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Abstract: Attention deficit hyperactivity disorder (ADHD) is a neuro-developmental disorder that
affects approximately 5–10% of school-aged children worldwide. Early diagnosis and intervention
are essential to improve the quality of life of patients and their families. In this study, we propose
ConvMixer-ECA, a novel deep learning architecture that combines ConvMixer with efficient channel
attention (ECA) blocks for the accurate diagnosis of ADHD using electroencephalogram (EEG)
signals. The model was trained and evaluated using EEG recordings from 60 healthy children
and 61 children with ADHD. A series of experiments were conducted to evaluate the performance
of the ConvMixer-ECA. The results showed that the ConvMixer-ECA performed well in ADHD
recognition with 94.52% accuracy. The incorporation of attentional mechanisms, in particular ECA,
improved the performance of ConvMixer; it outperformed other attention-based variants. In addition,
ConvMixer-ECA outperformed state-of-the-art deep learning models including EEGNet, CNN, RNN,
LSTM, and GRU. t-SNE visualization of the output of this model layer validated the effectiveness
of ConvMixer-ECA in capturing the underlying patterns and features that separate ADHD from
typically developing individuals through hierarchical feature learning. These outcomes demonstrate
the potential of ConvMixer-ECA as a valuable tool to assist clinicians in the early diagnosis and
intervention of ADHD in children.

Keywords: attention deficit hyperactivity disorder (ADHD); ConvMixer; efficient channel attention
(ECA); electroencephalogram (EEG); deep learning; early diagnosis

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder
characterized by persistent inattention, hyperactivity, and impulsivity that adversely af-
fects daily functioning and development [1,2]. ADHD affects approximately 5–10% of
school-aged children worldwide [3,4], and early diagnosis and intervention are essential
to improve the quality of life of patients and their families [5,6]. However, traditional
diagnostic methods such as clinical interviews, behavioral observations, and rating scales
can be subjective and time-consuming [7–9], highlighting the need for objective and valid
diagnostic tools.

Recent advances in machine learning, particularly deep learning, have shown promise
in utilizing electroencephalography (EEG) signals to diagnose ADHD [10,11]. EEG is a
non-invasive and inexpensive method of measuring electrical activity in the brain, and
individuals with ADHD exhibit distinctive patterns compared to typically developing
(TD) individuals [12]. Various deep learning architectures including convolutional neural
networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM)
networks have been applied to EEG-based ADHD diagnosis with promising results [13–17].
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However, these methods often face the challenge of effectively capturing the spatial and
channel dependence of EEG signals, which is crucial for accurate diagnosis [18]. Some stud-
ies have explored the use of EEG analysis in children with attention-deficit/hyperactivity
disorder (ADHD), utilizing various techniques such as spatial normalization, smooth-
ing, and multivariate empirical decomposition [19–21]. These studies highlight the lack
of biomarkers for ADHD diagnosis and the complexity and challenges associated with
capturing the spatial and channel dependence of EEG signals in this disorder. Recent
surveys indicate the potential of deep learning techniques in uncovering complex patterns
and biomarkers associated with mental disorders from non-invasive brain signals such
as EEG [22]. The growing interest in machine learning approaches for precision psychia-
try aims to personalize diagnosis and treatment based on individual characteristics and
brain activity patterns [23]. Moreover, findings on the use of resting-state EEG functional
connectivity to identify symptom dimensions in autism suggest potential parallels to the
use of EEG-based deep learning models for characterizing ADHD subtypes or symptom
dimensions [24]. These recent advances in EEG and deep learning for mental disorders con-
textualize the current study within the research landscape and emphasize the importance
of developing novel deep learning architectures that can effectively capture the spatial and
temporal dependencies in EEG signals for accurate ADHD diagnosis.

ConvMixer, a recently proposed architecture that combines deep and point-by-point
convolution [25], has shown great potential in various computer vision tasks due to its
ability to efficiently capture spatial and channel information [26–28]. Despite its success
in computer vision, ConvMixer has not been applied to EEG-based ADHD diagnosis. In
addition, attention mechanisms such as efficient channel attention (ECA) have gained
significant momentum in deep learning due to their ability to focus on relevant features
and suppress irrelevant ones [29,30]. Combining ECA with ConvMixer has the poten-
tial to improve the model’s ability to capture discriminative patterns in EEG data for
ADHD diagnosis.

