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Abstract: The relationship between cerebral rhythms and early sensorimotor development is not
clear. In recent decades, evidence revealed a rhythmic modulation involving sensorimotor processing.
A widely corroborated functional role of oscillatory activity is to coordinate the information flow
across sensorimotor networks. Their activity is coordinated by event-related synchronisation and
desynchronisation in different sensorimotor rhythms, which indicate parallel processes may be
occurring in the neuronal network during movement. To date, the dynamics of these brain oscillations
and early sensorimotor development are unexplored. Our study investigates the relationship between
the cerebral rhythms using EEG and a typical rhythmic movement of infants, the non-nutritive
sucking (NNS) behaviour. NNS is an endogenous behaviour that originates from the suck central
pattern generator in the brainstem. We find, in 17 infants, that sucking frequency correlates with beta
synchronisation within the sensorimotor area in two phases: one strongly anticipating (~3 s) and the
other encompassing the start of the motion. These findings suggest that a beta synchronisation of the
sensorimotor cortex may influence the sensorimotor dynamics of NNS activity. Our results reveal
the importance of rapid brain oscillations in infants and the role of beta synchronisation and their
possible role in the communication between cortical and deep generators.

Keywords: sensorimotor; infants; non-nutritive sucking; brain oscillations; beta synchronisation

1. Introduction

Natural behaviour relies on a dynamic interaction between multimodal sensorimotor
loops coordinating the information flow and synchronising signals processed by differ-
ent systems [1,2]. Sensorimotor activity is observed in the form of EEG event-related
(de)synchronisation (ERD/ERS) [3]. The typical pattern of cortical activation in adults
during a voluntary movement shows an ERD of mu (8–12 Hz) and beta (14–32 Hz) activity
during the planning period (approximately between 3 and 1.5 s prior to the movement)
and the motor execution, observation, or imagination (starting approximately 0.7 s before
the movement) [4–7] over the regionally localised motor cortex specifically related to the
part of the body that produces the movement [6]. The end of the movement is followed by
a beta ERS called the beta rebound [8–10]. These findings originally led to the conclusion
that desynchronisation is associated with an activation of sensorimotor areas, whereas
synchronisation occurs when the cortex enter in an idling state. Instead, many later studies

Brain Sci. 2024, 14, 402. https://doi.org/10.3390/brainsci14040402 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci14040402
https://doi.org/10.3390/brainsci14040402
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-7097-4500
https://orcid.org/0000-0002-5828-7070
https://orcid.org/0000-0003-1239-9904
https://doi.org/10.3390/brainsci14040402
https://www.mdpi.com/journal/brainsci
http://www.mdpi.com/2076-3425/14/4/402?type=check_update&version=3


Brain Sci. 2024, 14, 402 2 of 14

evidenced a deeper and more active role of beta synchronisation in the cortical-subcortical
information processing [8,11–14].

The role of these rhythms in early life and how they differ from adults has not been fully
explored. An adult-like neurophysiological pattern during active movement was found
in older infants, suggesting the cortical networks learn to represent patterns of biological
motion of human action early in life [15,16]. However, few studies have investigated
sensorimotor neural activity in infants [15–20], leaving many mechanisms unexplored, such
as the involvement of the beta synchronisation in infancy. Beta activity is physiologically
underrepresented before the onset of maturation of the cerebral cortex and progressively
emerges during the last trimester of pregnancy [21,22], thanks to the greater development
of cerebral pathways and the organization of neuronal circuits [23]. Adequate quantity of
beta activity is reflected in an optimal development of motor and attentional skills [18,24].
However, a better understanding of its role in the first years of life opens potential windows
for early intervention. Therefore, here we want to investigate whether beta oscillations may
be involved in cortico-subcortical communication already early in life.

