIs define the methods
and data that developers can use to integrate different software components. From the
viewpoint of the involved systems, the API is seen as a black box since it hides its internal
structure. However, it provides access to a set of procedures and functions designed to
establish interoperability between devices, platforms, and information systems. According
to Biehl [24], a RESTful API is based on the architectural principles of representational
state transfer (REST). These principles include representing resources through URLs using
standard HTTP operations (GET, POST, PUT, DELETE) to interact with those resources,
and transferring representations of resources, typically in the JSON or XML format.

In the work by Praschl [25], the “imaging framework” is presented as a solution to
tackle the challenges of interoperability and extensibility in Java frameworks related to im-
age processing tasks. The modular and extensible nature of Java, its platform independence,
and broad support across various operating systems make it a versatile choice for image-
related tasks. Additionally, Java’s support for GPU-accelerated frameworks contributes
to the efficient execution of complex image processing and computer vision algorithms.
Despite Python’s popularity in these fields, Java boasts a robust and extensive community.
In the realm of API development with Java, Saleh [26] analyzed the features of various
languages that interoperate with Java. The highlighted benefits include syntax similarities
and agreements on object-oriented programming principles, facilitating interoperability.
Saleh’s main proposal focuses on solution development, particularly with the “wrapper”
design pattern to execute Java code in Eolang. It was emphasized that the ability to support
certain syntax is the fundamental mechanism for developing interoperability. Furthermore,
expanding the atom set, including Java wrappers, is suggested as a promising perspective
for Eolang in terms of interoperability.

Despite the existence of standards for data interoperability in the medical field, as
mentioned earlier, persistent situations must be considered. Heterogeneity at the hardware
and software levels implies that medical hubs can range from devices as small as a cell
phone to cloud-integrated systems. Another challenge is the indeterminate number of
transactions that may occur in each query, demanding efficient memory management.
Therefore, APIs, which serve as the central core in interoperability frameworks, must be
portable and capable of dynamically and efficiently handling an indefinite number of
transactions. In this proposal, an API was designed under the semantics of the HL7-CDA
substandard version 3. The proposed architecture adopted a dynamic memory approach
using object-oriented design patterns to optimize the efficiency. The integration of wrapper
and abstract factory design patterns for managing medical record information is crucial.
This approach optimized the memory and time resources, enhancing the efficiency for
object construction during execution in heterogeneous environments.

3. Design of the API Proposal

In the proposed API, the architecture was designed to exchange medical information
from patients during their initial clinical contact, i.e., information recorded in the general
medicine area. The API was based on HL7 standards for clinical documentation, and
DICOM standards [27] for documentation from imaging studies were integrated into the
API layers. As shown in the use case diagram in Figure 1, four main views were determined:
healthcare professionals, healthcare institutions, patients, and governmental organizations.

(1) Healthcare Professionals View:

In this view, doctors, paramedics, nurses, and general healthcare staff in health centers
or hospitals will have the ability to access medical information and update patient data.
This includes medical orders, laboratory results, and electronic medical records. This
view will have the primary involvement concerning the patient, where they are able to
communicate with the imaging area and exchange patient results using unique identifiers

Appl. Sci. 2024, 14, 3944 5 of 14

for each study, activity, and message, following the DICOM imaging studies standard and
its official CONF-DIR specifications. The physician will record the gathered information
using a form provided through the API based on the CDA clinical document architecture
of the HL7 standard. This form will consist of the header, which will contain the patient’s
general personal information. The body will be divided into sections, the number of which
will depend on the studies needed and collected for the healthcare professional to reach an
appropriate diagnosis. The document’s body will also contain additional details that the
physician deems necessary for the complete patient record. The physician is free to add as
many sections as needed but must assign a unique identifier to each one.

(2) Patient View:

The patient will have a minority role in managing the API. They will not have a say in
the manipulation of their medical information and can only access the system for inquiries
and to download certificates added by the general practitioner, as well as to update personal
data when necessary.

(3) Healthcare Institutions View:

This view will be responsible for admitting the personnel of the health center or
hospital, allowing them to interact with the medical information system. This will facilitate
the transfer of clinical information between different healthcare institutions, which is crucial
for coordinated healthcare and the continuity of healthcare.