To address these research gaps, this study proposes ConvMixer-ECA, a novel deep
learning architecture that combines ConvMixer with ECA blocks for the accurate diagnosis
of ADHD using EEG signals. The incorporation of the ECA blocks allows the model to
adaptively recalibrate the channel features and improves its ability to capture discriminative
patterns in EEG data. The main contributions of the work are as follows:

• Proposing ConvMixer-ECA, a novel deep learning architecture that combines Con-
vMixer with ECA blocks for the accurate EEG-based diagnosis of ADHD.

• Conduct extensive experiments to evaluate the performance of ConvMixer-ECA and
demonstrate its superior accuracy compared to state-of-the-art deep learning models.

• Investigate the impact of different attentional mechanisms, in particular ECA, on
the performance of ConvMixer and highlight the effectiveness of ECA in improving
categorization performance.

• Insights into the feature learning process of ConvMixer-ECA are provided through t-
distributed stochastic neighbor embedding (t-SNE) visualization, validating its ability
to capture discriminative patterns in EEG data for ADHD diagnosis.

The rest of the paper is organized as follows. Section 2 describes the methodology
including the ConvMixer-ECA architecture and its components, with a focus on the integra-
tion of ECA blocks. Section 3 describes the experiments and results including the training
process, performance evaluation, impact of the attention mechanism, and comparative
analysis with other models. Section 4 discusses the results, implications, and limitations of
the study. Finally, Section 5 summarizes the paper and outlines future research directions.

2. Principles and Methodology
2.1. Participants and Data Preprocessing

This study employed an openly accessible EEG dataset obtained from IEEE DataPort.
The sample included 121 children aged 7–12 years, comprising 61 children diagnosed with
ADHD and 60 children serving as TD controls [31]. The cohort included both male and
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female participants. The ADHD group consisted of 48 boys and 13 girls with a mean age of
9.62 ± 1.75 years, while the TD control group included 50 boys and 10 girls with a mean
age of 9.85 ± 1.77 years. The ADHD diagnoses were confirmed by a qualified psychiatrist
in accordance with the criteria outlined in the Diagnostic and Statistical Manual of Mental
Disorders (4th ed., DSM-IV) [32]. The participants in the ADHD group had been undergoing
treatment with Ritalin for a period not exceeding 6 months prior to their involvement in the
study. On the other hand, the control group consisted of individuals without psychiatric
disorders, epilepsy, or any reported involvement in high-risk behaviors. This group was
drawn from two sources: 50 boys were selected from a primary school, while 10 girls were
chosen from an all-girls’ primary school. Following assessment by a child and adolescent
psychiatrist, it was confirmed that none of the children in the control group displayed any
psychiatric issues.

EEG recordings were performed with the International 10–20 system, consisting of
19 channels: Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1, and O2
(Figure 1) [33]. Recordings were sampled at a frequency of 128 Hz and reference electrodes
A1 and A2 were placed on the participants’ earlobes. The EEG recording protocol consisted
of tasks designed to elicit visual attention, thus assessing the main deficits in children with
ADHD. During the task, participants were presented with images of cartoon characters and
asked to count them (Figure 2). The number of characters presented ranged from 5 to 16,
and the image size was calibrated to ensure legibility. Images were presented sequentially,
and each subsequent image was displayed immediately after the participant responded,
with the duration of the EEG recording session depending on the participant’s performance
and response rate.

Figure 1. The 19-channel EEG recording based on the International 10–20 system.
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Figure 2. An example of the pictures displayed to the children.

Preprocessing is critical in EEG signal processing to ensure data quality and reliability
for subsequent analysis by removing artifacts, reducing noise, and separating relevant
frequency bands. This study focused on two key preprocessing techniques: the Butterworth
bandpass filter and the segmentation process. EEG signals were subjected to preprocessing
using a sixth-order Butterworth bandpass filter with a frequency range of 4–45 Hz. This
was conducted in order to remove low-frequency drift and high-frequency noise while
preserving the relevant EEG frequency bands. The filter coefficients were determined based
on the filter order and cutoff frequencies. The lower and upper cutoff frequencies were
set at 4 Hz and 45 Hz, respectively. Following filtration, the continuous EEG signals were
divided into 4-s epochs, with each epoch representing a specific temporal window of the
EEG recording.

The Butterworth bandpass filter is a widely used technique in signal processing to
extract a specific range of frequencies from a signal. In EEG analysis, it removes unwanted
frequencies and artifacts that may interfere with the desired brain activity. The transfer
function of a sixth-order Butterworth bandpass filter is given by:

H(s) =
ωc1 · ωc2

s6 + a1 · s5 + a2 · s4 + a3 · s3 + a4 · s2 + a5 · s + a6
(1)

where ωc1 and ωc2 are the lower and upper cutoff frequencies, and a1, a2, a3, a4, a5, and a6
are the filter coefficients determined by the filter order and cutoff frequencies. In this study,
a Butterworth bandpass filter was designed with a frequency range of 4–45 Hz. This range
was selected to remove low-frequency drift and high-frequency noise while preserving the
relevant EEG frequency bands. The rationale for this approach was to capture the primary
activity associated with the P300 component and other cognitive processes of interest in
the study of ADHD, while minimizing the influence of artifacts [34,35].