An indirect way to measure it, following a neuroethological approach [25], is to explore
the innate behaviours. Indeed, they are considered a window into the correct maturation
of the central nervous system [26]. In this study, for the first time, we tried to understand
what the communication mechanisms between brain structures could be by studying one
of the first innate behaviours: non-nutritive sucking (NNS). Non-nutritive sucking is a
spontaneous motor behaviour manifesting in a stable rhythm organised as a series of bursts
of sucking with pauses in between [27]. The ontogenesis of NNS is primarily dependent
on brain maturation and represents an excellent marker of optimal functioning of the
central nervous system in the first weeks of life [28]. Specifically, it represents a compelling
model of communication between cortical and deep generators of movement. NNS is
generated by suck central pattern generators (sCPG) located in the brainstem reticular
formation [26,29]. A CPG is operationally defined as a small network of neurons whose
activity can generate specific movements with correct timing and sequences in the absence
of sensory feedback [30]. While the pattern-generating circuit of rhythmic oral motor
activity is located in the brainstem, the quality of sucking behaviour is modulated by
cortical activity [27], while also integrating signals from external inputs [31–34].

As such, the NNS could be an interesting model to investigate whether beta activity
plays a role in cortico-subcortical communication in the first years of life. Furthermore,
the possible involvement of other frequency bands, such as the mu rhythm, might also
play a role in this modulation. Specifically, we were wondering whether the mechanisms
governing these innate movements were the same that regulate voluntary movements
or if they are linked to spontaneous brain activity. In the first case, we would expect a
desynchronisation response, while in the second case, a synchronisation. To address our
objective, we simultaneously recorded a video and EEG in 17 typically developed infants
and investigated the relationship between sensorimotor oscillations and NNS behaviour.

2. Materials and Methods
2.1. Participants

Our sample is composed of 17 subjects (5 females, median = 22 months, range = 6–42
months). None of the subjects had a history of prenatal infections, foetal distress during delivery,
metabolic disorders, or CNS anoxic-ischemic-haemorrhagic injury. A total of two subjects
in our sample were born preterm but none were extremely preterm (<32 weeks gestational
age [GA]). All subjects had good general health status, and none had cognitive impairment
based onclinical evaluation. Although the range of age could seem broad, NNS is stable
and well-patterned by 36 weeks GA. Indeed, NNS starts in the early foetal period, between
15–18 weeks of GA [35] and develops during the gestational period; in the neonatal period,
the temporal organization showes no qualitative changes. There is an increase in the sucking
frequency (average rate per second per burst) from 1 to 6 months. Starting from 6 months, the
babies continue to suck in the same non-nutritive mode [36]. Please see the Supplementary
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Materials for information about the raw data including the single subject age, NNS frequency
and mu and beta activity (see Table S1), and see Figure S1, which illustrates the absence of
correlation between age and NNS frequency.

2.2. Data Acquisition

All data were selected retrospectively from the clinical database of the epilepsy lab
of Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation. EEG
data were acquired using a Nicolet vEEG 5.94 system with a 512 Hz sampling frequency.
The montage had 21 scalp electrodes placed according to the International 10–20 System
plus a physical reference placed in Fpz. Each session was EEG- and video-recorded with
two infrared cameras. Video data were acquired with a sampling of 25 fps. For the entire
session, the infant was made to sit (or lie down depending on age) on a bed positioned
inside an isolated EEG recording room under dark and silent conditions. The bed has
an ergonomic seat that reduces the possibility of movement from the original position,
both to reduce motor artifacts and for safety reasons. An operator continuously monitored
the state of the participant. Ethical review and approval were not required in accordance
with the local legislation and institutional requirements. However, a medical supervision
was conducted and a written informed consent to record video-EEG and to be part of this
retrospective research was signed by the participants’ legal guardians/next of kin.

In a later scoring phase, for global power spectral analysis, we selected 3 min, mean
duration = 183 s, 95% CI = [175, 191] s, of EEG trace during the resting-state period (without
NNS) for each subject, which we have considered as a baseline. We utilized the best
conditions to record resting state in infants [37], using sensory deprivation conditions
(e.g., in the dark and in silence) during which infants had their eyes open, and by excluding
periods from the analysis in which children were moving or falling asleep. Moreover, we
selected video-EEG of five bursts (when possible) during NNS activity (with pacifier or
thumb), with a mean duration for each participant = 31 s, 95% CI = [23, 39] s. Specifically,
the sucking condition included EEG recording, during which infants produce a visible
NNS behaviour.