(4) Governmental Organizations View:

This contributes to collecting standardized data for public health and epidemiological
research. Additionally, it will facilitate the implementation of health policies and healthcare
quality monitoring at a national and international level.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 5 of 15

In this view, doctors, paramedics, nurses, and general healthcare staff in health cen-
ters or hospitals will have the ability to access medical information and update patient
data. This includes medical orders, laboratory results, and electronic medical records. This
view will have the primary involvement concerning the patient, where they are able to
communicate with the imaging area and exchange patient results using unique identifiers
for each study, activity, and message, following the DICOM imaging studies standard and
its official CONF-DIR specifications. The physician will record the gathered information
using a form provided through the API based on the CDA clinical document architecture
of the HL7 standard. This form will consist of the header, which will contain the patient’s
general personal information. The body will be divided into sections, the number of which
will depend on the studies needed and collected for the healthcare professional to reach
an appropriate diagnosis. The document’s body will also contain additional details that
the physician deems necessary for the complete patient record. The physician is free to
add as many sections as needed but must assign a unique identifier to each one.
(2) Patient View:

The patient will have a minority role in managing the API. They will not have a say
in the manipulation of their medical information and can only access the system for in-
quiries and to download certificates added by the general practitioner, as well as to update
personal data when necessary.
(3) Healthcare Institutions View:

This view will be responsible for admitting the personnel of the health center or hos-
pital, allowing them to interact with the medical information system. This will facilitate
the transfer of clinical information between different healthcare institutions, which is cru-
cial for coordinated healthcare and the continuity of healthcare.
(4) Governmental Organizations View:

This contributes to collecting standardized data for public health and epidemiologi-
cal research. Additionally, it will facilitate the implementation of health policies and
healthcare quality monitoring at a national and international level.

Figure 1. Interoperability API’s use case.

Concerning functional requirements, Table 1 is presented, which describes the spec-
ifications following the views.

Figure 1. Interoperability API’s use case.

Concerning functional requirements, Table 1 is presented, which describes the specifi-
cations following the views.

Appl. Sci. 2024, 14, 3944 6 of 14

Table 1. API’s functional requirements descriptions.

Id Description

FR1 The system allows access to authorized users through authentication with their
username and password

FR2
The system is required to consider profiles based on roles and organizational
structure. The system includes four views: healthcare professionals, healthcare
institutions, patients, and governmental organizations.

FR3

Healthcare professionals: healthcare staff in health centers or hospitals will have the
ability to access medical information and update patient data, such as updating
electronic health records (EHRs), reviewing studies, checking EHRs, and
requesting studies.

FR4 Patient: this user will only be able to perform query operations and download
certificates and studies, such as checking EHRs and reviewing studies.

FR5
Healthcare institutions: this user will be able to update information about the
personnel of the health center or medical unit in charge, such as registering medical
professionals, modifying personnel, and reviewing studies.

API’s Architectural Design

A clonable and distributable architecture has been proposed for the medical inter-
operability API, whose instances establish connections with medical centers or hospitals
to obtain patient medical history information. In Figure 2, the proposed architecture is
shown and was designed using abstract factory and wrapper design patterns. When a
patient arrives and their medical record is required, the API can clone itself through an
abstract factory (Factory_HCE) that generates objects of type HCE at runtime according
to the number and characteristics of medical centers or hospitals it needs to contact to
obtain the patient’s medical information. Once contact is established with the medical
centers, the Wrapper Medical History class retrieves patient information by encapsulating
details such as personal data controlled by the Patient Identification Data class, references to
clinical document records, and details of events related to the ailment that triggered the
search, as controlled by the CDA class, where medical records are concentrated according
to the HL7 CDA protocol format in the contacting medical centers or hospitals. Methods
were established to obtain information about a list of previous illnesses or conditions,
records of performed medical procedures, reports from imaging studies (X-rays, MRIs,
etc.), vaccination history, vaccines received with corresponding dates, clinical notes, records
of medical visits and consultations, observations and comments from medical staff, pre-
scriptions, treatments, prescribed medications, details of specific treatments, insurance
information and billing, details about the patient’s health insurance, billing and financial
records, emergency contact information, and details of individuals to contact in case of
emergency. Finally, the Laboratory Results and Studies class is part of the encapsulation of
references to download information related to imaging studies.

According to the use case diagram, the healthcare professional view can request to
initialize the API operation. Figure 3 depicts the state diagram of the HCE class corre-
sponding to the medical history. In this figure, it is possible to observe three states in
the API operation: data validation, data processed, and record updated. The method
get_Patient_Identification_Data establishes the validation data to reach the validation
state. The method get_List_Of_Previous_Illnesses_Or_Conditions locates the information
related to the validated user in the medical system. Once the patient’s data are located,
the wrapper updates and encapsulates the records according to the HL7 format using the
get_Record_Of_Performed_Medical_Procedures methods, getter, and setter. For studies
containing images, only the links’ addresses from the imaging area are taken into account.
Once this process is complete, the complete record is sent as text. In this way, each instance
is generated through the abstract factory according to the medical centers or hospitals
where the patient has information.