The segmentation process divides a continuous EEG signal into manageable seg-
ments or epochs; this process is essential for further analysis and feature extraction. The
segmentation process can be mathematically represented as:

xi(n) = x(n + (i − 1) · N), for n = 1, 2, . . . , N (2)

where xi(n) represents the i-th segment of the EEG signal, x(n) is the original EEG signal,
and N is the number of samples in each segment, determined by the sampling frequency
and segment duration.

In this study, the dataset was divided into a training set and a testing set, each of which
contained EEG epochs from two distinct groups of subjects. Notably, the training and
testing epochs were extracted from different subjects to ensure that there was no overlap
between the sets. Each EEG signal was segmented into 4-s epochs. The preprocessing
steps cleaned, filtered, and prepared the EEG dataset for further analysis. The Butterworth
bandpass filter effectively removed unwanted frequencies and artifacts, and the segmenta-
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tion process divided the continuous EEG signal into manageable epochs, ready for feature
extraction and classification tasks.

2.2. ConvMixer Architecture

The ConvMixer architecture is a groundbreaking approach to visual modeling that
seamlessly integrates the strengths of CNNs and transformers. This innovative architecture
employs a series of strategic design choices to effectively process and learn from visual
data. The key strategies adopted by ConvMixer include patch embedding, a ConvMixer
layer, a mixing mechanism, layer stacking, and global pooling [25].

Patch embedding: The input image is divided into fixed-size patches, which are then
mapped to a high-dimensional space. This process is mathematically represented as:

N =
HW
P2 (3)

where H, W, and P denote the height, width, and patch size of the image, respectively.
Each patch is flattened and linearly projected using an embedding matrix We to obtain the
embedded patch matrix E:

E = Reshape(X) · We (4)

where X ∈ RH×W×C represents the input image, Reshape(·) represents the operation of
dividing the image into patches and flattening them, and We ∈ R(P2C)×D represents the
embedding matrix.

ConvMixer layer: The core building block of ConvMixer is a ConvMixer layer, which
consists of depthwise separable convolutions and pointwise convolutions. Depthwise
convolutions capture local spatial relationships within each channel of the input tensor X:

Xd = DepthwiseConv(X, Wd) (5)

where X represents the input tensor, Wd represents the depthwise convolution kernel, and
Xd represents the output of the depthwise convolution. Pointwise convolutions, applied
subsequently, mix information across channels:

Xp = PointwiseConv(Xd, Wp) (6)

where Wp represents the pointwise convolution kernel, and Xp represents the output of the
pointwise convolution.

Mixing mechanism: ConvMixer employs a mixing mechanism that applies depthwise
separable convolutions and pointwise convolutions independently to each patch:

pd
i = DepthwiseConv(pi, Wd) (7)

pp
i = PointwiseConv(pd

i , Wp) (8)

where pi represents the i-th patch, pd
i denotes the output of the depthwise convolution, and

pp
i represents the output of the pointwise convolution. The mixed output is represented as:

P = [pp
1 ; pp

2 ; · · · ; pp
N ] (9)

where P ∈ RN×D represents the matrix of mixed patches.
Layer stacking: To learn hierarchical feature representations, ConvMixer stacks multi-

ple ConvMixer layers together:

X(l+1) = ConvMixerLayer(X(l)) (10)

where X(l) represents the output of the l-th ConvMixer layer, and X(l+1) represents the
output of the (l + 1)-th ConvMixer layer.
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Global pooling and classification: After processing through multiple ConvMixer layers,
the model performs global average pooling (GAP) on the features of all patches to obtain a
pooled feature vector:

f =
1
N

N

∑
i=1

pp
i (11)

where pp
i represents the pointwise convolution output of the i-th patch, and f ∈ RD

represents the pooled feature vector. Finally, the pooled features are fed into a classifier
for prediction.

2.3. ECA Mechanism

The ECA mechanism is a groundbreaking approach in deep learning that refines
channel-wise attention within CNNs while maintaining a balance between model complex-
ity and performance [29]. ECA employs several key strategies.