For a single-trial analysis, we selected the sucking bursts in 30 min of the EEG trace
for each infant. For each sucking burst, we determined the number of sucks per burst (SPB)
from the video synchronized with the EEG trace. The number of SPB were counted from
the video in slow-motion mode by two operators independently naive to the purpose of the
study. The raters agreed on trials where there were divergent ratings for the sucks per burst.
Then we calculated the sucking frequency (Hz) as the number of SPB on the burst time (in
seconds). To avoid the possibility that other types of movements will affect mu and beta
activity, we excluded trials in which it was evident form the video that infant was making
excessive movements with a different part of the body (e.g., leg movements, grasping, etc.).
We also excluded all trials that had an intertrial time of less than 4 s. The final mean number
of burst trials = 7.53, CI = [2, 17]; the mean duration(s) of burst trials = 6.67, CI = [2.83, 14.58];
and the mean SPB = 14.58, CI = [5.67, 31.12].

2.3. Pre-Processing

We applied both a notch and a band-pass filter between 0.16 and 100 Hz, then a
subsampling to 256 Hz to the EEG data. The EEG signal was re-referenced to the average.
During the pre-processing phase, transient high-amplitude artefacts were removed using
artefact subspace reconstruction (ASR), which is an automated artefact rejection method
available as a plug-in for EEGLAB software [38,39]. ASR uses a sliding window technique
whereby each window of EEG data is decomposed via principal component analysis and
compared with data from a clean baseline EEG recording. The ASR algorithm identifies
principal subspaces that deviate from the baseline; it then reconstructs these subspaces
using a mixing matrix computed from the baseline EEG recording. In our study, we used a
sliding window of 500 ms and a threshold of three standard deviations to identify corrupted
subspaces. In addition, the channels that remained heavily artifacted were removed
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following a visual inspection. In two EEG traces, we also applied ICA (independent
component analysis) to remove artefacts related to ocular activity and problems with
electrodes. Missing or electrodes containing artefacts were interpolated.

2.4. Region of Interest (ROI) and Frequency Selection

For each analysis, we considered the spectral activity of the C3 and C4 channels, which
better represent the region of our interest (ROI) in the sensorimotor area. We specifically
investigated the spectral activity for mu1 (8–10 Hz), mu2 (10–12 Hz), and beta (14–20)
bands, which are the typical bands analysed in studies that investigated motor movements.
However, previous studies showed that in older infants and children’s action execution,
observation with and without a social context results in EEG power suppression in the
6–9 Hz range [15,40–42]. These studies define this frequency range as shifted mu activity in
infants representing an EEG signature of the ‘mirror-neuron’ systems. The definition of
a low-frequency mu activity comes from studies on the background activity maturation,
which shifts towards higher frequencies throughout childhood, stabilizing at the typical
alpha bands during adolescence [43]. A recent study revealed that two different spectral
peaks in the first three years of life exist in the occipital area, one on a slow frequency
band that shifts through fast frequencies during the development and a second peak on
the typical alpha1 band [44]. The mu rhythm also found a similar pattern, although the
prominent mu peak corresponds to the higher alpha band [45]. The association between the
mu peak and the higher alpha band was found in children and adults, showing that in the
first three years of life, the mu activity has already reached a clear 8–9 Hz peak [45]. Based
on previous statements, we maintained the typical adult’s spectral band to evaluate mu
activity. However, investigating all the EEG bands, the slower frequencies were considered.
Moreover, studies on adults have found a role of beta rhythm that is poorly considered in
infants. The few studies that investigated the beta activity in infants revealed that typical
adult beta activity also responds to action processing in early life [15,16]. These studies
evidenced that beta peak in infants is around 18 Hz; therefore, we considered only the
first adult’s beta sub-bands (14–20 Hz). Further ROIs and frequency bands are sometime
considered as controls (see Section 2.6).