Appl. Sci. 2024, 14, 3944 7 of 14Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 15

Figure 2. Interoperability APIs architectural design.

According to the use case diagram, the healthcare professional view can request to
initialize the API operation. Figure 3 depicts the state diagram of the HCE class corre-
sponding to the medical history. In this figure, it is possible to observe three states in the
API operation: data validation, data processed, and record updated. The method get_Pa-
tient_Identification_Data establishes the validation data to reach the validation state. The
method get_List_Of_Previous_Illnesses_Or_Conditions locates the information related to
the validated user in the medical system. Once the patient’s data are located, the wrapper
updates and encapsulates the records according to the HL7 format using the get_Rec-
ord_Of_Performed_Medical_Procedures methods, getter, and setter. For studies contain-
ing images, only the links’ addresses from the imaging area are taken into account. Once
this process is complete, the complete record is sent as text. In this way, each instance is

Figure 2. Interoperability APIs architectural design.

As shown in the interoperability operation in Figure 4, the information obtained
through the instances at each medical center returns to the requesting medical center and
consolidates the information for the requisition.

When the Healthcare Professionals View requests information for a patient with the
following medical history: mild hypoventilation with wheezing, heart rate of 95, respiratory
rate of 28, inguinal lymph node with abnormal behavior, and periscapular inguinal lymph
node with normal signs, an XML document is generated with the format as shown in
Table 2.

Appl. Sci. 2024, 14, 3944 8 of 14

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 15

generated through the abstract factory according to the medical centers or hospitals where
the patient has information.

Figure 3. HCE state diagram design.

As shown in the interoperability operation in Figure 4, the information obtained
through the instances at each medical center returns to the requesting medical center and
consolidates the information for the requisition.

Figure 4. Interoperability APIs operation.

When the Healthcare Professionals View requests information for a patient with the fol-
lowing medical history: mild hypoventilation with wheezing, heart rate of 95, respiratory
rate of 28, inguinal lymph node with abnormal behavior, and periscapular inguinal lymph
node with normal signs, an XML document is generated with the format as shown in Ta-
ble 2.

Figure 3. HCE state diagram design.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 8 of 15

generated through the abstract factory according to the medical centers or hospitals where
the patient has information.

Figure 3. HCE state diagram design.

As shown in the interoperability operation in Figure 4, the information obtained
through the instances at each medical center returns to the requesting medical center and
consolidates the information for the requisition.

Figure 4. Interoperability APIs operation.

When the Healthcare Professionals View requests information for a patient with the fol-
lowing medical history: mild hypoventilation with wheezing, heart rate of 95, respiratory
rate of 28, inguinal lymph node with abnormal behavior, and periscapular inguinal lymph
node with normal signs, an XML document is generated with the format as shown in Ta-
ble 2.

Figure 4. Interoperability APIs operation.

Table 2. XML response of the patient’s objective description.

Output XML Document

<?xml version=“1.0” encoding=“UTF-8”?>
<ClinicalDocument xmlns=“urn:hl7-org:v3”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”>
<!-- Document Header -->
<typeId root=“2.16.840.1.113883.1.3” extension=“POCD_HD000040”/>
<templateId root=“2.16.840.1.113883.10.20.22.1.1”/>
<!-- Patient Information -->
<recordTarget>
<patientRole>
<!-- Patient Details -->
<patient>
<name>Patient Name</name>
<administrativeGenderCode code=“F” codeSystem=“2.16.840.1.113883.5.1”/>
<birthTime value=“Date of Birth”/>
</patient>

http://www.w3.org/2001/XMLSchema-instance

Appl. Sci. 2024, 14, 3944 9 of 14

Table 2. Cont.