GAP: GAP is applied to the input feature map X ∈ RC×H×W to obtain a vector z ∈ RC

that encapsulates channel-wise information:

zc =
1

H × W

H

∑
i=1

W

∑
j=1

xc,i,j (12)

Adaptive kernel size determination: ECA determines the kernel size for the one-
dimensional convolution based on the number of channels C:

k = ψ(
C
γ
) + 1 (13)

where ψ(·) is the rounding operation and γ is a hyperparameter.
Convolution: A convolution with kernel size k is applied to z to generate attention

weights ẑ ∈ RC:

ẑc =
k

∑
i=1

wi · zmod(c+i−⌊ k
2 ⌋−1,C)+1 (14)

where wi are learnable convolution weights.
Sigmoid activation: A sigmoid activation function is applied to ẑ to obtain the final

attention weights a ∈ RC:

ac =
1

1 + e−ẑc
(15)

Channel-wise attention scaling: The input feature map X is scaled with the attention
weights a to obtain a refined feature map X̃ ∈ RC×H×W :

X̃c,i,j = ac · Xc,i,j (16)

ECA enhances the representational capacity of CNNs while maintaining efficiency.
The mathematical formulations provide a clear understanding of the operations involved,
facilitating integration into various CNN architectures for improved feature learning and
task-specific adaptability.

2.4. Implementation of ConvMixer-ECA

ConvMixer-ECA combines the ConvMixer model with the ECA mechanism to enhance
the model’s ability to capture and refine channel-wise attention. The ConvMixer-ECA
architecture consists of patch embedding, a stack of ConvMixer blocks with integrated ECA
blocks, GAP, layer normalization, and a fully connected layer for classification.

Patch embedding: The input tensor X ∈ RB×C×L is divided into patches and projected
into a higher-dimensional space using a convolution operation:

Xp = Conv(X, Wp, p) (17)
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where Xp ∈ RB×Cp×Lp is the patch embedding, Wp ∈ RCp×C×p is the patch embedding
kernel with size p, and Conv(·) denotes the convolution operation.

ConvMixer block with ECA: Each ConvMixer block consists of a depthwise convo-
lution, Gaussian error limit unit (GELU) activation, pointwise convolution, and an ECA
block for channel-wise attention refinement:

X′ = X + ECABlock(Conv(GELU(DepthwiseConv(X, Wd)), Wp)) (18)

where X′ ∈ RB×Cp×Lp is the output of the ConvMixer block, Wd ∈ RCp×1×k is the depthwise
convolution kernel with size k, Wp ∈ RCp×Cp×1 is the pointwise convolution kernel, and
ECABlock(·) represents the ECA block.

The ECA block applies GAP, convolution, and sigmoid activation to generate channel-
wise attention weights:

z =
1
L

L

∑
i=1

Xi (19)

ẑ = Conv(z, W, k) (20)

a = σ(ẑ) (21)

where z ∈ RB×C×1 is the channel-wise descriptor, ẑ ∈ RB×C×1 is the output of the convolu-
tion, a ∈ RB×C×1 represents the channel-wise attention weights, and σ(·) is the sigmoid
activation function.

GAP and classification: The output of the ConvMixer blocks is subjected to GAP to
obtain a global representation:

y =
1

Lp

Lp

∑
i=1

X′
i (22)

where y is the global representation.
The global representation is then normalized using layer normalization and passed

through a fully connected layer for classification:

.
y = LayerNorm(y) (23)

ŷ = FC(
.
y, W f c) (24)

where ŷ ∈ RB×N is the output of the fully connected layer, W f c ∈ RCp×N is the fully
connected weight matrix, and N is the number of classes.

ConvMixer-ECA uses deep convolution, point-by-point convolution, and ECA blocks
to capture local and global dependencies while efficiently focusing on correlated channels.
Mathematical formulas clearly illustrate the operations and transformations used to process
and optimize the input data to produce accurate predictions.

As shown in Figure 3, ConvMixer-ECA extends the ConvMixer architecture by com-
bining ECA blocks. The model consists of a patch embedding layer, followed by a series
of mixer blocks, and finally a classification layer. While ConvMixer-ECA is typically
implemented at depth 8, Figure 3 shows the model at depth 1 for clarity.

The patch embedding layer is realized by a one-dimensional (1D) convolutional layer
that transforms the input tensor into patches and projects them into a higher dimensional
space. The heart of the model lies in the mixer blocks, each of which consists of three key
components: a deep convolutional layer for spatial mixing, a point-by-point convolutional
layer for channel mixing, and an ECA block for channel feature recalibration. The ECA
block uses adaptive mean pooling and a 1D convolutional layer to capture cross-channel
interactions and generate attention weights that are multiplied by the input features to
emphasize the most relevant channels.
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Figure 3. The ConvMixer-ECA architecture.