2.5. Statistics
2.5.1. Global Spectral Power Analysis

From each subject’s cleaned data, we computed power spectral density (PSD) ex-
pressed in (µV2/Hz). To this end, we applied the spectopo function of EEGLAB, which
returns a PSD estimate via Welch’s method. The signal was divided into sections with a
duration of 1 s with an overlap of 50%. Each section was windowed with a Hamming
window, and modified periodograms were computed and averaged. Then, we considered
spectral activity for mu1 (8–10 Hz), mu2 (10–12 Hz), and beta (14–20) spectral bands. To
make spectral activity comparable among subjects, we normalized it by computing the
relative spectral power (expressed in %) that measures the ratio of the total power in the
band (i.e., absolute spectral power) to the total power in the signal. In both analyses, we
considered all spectral bands in the sensorimotor area, calculated by averaging the spectral
power of the C3 and C4 channels. We performed an independent linear regression for each
selected spectral band, considering sucking frequency as a dependent variable and relative
band power as an independent variable. Specifically, in the first analysis, we explored a
correlation between baseline activity in the selected spectral band frequencies and sucking
frequency. In the second analysis, we checked the possible relationship between brain ac-
tivity during sucking and sucking frequency to see how the motor activity was modulated.
We considered the results significant only when p < 0.05 and R2 > 0.30.

2.5.2. Single Trial ERSP Analysis

From each subject’s cleaned data, we computed event-related spectral perturbation
(ERSP). We segmented data from 4 s before to 2.5 s after the sucking onset. For each segment,
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the period from 3 to 4 s before the onset was used as a baseline. We calculated ERSP using
the newtimef function of EEGLAB and applying the full-epoch length single-trial baseline
correction methods; these methods normalise the spectral activity of each epoch, first using
the mean spectral activity of the epoch and then the mean activity of the baseline period.
The advantages of this approach for this particular study are related to the fact of carrying
out an analysis on single trials, an approach that is not typically used in ERSP studies. This
method minimises the contribution of artefactual data trials with high-amplitude spectral
estimates and is robust to outliers when performing statistical inference testing [46].

We specifically extracted ERSP from 6 to 32 Hz using a Morlet Wavelet, starting with
three cycles and increasing with a 0.1 factor. We computed mean ERSP of considered bands
on the sensorimotor area and within 0.5 s time-windows from 3 s before the start of sucking
to 2.5 s after with respect to the sucking onset.

We fitted a series of linear mixed models (LMMs) independently for the ERSP of each
band. The model fitting was undertaken using the lmer function of the lme4 package [47].
The LMMs predictors were evaluated using Type III Wald χ2 tests as implemented in the
Anova function of the car package [48]. We included random intercepts considering within-
subject coefficients in all models, allowing for individual differences, but did not have
enough power to estimate participant-specific slopes. We considered sucking frequency (SF)
as the dependent variable. We evaluated the effects and interactions of Time Window, ERSP,
and Age (in years). We did not find any significant interactions with Age, so to increase
statistical power we removed it from the model and the following analyses. Significant fixed
effects were further investigated with the testInteractions function of the phia package [49]
by obtaining estimated marginal means (EMMs) and slopes by computing their contrasts.
Effects were retained as significant when p < 0.05 after Bonferroni correction. The effect
size (partial eta square, ηp

2) of each linear mixed model effect was calculated using the
F_to_eta2 function and effect size package [50]. According to Wilkinson’s notation [51],
adopted by lme4 package [47], the models fitted were:

SF ~ Time Window ∗ ERSP ∗ Age + (1|Subject) (1)

SF ~ Time Window ∗ ERSP + (1|Subject) (2)

where the tilde is the operator (~) that separates the left side of an equation in which
dependent variables are presented (e.g., sucking frequency) from the right side in which
the fixed effects are considered (e.g., Time Window and ERSP, and Age). The piece of
the formula (1|Subject) represents the inclusion of random intercepts considering within-
subject coefficients in all models.

Finally, to exclude the increased beta activity due to muscular and swallowing artifacts
in the EEG signals, we performed further analysis on temporal channels (T3, T4), which
are more affected by these kinds of artifact. Generally, in infants, the muscle artifacts
from jaw and arm movements appear mainly in peripheral electrodes [52]. Therefore, to
exclude that our results are an effect of artifact movement we also considered a control
ROI that included more peripheral electrodes. We did not find any significant interaction
between time-window and mu1 (F(10) = 1.1, p = 0.39, ηp

2 = 0.009), mu2 (F(10) = 0.8, p = 0.61,
ηp

2 = 0.007), and beta(F(10) = 0.6, p = 0.81, ηp
2 = 0.005) ERSP, suggesting that our results

specifically involved the central area.