Output XML Document

<!-- Signs and Symptoms Details -->
<observation classCode=“OBS” moodCode=“EVN”>
<!-- Hypoventilation -->
<code code=“267036007” codeSystem=“2.16.840.1.113883.6.96”
displayName=“Hypoventilation”/>
<value xsi:type=“ST”>Mild</value>
</observation>
<observation classCode=“OBS” moodCode=“EVN”>
<!-- Heart Rate -->
<code code=“8867-4” codeSystem=“2.16.840.1.113883.6.1” displayName=“Heart rate”/>
<value xsi:type=“PQ” value=“95” unit=“/min”/>
</observation>
<observation classCode=“OBS” moodCode=“EVN”>
<!-- Respiratory Rate -->
<code code=“9279-1” codeSystem=“2.16.840.1.113883.6.1” displayName=“Respiratory rate”/>
<value xsi:type=“PQ” value=“28” unit=“/min”/>
</observation>
<!-- Lymph Nodes Details -->
<observation classCode=“OBS” moodCode=“EVN”>
<code code=“102942000” codeSystem=“2.16.840.1.113883.6.96” displayName=“Lymph node”/>
<value xsi:type=“ST”>Inguinal with Abnormal Behavior</value>
</observation>
<observation classCode=“OBS” moodCode=“EVN”>
<code code=“102942000” codeSystem=“2.16.840.1.113883.6.96” displayName=“Lymph node”/>
<value xsi:type=“ST”>Preescapular with Normal Signs</value>
</observation>
</patientRole>
</recordTarget>
</ClinicalDocument>

4. Methodology for Evaluating Architectural Design of API’s Architecture System Using
Predictive Modeling and Graph Theory-Based Metrics

We employed the proposal in [28] to evaluate the performance of the architectural
design in the proposed system. This involved using a predictive model to establish a quality
framework for assessing object-oriented systems during the design stage. The assessment
incorporated software architecture analysis through graph theory and software metrics,
with a specific focus on complexity and coupling. The following steps were tailored for
a system consisting of all classes: Factory_HCE, HCE, Wrapper_Medical_History, CDA,
Patient_Identification_Data, Laboratory_Results, and Personal_Medical_History.

4.1. Methodology Applied

I. Creation of the ACG (architectural complexity graph): The architectural design is visu-
alized in Figures 2 and 3, representing the six classes in the system. UML diagrams
served as the input to construct the ACG.

II. Assignment of the complex attribute on the ACG: CCM metrics were used as weights in
the ACG (Refer to Figure 5). The Floyd–Warshall algorithm was applied to estimate
critical paths and eighteen critical paths were identified.

III. Assignment of the CBO metric on localized paths: Following the proposal, performance
architectural factors for critical paths were determined by calculating the Spearman
correlation coefficient between the CBO and CCM data groups in each localized path.
Table 3 presents some path results, featuring the identification path in the first column,
CCM and CBO metrics in the next column, and the quality factor results in the last
column. Spearman’s correlation evaluates the relationship between CCM and CBO as
ordinal variables, providing values on a spectrum between −1 to +1. A value closer

Appl. Sci. 2024, 14, 3944 10 of 14

to −1 indicates a weak relationship (low performance), while a value closer to +1
suggests a stronger relationship and higher performance.

IV. Inference of performance parameter: Table 3 displays six critical paths (1, 2, 3, 4, 5, and 18)
as examples of the results, including the ID of the critical paths, component sequences
with CMM and CBO metrics, and quality parameters. All results served as input data
for the scatter dispersion plot in Figure 6.
The Factory_HCE class was included in the study. Being an abstract class, metrics
of 1 in CCM and 0 in CBO were assigned. Eighteen critical paths were identified, in
seventeen of which, the efficiency evaluation parameter had values close to +1, while
only one path had a value of zero according to the scatter plot. Furthermore, these
paths ultimately led to only four active and dynamic nodes. In summary, this adapted
methodology provides insights into the architectural design quality of a system with
six components. It utilizes metrics and critical paths to infer the system’s architectural
performance, focusing on the attributes of complexity and coupling.

Table 3. Set the critical paths evaluated through performance parameters on API architecture.

ID Path Sequence Performance Parameter

1 v0 v1

0.9428CBO 2 3

CCM 1 1

2 v0 v1 v2

0.7745CBO 2 3 1

CCM 1 1 1

3 v0 v1 v2 v3
0.0CBO 2 3 1 2

CCM 1 1 1 1

4 v0 v1 v2 v4
0.7745CBO 2 3 1

CMM 1 1 1

5 v0 v1 v2 v5
0.7745CBO 2 3 1

CMM 1 1 1

...
...

...

18 V2 V6
1.0CBO 1 0

CMM 1 0

4.2. Discussion

In this proposal, an object-oriented approach was selected, and design patterns were
incorporated to enhance the performance of the software architecture of the medical inter-
operability API. In this case, the primary concern was addressing the context of inherited
medical interoperability that involved medical centers or hospitals with devices that have
limited memory capacity for patient data. Emphasis was placed on optimizing the design
through the use of dynamic objects in memory generated at runtime. This approach differs
from others where all system functions are loaded into memory, potentially negatively
impacting the API’s operational dynamics due to potential memory saturation on the
executing devices.