After the mixing block, the feature map is subjected to global average pooling (GAP)
and layer normalization to generate a compact and normalized representation. Finally, a
fully connected layer generates output logits for classification.

ConvMixer-ECA is initialized with several key hyperparameters including the num-
ber of input channels, number of categories, patch size, hidden dimension, depth, and
kernel size. During the forward pass, the inputs are processed sequentially through the
patch embedding layer, the mixer block, the GAP, the layer normalization, and the fully
connected layer.

In essence, ConvMixer-ECA seamlessly combines the strengths of the ConvMixer
architecture with the capabilities of the ECA block. This synergistic combination enables the
model to efficiently process input data through deep and point-by-point convolution while
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enhancing its ability to capture and exploit channel dependencies. The final architecture
strikes a balance between computational efficiency and representational power, making it
well-suited for a wide range of computer vision tasks.

3. Experiments and Results
3.1. Training ConvMixer-ECA

To ensure that there was no overlap between the training and test sets, data from
different subjects were assigned to each set. The training set came from 80% of the subjects
and consisted of 3352 samples, while the test set came from the remaining 20% of the
subjects and consisted of 821 samples. A total of 70% of the training data was used to
train ConvMixer-ECA, and the remaining 30% of the data was used to validate the training
process. Although the proportions of the training and validation protocols were the same,
different data segments were selected for each training cycle due to the random interruption
of the data.

Binary cross entropy (BCE) was used as the loss function for training, and the Adam
optimizer was used to determine the weights and filters for the network, minimizing the
loss function using a back-propagation technique with a learning rate of 0.0001. The total
number of cycles was set to 30, and the number of iterations per cycle depended on the
batch size of 64, as described above.

To evaluate the training performance on the training and validation sets, the loss
and accuracy of the validation set were calculated at the end of each cycle and in the
final iteration. All implementations were performed on an *NVIDIA V100 GPU* (NVIDIA
Corporation, Santa Clara, CA, USA) with *32 GB of DDR4 RAM* (Samsung Group, Seoul,
Republic of Korea) running *Ubuntu 20.04.1 LTS* (Canonical Ltd., London, UK) and
*Python 3.11.6* (Python Software Foundation, Wilmington, NC, USA).

The training results show that the model exhibited good performance and convergence
over 30 cycles (Figure 4). The steady decrease in training loss from about 0.7 to 0.1, along
with a corresponding decrease in validation loss, indicates that the model learns effectively
from the training data and generalizes well to unseen data. The continued improvement
in training and validation accuracy to 0.98 and 0.95, respectively, further highlights the
model’s success in learning to correctly categorize samples. Overall, the results show a well-
trained model that performed well on both the training and validation sets, demonstrating
its effectiveness in learning from the given data and generalizing to unseen samples.

Figure 4. Training and validation of the ConvMixer-ECA model: (a) loss and (b) accuracy across
the epochs.
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3.2. Results and Analysis

The performance of ConvMixer-ECA was evaluated with several metrics including
the accuracy, the F1 score, recall, and precision [36]. These metrics are defined by the
following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

Precision =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

F1 =
2 × TP

2 × TP + FP + FN
(28)

where TP is the number of instances correctly predicted as positive, TN is the number
of instances correctly predicted as negative, FP is the number of instances incorrectly
predicted as positive, and FN is the number of instances incorrectly predicted as negative.

The performance of the trained ConvMixer-ECA model was evaluated on a test set
consisting of 821 samples from 20% of the subjects not used for training. The model
achieved 94.52% accuracy, 94.69% precision, 96.40% recall, and 95.54% F1 score. These
metrics indicate strong performance, with the model correctly identifying the majority of
positive instances while maintaining a low false positive rate.

The confusion matrix shown in Figure 5 provides a detailed assessment of the per-
formance of the trained ConvMixer-ECA model in classifying ADHD and TD individuals.
The model demonstrates strong classification ability with a true positive rate of 96.4% for
the ADHD cases and a true negative rate of 91.59% for the TD cases. The low false negative
rate of 3.6% indicates the high sensitivity of the model in detecting ADHD cases. The
ConvMixer-ECA architecture demonstrated its effectiveness in capturing the distinguish-
ing features of ADHD as evidenced by the high accuracy in correctly identifying ADHD
cases. The model’s ability to discriminate between ADHD and non-ADHD cases is further
supported by its high true negative rate.

Figure 5. The confusion matrix for ADHD and TD classification.