2.6. Control Analyses

To control for the potential of infant movements artifacts in the data selection, we
added a control ROI to further exclude an effect of muscular artifacts. In addition, we
adopted a normalisation that minimises the contribution of artefactual data trials in the
ERSP analysis.

We also evaluated an effect of age. As specified in the participants section, the NNS
is fully matured at six months of age and does not seem to change with development.
This agrees with our data, as shown in Figure S1. However, many changes occur in the
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maturation of spectral background activity in the first years of life. Although we maintained
the typical EEG band for the reasons described in the Section 2.4, we added further analysis
to investigate the slow mu activity in the 6–9 Hz band and the spectral peak frequency of
each single subject. The global spectral power analysis showed no significant correlation
between relative power in 6–9 Hz band and sucking frequency both during baseline,
(R2 = 0.003) and sucking period (R2 = 0.009). Moreover, we considered the peak frequency
of background activity to investigate possible association between sucking frequency and
EEG maturation. To reliably estimate it, we adopted a three-stage approach. In the first, we
searched for the peak in the raw spectrum. In the second, we searched for the peak in the
spectrum after it was detrended using an exponential decay function. For this purpose, we
considered the logarithm of the PSD at different frequencies and fitted a linear regression
model: log(PSD) = A + B·Frequency. Therefore, we computed the PSD using coefficients A
and B estimated by the regression, PSDest = exp(A)·exp(B·Frequency), and we searched
for the peak in the detrended PSD PSDdetrend = PSD − PSDest. We used the findpeaks
function of the pracma [53] package for R [54] to identify peaks in the background in
the raw and the detrended spectra. In the third approach, we compared automatic peak
estimates from stages one and two and where they differed (most times, they matched).
Finally, we selected the most reliable peak position through visual inspection in case the
automatic peak estimates from stages 1 and 2 differed. However, data did not show any
significant correlation between sucking frequency and peak frequency, with all the three
measures, respectively: R2 = 0.2, R2 = 0.1, R2 = 0.1.

2.7. Data Availability

The datasets generated during this study are available on Zenodo: https://zenodo.
org/records/10700951 (accessed on 24 February 2024). The processing and analysis pipeline
performed publicly available function of tools (EEGLAB: https://sccn.ucsd.edu/eeglab/
index.php (accessed on 24 February 2024), R: https://www.r-project.org (accessed on 24
February 2024)).

3. Results

Seventeen healthy infants participated in a video-EEG recording including a period of
resting state and a period of natural NNS behaviour. We estimated the frequency of each
sucking burst from the video synchronized with the EEG. We analysed EEG oscillations,
as shown in Figure 1. Central derivation records the activity of the sensorimotor cortex.
Sensorimotor activity is observed in the form of ERD/ERS of mu and beta brain rhythms.
Therefore, we selected specific that bands for our global spectral power and single-trials
ERSP analyses.

3.1. Global Spectral Power Analysis

First, we investigated the cortical rhythms from a global point of view and a possible
relationship with sucking frequency (SF). Specifically, we correlated SF with resting-state
brain activity (baseline) and brain activity during the sucking period. We found a positive
correlation between SF and baseline brain activity for mu1 (8–10 Hz) rhythm. Thus, the
power of mu1 oscillation is higher during baseline in children who exhibit higher mean
sucking frequency. The result of the linear regression analysis is represented in Figure 2A.
It reports the correlation between SF and mu1 relative power with a significant association
(R2 = 0.33, p = 0.02). No significant correlation was found for mu2 (R2 = 0.001) and beta
(R2 = 0.002).