Appl. Sci. 2024, 14, 3944 11 of 14

Appl. Sci. 2024, 14, x FOR PEER REVIEW 11 of 15

CMM 1 1 1
5 v0 v1 v2 v5

0.7745 CBO 2 3 1
CMM 1 1 1

⁝ ⁝ ⁝
18 V2 V6

1.0 CBO 1 0
CMM 1 0

4.2. Discussion
In this proposal, an object-oriented approach was selected, and design patterns were

incorporated to enhance the performance of the software architecture of the medical in-
teroperability API. In this case, the primary concern was addressing the context of inher-
ited medical interoperability that involved medical centers or hospitals with devices that
have limited memory capacity for patient data. Emphasis was placed on optimizing the
design through the use of dynamic objects in memory generated at runtime. This ap-
proach differs from others where all system functions are loaded into memory, potentially
negatively impacting the API’s operational dynamics due to potential memory saturation
on the executing devices.

Figure 5. Interoperability API’s ACG.
Figure 5. Interoperability API’s ACG.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 12 of 15

Figure 6. Dispersion performance of API architectural design.

To validate and quantify the proposed design approach, a software architecture eval-
uation method was integrated based on design quality attributes, such as complexity and
coupling. The selected proposal for analysis emphasized a complexity approach strength-
ened with coupling, with the understanding that this relationship is linked to performance
and is a desired attribute for application performance. The design evaluation was static,
as the source code was not available during this phase. The evaluation was conducted
through UML diagrams, algorithms, and other design artifacts. Evaluating the design was
advantageous due to cost reduction, defect localization and correction before code imple-
mentation, and early test prioritization based on components identified with a higher
probability of failure.

The architectural design evaluation applied in this research established a predictive
model and a formal method to assess the quality in object-oriented systems. The architec-
tural complexity graph (ACG) was introduced for a deterministic analysis, serving as a
basis to establish the performance parameter. Component sequences with a parameter
close to +1 were considered to have a stronger relationship between complexity and cou-
pling attributes, indicating a good level of performance. As shown in the plot of the dis-
persion performance of the API architectural design in Figure 6, implementing abstract
factory and wrapper design patterns in the proposed API architecture led to 94.5 percent
of the evaluated sequences being close to +1, suggesting a good level based on complexity
and coupling. We considered the approach logically valid for indirectly studying the per-
formance of software design architectures.

4.3. Research Limitations and Future Trends
This proposal addresses the pressing need for interoperability in medical infor-

mation, which is particularly underscored in the post-COVID-19 era, where its pivotal
role in facilitating accurate diagnoses and effective treatments for patients is widely
acknowledged. The primary objective was to enhance the architecture of the medical in-
teroperability API software (https://uk.linkedin.com/company/api-software-ltd, 27 April

Figure 6. Dispersion performance of API architectural design.

To validate and quantify the proposed design approach, a software architecture evalu-
ation method was integrated based on design quality attributes, such as complexity and
coupling. The selected proposal for analysis emphasized a complexity approach strength-
ened with coupling, with the understanding that this relationship is linked to performance
and is a desired attribute for application performance. The design evaluation was static,
as the source code was not available during this phase. The evaluation was conducted
through UML diagrams, algorithms, and other design artifacts. Evaluating the design

Appl. Sci. 2024, 14, 3944 12 of 14

was advantageous due to cost reduction, defect localization and correction before code
implementation, and early test prioritization based on components identified with a higher
probability of failure.

The architectural design evaluation applied in this research established a predictive
model and a formal method to assess the quality in object-oriented systems. The archi-
tectural complexity graph (ACG) was introduced for a deterministic analysis, serving as
a basis to establish the performance parameter. Component sequences with a parame-
ter close to +1 were considered to have a stronger relationship between complexity and
coupling attributes, indicating a good level of performance. As shown in the plot of the
dispersion performance of the API architectural design in Figure 6, implementing abstract
factory and wrapper design patterns in the proposed API architecture led to 94.5 percent of
the evaluated sequences being close to +1, suggesting a good level based on complexity
and coupling. We considered the approach logically valid for indirectly studying the
performance of software design architectures.