To enhance the robustness of the performance evaluation, we implemented a 5-fold
cross-validation procedure in testing the ConvMixer-ECA model. The dataset was ran-
domly partitioned into five equally sized folds, ensuring a balanced representation of both
ADHD and TD subjects. In each iteration, four folds were used for training, and the remain-
ing fold was used for testing, with the process repeated five times. The accuracy results
were obtained from the 5-fold cross-validation (Table 1), yielding an average accuracy of
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0.9290. The consistent accuracy values across the different folds demonstrated the stability
and robustness of the model’s performance, validating the effectiveness of the ConvMixer-
ECA architecture in accurately classifying ADHD and TD subjects based on their EEG data.
By employing this rigorous methodological approach, we enhanced the reliability of the
reported results and strengthened the evaluation of the model’s performance.

Table 1. Accuracy from the 5-fold cross-validation of the ConvMixer-ECA.

Fold Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Accuracy 0.9245 0.9038 0.9567 0.9245 0.9354

To further analyze the functionality of ConvMixer-ECA, t-SNE visualizations of the
model’s first and last layer outputs were generated, revealing the separation of ADHD
within the learned feature space. Significant improvements were seen in the ADHD and
TD samples (Figure 6). The first layer showed initial discriminative ability, although there
was some overlap between categories. In contrast, the last layer showed significant sep-
aration, highlighting the hierarchical feature learning process of the model. The clear
separation observed in the last layer validates the ability of ConvMixer-ECA in ADHD di-
agnosis, successfully capturing the underlying patterns that distinguish ADHD individuals
from TD individuals. In summary, the t-SNE output demonstrates the model’s ability to
learn increasingly discriminative features, and the final layer confirms its effectiveness in
distinguishing between the two categories.

Figure 6. Visualizing the t-SNE-reduced outputs of the proposed model’s (a) first layer and
(b) final layer.

The activation maps of all layers of the ConvMixer-ECA model, as visualized in
Figure 7, demonstrate the progressive feature extraction process. The initial layer (Layer 0)
captures local patterns and textures after the patch embedding. As ConvMixer blocks
progress from Layer 1 to Layer 7, the model learns and refines features through the use
of depthwise convolutions to capture the spatial relationships within channels, pointwise
convolutions to mix information across channels, and ECA blocks to adaptively recalibrate
channel-wise attention. The activation maps become increasingly abstract and capture
higher-level features in the deeper layers, as evidenced by the transition from fine-grained,
dense activations in the earlier layers to coarse-grained, sparse activations in the deeper
layers. This suggests that the deeper layers are selective to specific higher-level features and
capture more complex and semantically meaningful patterns. The final ConvMixer block
(Layer 7) outputs a rich set of discriminative features that are then aggregated and used for
classification. This hierarchical feature learning process, where earlier layers learn low-level
features and deeper layers progressively learn more abstract representations, enables the
ConvMixer-ECA model to effectively identify the distinguishing characteristics of ADHD
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and TD samples, leading to accurate classification. These findings indicate that the model
is capable of effectively capturing the underlying patterns and features that distinguish
individuals with ADHD from those without, thereby achieving accurate categorization.

Figure 7. Activation maps from each ConvMixer block layer.

3.3. The Impact of Attention Mechanisms on ConvMixer Performance

A comprehensive analysis was performed to investigate the impact of different atten-
tion mechanisms on the performance of ConvMixer. The attention mechanisms evaluated
include the convolutional block attention (CBA) module, squeeze and excite attention (SEA),
non-localized attention (NLA), and ECA. Each ConvMixer variant with a specific attention
mechanism is trained and evaluated on the same dataset, with the original ConvMixer
model serving as the benchmark for comparison.

Table 2 shows the evaluation metrics (i.e., accuracy, precision, recall, and F1 score)
for each ConvMixer variant. The baseline ConvMixer model achieved an accuracy of
0.9160, providing a reference point for assessing the impact of attentional mechanisms. The
ConvMixer-CBA with CBA improved slightly over the baseline, achieving an accuracy of
0.9196. The ConvMixer-SEA further improved the performance to an accuracy of 0.9318. In
addition, ConvMixer-NLA showed excellent results with an accuracy of 0.9415. However,
ConvMixer-ECA achieved the highest performance among the variants with an accuracy
of 0.9452.

Table 2. Evaluation results of ConvMixer variants with different attention mechanisms.