Then, we explored how brain oscillations are involved in the modulation of motor
activity, correlating SF with brain activity during the sucking period. Figure 2B,C show a
positive correlation between SF and the relative power of mu1 and beta rhythms. Figure 2B
reports the significant association related to mu1 (R2 = 0.36, p = 0.01). This result is in line
with the baseline association, supporting that the power of mu1 oscillation is higher in
children with higher mean sucking frequency and also during sucking behaviour. Figure 2C

https://zenodo.org/records/10700951
https://zenodo.org/records/10700951
https://sccn.ucsd.edu/eeglab/index.php
https://sccn.ucsd.edu/eeglab/index.php
https://www.r-project.org
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shows the significant association between sucking frequency and relative power related to
beta (R2 = 0.37, p = 0.009). No significant correlation was found for Mu2, R2 = 0.06.
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Figure 2. Global power spectral analysis. Figures show the significant correlations between relative
spectral power (expressed in %) in mu and beta of the EEG sub-bands during baseline or during
sucking conditions and sucking frequency. In red is represented the significant results (p < 0.05 e
R2 > 0.30) related to baseline condition and in orange the results related to sucking condition. Each
point represents a single subject. The shaded areas represent the 95% CI. (A) Correlation between
sucking frequency and relative power of mu1 activity (8–10) Hz during resting-state. (B) Correlation
between sucking frequency and relative power of mu1 activity (8–10) Hz during sucking condition.
(C) Correlation between sucking frequency and relative power of beta activity (14–20) Hz during
sucking condition.
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3.2. Single Trial ERSP Analysis

To investigate the brain dynamics associated with the NNS behaviour and to better
understand the idling-synchronisation mechanisms, which we found in the global analysis,
we explored the time-frequency properties at a single-trial level. We selected the same rhythms
analysed above: mu1 (8–10 Hz), mu2 (10–12 Hz), and beta (14–20 Hz). For the temporal
investigation, we considered 0.5 s time windows from 3 s before the start of sucking to 2.5 s
after with respect to the sucking onset. For each band, we separately performed a linear mixed
effect model analysis, considering the sucking frequency (SF) as a dependent variable, the
band ERSP [46] as independent variables, and the subject as a random effect.

We found a significant interaction between beta ERSP and time-window, F(10) = 3.67,
p < 0.0001, ηp

2 = 0.04. Post hoc tests showed the association between SF and ERSP in
different time windows and showed (see Figure 3B) a significant positive correlation in
the earliest [−3, −2.5] s time window, χ2 (1) = 11.07, p = 0.009; as well as a negative
correlation encompassing the sucking onset, i.e., in the [−0.5, 0] s and [0, 0.5] s time-
windows, respectively χ2 (1) = 13.34, p = 0.003 and χ2(1) = 8.68, p = 0.03. Thus, two different
periods emerge as crucial for sucking modulation: an early period that starts 3 s prior to
the movement and a late one, which starts just before the sucking and continues just after it
(−0.5, 0.5 s). However, as shown in Figure 3A, ERSP is always positive, revealing that the
sucking behaviour is modulated by a beta synchronisation. Specifically, an increase in beta
synchronisation in the early time window and a reduction of beta synchronisation in the
late period are associated with an increase in sucking frequency.
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Figure 3. Temporal pattern of the beta ERSP and sucking frequency. This pattern emerges from single
trial ERSP analysis adopting the normalization described in [46] and expressing ERSP in arbitrary
units (AU). 0.5 s time-windows were considered from 3 s to 2.5 s after with respect to the sucking
onset. The shaded grey areas represent the significant time-windows emerging from the model.
(A) Plot of mean ERSP (larger transparent green circles) and single subjects ERSP (smaller green
dots) in each analysed time window. The dashed line points out y = 0 highlighting that all points are
positive. (B) Plot of the slopes estimated by the linear mixed model (blue points) and related 95% CI
(vertical line) in each analysed time windows. The dashed line points out y = 0 highlighting positive
and negative correlations. * indicates p < 0.05, ** indicates p < 0.01.
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No significant interaction between ERSP and time-window was found in mu1, F(10) = 0.81,
p = 0.6, ηp

2 = 0.007, and mu2 F(10) = 0.95, p = 0.5, ηp
2 = 0.008, frequency bands.