4.3. Research Limitations and Future Trends

This proposal addresses the pressing need for interoperability in medical information,
which is particularly underscored in the post-COVID-19 era, where its pivotal role in facili-
tating accurate diagnoses and effective treatments for patients is widely acknowledged. The
primary objective was to enhance the architecture of the new medical interoperability API
software through the utilization of an object-oriented approach and the seamless integra-
tion of design patterns. The emphasis was placed on refining the design to accommodate
devices with limited memory capacity. Furthermore, this initiative laid down a robust
framework for early evaluation and enhancement of the software architectural design, thus
mitigating costs in the API development lifecycle. However, a significant challenge arose
during the design phase that stemmed from the difficulty in assessing the practical effective-
ness of the proposed architecture in real-world scenarios. The evaluation predominantly
relied on static methods using predictive models and formal techniques. Additionally,
practical implementation may face hurdles due to resource constraints, compatibility issues
with existing platforms, and the intricate nature of integration with established health-
care systems.

Among the programming languages where the proposed architecture was suggested
to be implemented, Java stood out as a strong candidate. It was designed from its inception
to be interoperable, promoting portability and integration across different systems and
services through standards, abstractions, and a common virtual machine. During the testing
phase, the analysis model utilizing the proposed GCA acted as a guiding framework. This
model, coupled with functional analysis weighted with design metrics, delineated the
operational sequences of the API, offering early insights for crafting the test matrix.

We worked with the HL7 CDA standard [13], which is based on specific clinical
documents. Its data model is structured around segments and fields, and the standard
specifies how they should be organized and transmitted in messages. However, CDA’s rigid
structure limits its adaptability to different contexts and data requirements, particularly
when handling large volumes of information. Other standards are also widely utilized
and offer complementary features in managing health information, such as OpenEHR.
This standard focuses on creating and managing electronic health records (EHRs) and
semantically representing clinical information. OpenEHR utilizes a data model based on
archetypes, which are semantic constructs that define the structure and meaning of clinical
information. This enables a more robust and structured representation of health data. In
this scenario, the API must integrate with other standards to function effectively.

5. Conclusions

At a global level, there is a significant need for medical interoperability. However,
one of the major challenges is the heterogeneity of the systems that store patient infor-
mation in medical centers or hospitals. Memory management becomes a key challenge

Appl. Sci. 2024, 14, 3944 13 of 14

in the operation of the proposed API, as it needs to seamlessly execute on any device,
ranging from healthcare units like mobile phones to servers in cloud computing. In this
proposal, an object-oriented approach was chosen, and design patterns were integrated
to enhance the performance of the software architecture of the medical interoperability
API. The implementation of design patterns, such as abstract factory and wrapper, in the
proposed API architecture provided the capability to clone itself, generating instances at
runtime and distributing each of these instances to medical centers where patient infor-
mation is required. Once contact is established with the medical centers, the API retrieves
patient information by encapsulating details such as controlled personal data, like patient
identification data, a list of previous illnesses or conditions, records of performed medi-
cal procedures, and reports from imaging studies (X-rays, MRIs, etc.). The information
obtained through the instances at each medical center returns to the requesting medical
center and consolidates the information for the requisition. During the architectural design
evaluation, this study reported a 94.5 percent performance, which was indirectly demon-
strated through the assessment of operation sequences, suggesting a good level based on
complexity and coupling. Based on the results obtained, we can conclude that this approach
optimizes memory and time resources, improving the efficiency for object construction
during execution in heterogeneous environments. This approach increases the efficiency of
memory usage and response time in the exchange of electronic records, which impacts the
improvement of efficiency in hospital care responses. Therefore, we concluded that HL7 is a
suitable standard for managing interoperability. However, it needs to be complemented to
enhance and facilitate the management of the semantic representation of electronic health
records (EHRs).

In future work, the validation of the proposed design in real-world contexts is impera-
tive to ensure its practical utility. The proposed architecture will be implemented in the
Java language, and other protocols will be included in its format, such as OpenEHR, which
is widely used in the development of medical interoperability APIs. This pivotal aspect
involves equipping the architecture with mechanisms to adapt to diverse existing medical
interoperability standards. The builder design pattern emerged as a promising solution to
address this requirement.

Author Contributions: Conceptualization, L.D.N. and J.E.M.H. Methodology, L.D.N. and I.A.J.
Design, L.D.N., J.E.M.H. and A.B.M. Validation, A.B.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to privacy.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Valero, C.I.; Medrano Gil, A.M.; Gonzalez-Usach, R.; Julian, M.; Fico, G.; Arredondo, M.T.; Stavropoulos, T.G.; Strantsalis, D.;

Voulgaridis, A.; Roca, F.; et al. AIoTES: Setting the principles for semantic interoperable and modern IoT-enabled reference
architecture for Active and Healthy Ageing ecosystems. Comput. Commun. 2021, 177, 96–111. [CrossRef]

2. Khan, W.A.; Khattak, M.S.; Magbool, L.H.; Bilial, A. Achieving interoperability among healthcare standards: Building semantic
mappings at models level. In Proceedings of the 6th International Conference on Ubiquitous Information Management and
Communications ICUIMC’12, Kuala Lumpur, Malaysia, 20–22 February 2012.