Model Accuracy Precision Recall F1 Score

ConvMixer 0.9160 0.9016 0.9544 0.9273
ConvMixer-CBA 0.9196 0.9022 0.9610 0.9307
ConvMixer-SEA 0.9318 0.9299 0.9501 0.9399
ConvMixer-NLA 0.9415 0.9460 0.9501 0.9481
ConvMixer-ECA 0.9452 0.9469 0.9640 0.9554

The experimental results provide compelling evidence that the combination of atten-
tional mechanisms consistently improved ConvMixer’s performance across all evaluation
metrics. In particular, ConvMixer-ECA has emerged as the most effective method, highlight-
ing the potential of ECA to significantly improve the model’s classification or prediction
capabilities. These results underscore the importance of exploring and exploiting atten-
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tional mechanisms to improve the performance of deep learning models. The integration of
attentional mechanisms, particularly ECA, shows promise for improving the effectiveness
of ConvMixer.

3.4. Comparative Evaluation of Recognition Models

ConvMixer-ECA was compared with five commonly used deep learning models
(EEGNet, CNN, RNN, LSTM, and gated recurrent unit (GRU)) to evaluate its effectiveness
in EEG signal classification. EEGNet, a compact CNN architecture specifically designed
for EEG-based brain–computer interfaces [37], has shown promising results in a variety of
EEG classification tasks.

As shown in Figure 8a, ConvMixer-ECA achieved the highest accuracy of 94.52%,
which was 7.19 percentage points higher than the second best model, EEGNet. CNN, RNN,
and LSTM achieved 85.38%, 50.91%, and 50.18% accuracy, respectively, while GRU had the
lowest accuracy of 55.90%.

Figure 8. Comparison of the model architectures: (a) accuracy and (b) training time.

The excellent performance of ConvMixer-ECA can be attributed to its combination
of deep convolution, pooling, and ECA mechanisms, which improves its discriminative
power and ability to learn salient features from EEG data. In contrast, recurrent models
(RNN, LSTM, and GRU) performed poorly, possibly due to the difficulty in capturing
long-term dependencies in EEG signal sequences. This comparative analysis establishes
ConvMixer-ECA as a promising architecture for accurate EEG-based recognition, outper-
forming specialized EEG classification models such as EEGNet and several standard deep
learning architectures.

A comparative analysis of computational time for different deep learning models was
conducted on a platform comprising an Intel Core i5-9500T (Intel Corporation, Santa Clara,
CA, USA) processor with 16 GB of DDR4 RAM running Ubuntu 20.04.1 LTS and Python
3.11.6. The training condition was set to 10 epochs.

As illustrated in Figure 8b, the outcomes indicate that ConvMixer-ECA and LSTM
were more computationally demanding, whereas GRU and RNN were the most efficient in
terms of training time on the specified platform and configuration. Although ConvMixer-
ECA necessitated more computational resources in comparison to the other models, the
hardware configuration utilized in this analysis was sufficient to accommodate its training
requirements, rendering it a viable option for use in a PC environment.

4. Discussion

The experimental results of this study demonstrate the effectiveness of the proposed
ConvMixer-ECA architecture in detecting ADHD using EEG signals. The model achieved
a remarkable accuracy of 94.52%, outperforming several state-of-the-art deep learning
models including EEGNet, CNN, RNN, LSTM, and GRU. The high precision (94.69%),
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recall (96.40%), and F1 score (95.54%) further emphasize the model’s ability to correctly
identify ADHD cases while maintaining a low false-positive rate ability.

The t-SNE visualization of the model layer output provides valuable insight into the
feature learning process, demonstrating the model’s ability to learn increasingly discrimi-
native features. This hierarchical feature learning process demonstrates the effectiveness of
ConvMixer-ECA in capturing the underlying patterns and features that distinguish ADHD
from TD.

The effects of different attentional mechanisms on the performance of the ConvMixer
model were extensively investigated. The combination of attentional mechanisms consis-
tently improved the model’s performance, and ConvMixer-ECA using ECA achieved the
highest accuracy among the variants. This finding highlights the importance of exploring
and exploiting attentional mechanisms to improve the classification capabilities of deep
learning models in EEG-based recognition tasks.

The proposed ConvMixer-ECA method, summarized in Table 3, showed excellent
performance in identifying ADHD using EEG signals compared to the existing literature.
The excellent performance of ConvMixer-ECA can be attributed to its ability to efficiently
capture spatial and channel dependencies in EEG signals through a combination of deep
convolution, pooling, and ECA mechanisms.

Table 3. Comparison of the proposed ConvMixer-ECA model with findings from the literature.