4. Discussion

The current study investigates the relationship between cortical oscillations and non-
nutritive sucking (NNS) behaviour. We find that sucking activity is governed by synchroni-
sations, suggesting that it is regulated by innate spontaneous activity rather than by the
same mechanisms that regulate voluntary movements. Specifically, sucking frequency
relates with beta synchronisation within the sensorimotor area in two different phases, one
an early period, which starts 3 s prior to the movement, and a late one, which starts just
before the sucking onset and continues just after it (−0.5, 0.5 s, respectively). An increase in
beta synchronisation in the early time window and a reduction of beta synchronisation in
the late period are associated with an increase in sucking frequency, suggesting a specific
beta cortical-subcortical communication in NNS behaviour. Moreover, we find a general
significant correlation between mu1 rhythm both during baseline and sucking period. If
our findings were only due to stable individual differences in power spectral composition
of the EEG signal, we would have expected to find only a generic association between
spectral power in baseline and sucking frequency, which is not the case. Therefore, we
speculate a potential specialized role of beta frequency band, which could come into play
in regulating internal rhythms with external cues.

4.1. Beta Communication Model during NNS

There is evidence of beta oscillations involvement in a functional loop that connect
the motor cortex with subcortical structures (e.g., basal ganglia, cerebellum, subthalamic
nuclei, and peripheral motor units), supporting a beta cortical-subcortical information
processing [11,14,55,56]. Similarly, our results suggest that a similar cortical-subcortical
information processing could also occur correlate with to non-nutritive sucking behaviour.
Indeed, NNS is generated by suck central pattern generators (sCPG) located in the brain-
stem reticular formation [29], while the quality and stability of sucking behaviour are
modulated by more cranial structures (e.g., cortico-spinal) [27].

Specifically, the involvement of beta synchronisation in the patterns of biological
motion of human action is associated with the gating probability [11] and sensorimotor
dynamics (integrative information processing) [8,12]. To synchronise the sensory and motor
signals, the beta oscillations seem to promote the actual motor set [57], enabling an efficient
feedback processing, which is necessary to monitor and recalibrate the sensorimotor sys-
tem [8,14,56,58]. We interpret the characteristic double-stage temporal communication of
the sCPG-cortical functional loop during NNS (as shown by our results) as support for the
role of beta oscillations in regulating sensorimotor activity. In detail, we find two phases
that are involved in sucking regulation: an early one, in which ERSP positively correlates
with sucking frequency, and a late one (around the beginning of the sucking period), in
which ERSP is negatively correlates with sucking frequency. We propose that the increase
of beta synchronisation in the early time window represents motor gating, which signals
the alteration of the existing motor set. Moreover, the reduction of beta synchronisation just
before the sucking, and that continues just after, is related to monitoring and recalibrating
processes of the sensorimotor system.

During sucking behaviour, this beta synchronisation comes into play at the beginning
of the movement, maybe because the first motor generator is not the motor cortex but is the
sCPG. The presence of a deep generator (i.e., sCPG) that initiates the motor behaviour itself
makes the motor cortex a second player. Specifically, the motor generators modulate the
gating probability in an early phase, and then a recalibration of the sensorimotor dynamics.
We can speculate that the gating probability is controlled by bottom-up communication
increasing beta synchronisation in the sensorimotor cortex. The increased beta synchronisa-
tion identifies an alteration of the existing motor set and fosters, in the late time window,
the ongoing neural mechanisms that allow the infant to prepare and adapt for the new
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motor set. This synchronisation is triggered by spontaneous sCPG activity, which then
promotes NNS. In fact, the CPG sends the start of the movement signal to the periphery,
and the information is also communicated to a higher level (i.e., sensorimotor cortex). The
sensorimotor cortex then acts as a higher-level check-point system that coordinates and
integrates different sensorimotor networks. Indeed, as we can see in the mixed model
analysis 500 ms after the beginning of the sucking movement, cortical oscillations do not
show a specific temporal role. The sucking behaviour is self-sustaining, underlying the
cortical role only in the monitoring, and eventually recalibrating, phase.