3. Benson, T. Principles of Health Interoperability HL7 and SNOMED, 1st ed.; Springer: London, UK, 2010; pp. 1–263.
4. OpenEHR. Available online: https://www.openehr.org (accessed on 28 February 2024).
5. Lu, D.F.; Eichmann, D.; Konicek, D.; Park, H.T.; Ucharattana, P.; Delaney, C. Standardized nursing language in the systematized

nomenclature of medicine clinical terms: A cross-mapping validation method. Comput. Inform. Nurs. 2006, 24, 288–296. [CrossRef]
[PubMed]

https://doi.org/10.1016/j.comcom.2021.06.010
https://www.openehr.org
https://doi.org/10.1097/00024665-200609000-00011
https://www.ncbi.nlm.nih.gov/pubmed/16980782

Appl. Sci. 2024, 14, 3944 14 of 14

6. Trigo, J.D.; Chiarugi, F.; Iglesias, A. Transmisión de ECGs en tiempo real basada en estándares: Armonización de ISO/IEEE
11073-PHD y SCP-ECG. In Proceedings of the XXVII Congreso Anual de la Sociedad Espanola de Ingenieria Biomedica, Cadiz,
Spain, 15–16 January 2010.

7. Yuksel, M.; Dogac, A. Interoperability of Medical Device Information and the Clinical Application: An HL7 RMIM based on the
ISO/IEEE 11073 DIM. IEEE Trans. Inf. Technol. Biomed. 2011, 15, 557–566. [CrossRef] [PubMed]

8. Martinez-Esproncedal, M.; Martinez, S.; Led, S. INTENSA: Sistema de Monitorización de Pacientes con Insuficiencia Cardíaca
basado en el Estándar ISO/IEEE11073. Available online: http://diec.unizar.es/intranet/articulos/uploads/INTENSA:
%20Sistema%20de%20monitorizacion%20de%20pacientes%20con%20insuficiencia%20cardiaca%20basado%20en%20el%20
estandar%20ISO-IEEE11073.pdf (accessed on 28 February 2024).

9. Koncar, M. Implementing the HL7 v3 standard in the Croatian primary Healthcare domain. Stud. Health Technol. Inform. 2004,
105, 325–336. [PubMed]

10. Newsletter, HL7 Europe. Available online: http://www.hl7.eu (accessed on 28 February 2024).
11. Joune, A. Development of an Interoperable Exchange, Aggregation, and Analysis Platform for Health and Environmental Data.

Master’s Thesis, University of Applied Sciences Technikum Wien, Wien, Austria, 2017.
12. Aguilar, R.A.; López, D.M. HL7 Implementation Guide for Public Health Reporting Systems in Colombia; Technical Report; Grupo de

Ingenieria Telematica, Universidad del Cauca: Cauca, Colombia, 2009.
13. Fuentes, I.; Guevara, D.; García, M. Toma de decisions inteligente a partir de registros medicos alamacenados en CDA-HL7. Rev.

Cuba. Informática Médica 2016, 8, 109–124.
14. Velázquez, M.; Vázquez, M.; Nieto, J.; Sanchez, J. Modelo de interoperabilidad dela historia clinica electrónica utilizando

HL7-CDA basado en computación en la nube. Res. Comput. Sci. 2015, 108, 37–44. [CrossRef]
15. Shin, D.I.; Pak, P.J.; Huh, S.J. The Mobile Implementation of HL7 API for u-Healthcare Devices. In World Congress on Medical

Physics and Biomedical Engineering, 1st ed.; Shin, D.I., Hug, S.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1,
pp. 110–111.

16. Viangteeravat, T.; Anyanwu, M.N.; Nagisetty, V.R. Clinical data integration of distributed data sources using Health Level Seven
(HL7) v3-RIM mapping. J. Clin. Bioinform. 2011, 1, 32. [CrossRef] [PubMed]

17. Schadow, G.; Mead, N.; Walker, M. The HL7 Reference Information Model Uner Scrutiny. Stud. Health Technol. Inform. 2006,
124, 151. [PubMed]

18. Smith, B.; Ceusters, W. HL7 RIM: An Incoherent Standard. In Proceedings of the MIE 2006, Studies in Health Technology and
Informatics 124, Maastricht, The Netherlands, 27–30 August 2006; pp. 133–138.