Author Year Dataset Method Accuracy (%)

Tenev et al. [38] 2014 50 healthy, 67 ADHD SVM and voting 82.3
Khoshnoud et al. [39] 2015 10 healthy, 12 ADHD LLE, ApEn, PNN 87.5

Mohammadi et al. [40] 2016 30 healthy, 31 ADHD MLP neural network 93.65
Chen et al. [18] 2019 57 healthy, 50 ADHD Deep CNN 90.29

Dubreuil-Vall et al. [15] 2020 20 healthy, 20 ADHD Spectrogram and CNN 88.0
Tosun [16] 2021 16 subject Data augmentation, PSD, SE, and LSTM 92.15

Saini et al. [17] 2022 80 healthy, 77 ADHD PCA, KNN 86.0
Our proposed approach 2024 60 healthy, 61 ADHD ConvMixer with ECA 94.52

The results of this study have important implications for the early diagnosis and
intervention of ADHD in children. The high accuracy and reliability of ConvMixer-ECA
demonstrates its potential as a valuable tool to assist clinicians in the diagnostic process,
facilitating timely intervention and individualized treatment plans. The ConvMixer-ECA
model can capture EEG abnormalities associated with ADHD such as increased theta
activity, reduced beta activity, and altered fronto-central connectivity [41,42]. These abnor-
malities are robust markers of ADHD and are linked to impaired inhibitory control and
hypoarousal in the prefrontal cortex [43]. Functional imaging studies have also highlighted
abnormal functioning in the prefrontal cortex and striatum in individuals with ADHD [44].
Moreover, there is evidence of altered fronto-subcortical intrinsic functional connectivity in
ADHD. The model’s ability to extract complex patterns and relationships from EEG data
may potentially reveal the distinct EEG signatures of ADHD, providing valuable insights
for diagnostic and therapeutic purposes.

The present study has some limitations that need to be addressed in future studies.
The false positive rate of 8.41% suggests that there is room for improvement in reducing
the misclassification of TD individuals as ADHD individuals. A comparison of the per-
formance of our EEG-based ConvMixer-ECA model with that of non-EEG-based ADHD
diagnostic tools such as clinical interviews, behavioral assessments, and neuropsycho-
logical tests could provide a more comprehensive understanding of its potential utility
and complementary role in the diagnostic process. However, the ROC curve analysis,
with an area under the curve (AUC) of 0.98, demonstrated the high overall discriminative
ability of our ConvMixer-ECA model in distinguishing between ADHD and TD children
(Figure 9). This strong performance highlights the potential of our approach to assist
clinicians in the accurate diagnosis of ADHD, while future work should focus on fur-
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ther improving the model’s specificity to minimize false positives. Subsequent research
endeavors should also explore the specificity and applicability of the model to various
EEG classification tasks such as distinguishing between ADHD subtypes or predicting
treatment response. Investigating the generalizability of the ConvMixer-ECA model by
validating its performance on larger and more diverse ADHD datasets including subjects
from different age groups, ethnicities, and clinical subtypes would further establish its
robustness. Furthermore, the integration of multimodal data sources such as functional
magnetic resonance imaging (fMRI) or genetic information with EEG signals could facilitate
the development of more comprehensive and accurate models for the diagnosis and sub-
typing of ADHD. Moreover, future research should focus on further validating and refining
the model for broader clinical utility, facilitating its integration into clinical practice and
decision-making processes.

Figure 9. Receiver operating characteristic (ROC) curve of the ConvMixer-ECA model.

5. Conclusions

This study proposes ConvMixer-ECA, an innovative deep learning framework for
identifying ADHD from EEG signals. The architecture integrates the ConvMixer model,
which uses deep convolution and point-by-point convolution for optimized feature ex-
traction, combined with ECA blocks to recalibrate features in a channelized manner. The
model was trained and evaluated on EEG data from 60 healthy children and 61 children
with ADHD. Experiments and analyses led to the following main conclusions:

(1) ConvMixer-ECA performed well in detecting ADHD with an accuracy of 94.52%.
This highlights its effectiveness in recognizing discriminative features and accurately
classifying ADHD individuals from TD individuals.

(2) The integration of attentional mechanisms, especially ECA, significantly improved the
performance of the ConvMixer model. It outperformed other attention-based variants,
highlighting the importance of incorporating attentional mechanisms in EEG-based
recognition tasks.

(3) ConvMixer-ECA outperformed existing state-of-the-art deep learning models in-
cluding EEGNet, CNN, RNN, LSTM, and GRU, establishing ConvMixer-ECA as an
accurate EEG-based ADHD detection method.

(4) The t-SNE visualization of the output of the ConvMixer-ECA layer confirmed the
model’s ability to learn to distinguish between the intrinsic patterns and features of
individuals with ADHD and those with TD through hierarchical feature learning.

These results highlight the potential of ConvMixer-ECA as a valuable tool to assist
clinicians in the early diagnosis and intervention of ADHD in children.
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