4.2. Mu Oscillations

Our results only show a correlation between mu1 (8–10 Hz) during baseline and
sucking frequency. This suggests that this rhythm does not have a strong role in the
sensorimotor dynamics of natural sucking activity. Nevertheless, the positive correlation
with baseline and sucking mu oscillations may suggest that this rhythm could be called into
play in regulating the internal rhythms with external cues. Indeed, different studies showed
that sensory stimulation can alter suck patterning in infants [31–34]. Second, the ongoing
brain dynamics can be synchronised or phase reset by exogenous cues [59]. Third, the
8–10 Hz frequency band is generally more related to sensory-perceptual systems, typically
called alpha rhythm for the visual system, mu rhythm for the somatosensory system, and
tau rhythm for the acoustic system [60,61]. Fourth, it has already been suggested that mu
activity intervenes in the modulation of the movement-related sensory feedback [7].

4.3. The Limitations and Strengths of the Study

The study is novel in the approach to studying neural mechanisms (i.e., following the
neuroethological approach) and in the methods (i.e., single-trials time-frequency analysis)
used. However, there are some limitations that should be addressed.

The single-trials time-frequency analysis is a better approach to capture transient
burst activities than averaged-trials analyses, which can obscure such activity. Indeed, it is
possible that the beta communication during sucking behaviour is not regulated in terms
of sustained oscillatory brain activity, but originates from transient spontaneous bursts
activity [62]. These bursts of high-power oscillations seem to represent the activation of
internally generated events and facilitate the coordination between internal and external
stimuli [63]. Additionally, recent research has indicated that infant sensorimotor activity is
better described by burst-type beta oscillations [18,19]. Therefore, although our results on
single trials still offer insight into the temporal changes crucial for understanding the role
of beta activity in motor processing, further analysis employing more specific methods for
single burst analysis is warranted [19].

Another potential limitation to the current paper is the sample size, which was not
high for a correlative analysis; however, it is important to consider that even if we consider
typical subjects, it is particularly difficult, while applying advanced cleaning techniques, to
extract periods characterised by both clear sucking behaviour and clean EEG data. However,
the size of the explored effects resulted sufficiently strong to be detected with the considered
sample size. Nevertheless, we can exclude any possible spurious effect from muscle activity
related sucking behaviour for different reasons. First, we preliminarily excluded events
with muscle artifacts. Second, in the ERSP analysis, we used a normalisation that minimises
the contribution of artefactual data trials. Third, we added a control ROI to further exclude
an effect of muscular artifacts.

5. Conclusions

In conclusion, our study used a new approach to investigates the neural dynamics
to understand the role of beta corico-subcortical communication processing. Specifically,
we explored the relationship between cortical oscillations and the non-nutritive sucking
behaviour, revealing a specific temporal dynamic of beta modulation. We speculate there
is a unique coordination of the sCPG-cortical functional loop in the regulation of sucking
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behaviour. This would suggest that the complexity coordination in sensorimotor networks
is already developed in infants. Further investigation into brain dynamics and the intricate
role of mu and beta oscillations during complex sensorimotor behaviours are needed.
These studies should delve into how sensorimotor oscillations are finely tuned over time
as infants engage in voluntary motor tasks during NNS, or as external cues influence
NNS. This line of inquiry promises to unveil the intricate interplay between resting-state
networks and the external world.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/brainsci14040402/s1. Table S1. Individual subject data. Individual subject
data at different ages showing the specific non-nutritive sucking (NNS) frequency and relative power of
mu and beta activity during baseline and sucking period. Figure S1. Correlation of sucking frequency
with age. No significant correlation was found between sucking frequency (Hz) and the subjects age
(y), R2 = 0.05, p = 0.4. Points represent individual subjects, while continuous line represents the best
linear fit. Figure S2. Time-frequency plot. x-axes represent time (S) and y-axes frequency (Hz). The
red lines delimit the time-frequency bins resulted significant from the linear mixed model analyses.
(A) Example of heat map obtained from typical subject (C008, age = 1.9). (B) Heat map that includes all
subjects. Figure S3. Correlations for each time window. Significant associations were found between
relative beta ERSP (arbitrary units, AU) and sucking frequency (Hz). Each point represents a single trial,
while continuous lines represent the best linear fit. (A–C) show the associations in the significant time
windows, respectively [−3, −2.5] S, [−0.5, 0] S and [0, 0.5] S.
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