19. Beale, T.; Frade, S.; Leslie, H. Archetypes: Constraint-based Domain Models for Future-proof Information Systems. Openehr
Foundation: London, UK, 2008.

20. Nicholson, N.; Perego, A. Interoperability of population-based patient registries. J. Biomed. Inform. 2020, 112, 100074. [CrossRef]
[PubMed]

21. Banaee, H.; Ahmed, M.U.; Loutfi, A. Data mining for wearable sensors in health monitoring systems: A review of recent trends
and challenges. Sensors 2013, 13, 17472–17500. [CrossRef]

22. Cheng, A.C.; Duda, S.N.; Taylor, R.; Delacqua, F.; Lewis, A.A.; Bosler, T.; Johnson, K.B.; Harris, P.A. REDCap on FHIR: Clinical
Data Interoperability Services. J. Biomed. Inform. 2021, 121, 103871. [CrossRef]

23. Jacobson, D.; Brail, G.; Woods, D. APIs: A Strategy Guide; Oreilly & Associates: Sebastopol, CA, USA, 2012; pp. 1–134.
24. Biehl, M. RESTful API Design: Best Practices in API Design with REST, 1st ed.; Volume 3 of the API-Univerity Series; API-University

Press: Rotkreuz, Switzerland, 2018; pp. 1–327.
25. Praschl, C.; Pointner, A.; Baumgartner, D.; Zwettler, G.A. Imaging framework: An interoperable and extendable connector for

image-related Java frameworks. SoftwareX 2021, 16, 100863. [CrossRef]
26. Saleh, H.; Attakorah, J.A.; Zykov, S.; Legalov, A. Exploring the Eolang-Java Integration and Interoperability. Procedia Comput. Sci.

2021, 192, 4560–4569. [CrossRef]
27. Health Level Seven International (HL7). Implementation Guide for CDA Release 2: Imaging Integration Levels 1, 2, and 3: Basic Imaging

Reports in CDA and DICOM; Health Level Seven International (HL7): Ann Arbor, MI, USA, 2015.
28. Davila-Nicanor, L.; Aguilar, I.; Ayala, J.; Banda-Madrid, A.; Cruz, S. Performance on Software Architecture Design to Serious

Games for Mobile Devices. In Software Engineering for Games in Serious Contexts, 1st ed.; Cooper, K., Bucchiarone, A., Eds.; Springer
Nature: Cham, Switzerland, 2023; Volume 1, pp. 63–84.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TITB.2011.2151868
https://www.ncbi.nlm.nih.gov/pubmed/21558061
http://diec.unizar.es/intranet/articulos/uploads/INTENSA:%20Sistema%20de%20monitorizacion%20de%20pacientes%20con%20insuficiencia%20cardiaca%20basado%20en%20el%20estandar%20ISO-IEEE11073.pdf
http://diec.unizar.es/intranet/articulos/uploads/INTENSA:%20Sistema%20de%20monitorizacion%20de%20pacientes%20con%20insuficiencia%20cardiaca%20basado%20en%20el%20estandar%20ISO-IEEE11073.pdf
http://diec.unizar.es/intranet/articulos/uploads/INTENSA:%20Sistema%20de%20monitorizacion%20de%20pacientes%20con%20insuficiencia%20cardiaca%20basado%20en%20el%20estandar%20ISO-IEEE11073.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15718621
http://www.hl7.eu
https://doi.org/10.13053/rcs-108-1-4
https://doi.org/10.1186/2043-9113-1-32
https://www.ncbi.nlm.nih.gov/pubmed/22104558
https://www.ncbi.nlm.nih.gov/pubmed/17108519
https://doi.org/10.1016/j.yjbinx.2020.100074
https://www.ncbi.nlm.nih.gov/pubmed/32838295
https://doi.org/10.3390/s131217472
https://doi.org/10.1016/j.jbi.2021.103871
https://doi.org/10.1016/j.softx.2021.100863
https://doi.org/10.1016/j.procs.2021.09.234

	Introduction
	Related Work
	Medical Information Interoperability
	Application Programming Interface Challenges

	Design of the API Proposal
	Methodology for Evaluating Architectural Design of API’s Architecture System Using Predictive Modeling and Graph Theory-Based Metrics
	Methodology Applied
	Discussion
	Research Limitations and Future Trends

	Conclusions
	References

