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Abstract: Biological aging, characterized by changes in metabolism and physicochemical properties
of cells, has an impact on public health. Environment and lifestyle, including factors like diet
and physical activity, seem to play a key role in healthy aging. Several studies have shown that
regular physical activity can enhance antioxidant defense mechanisms, including the activity of
enzymes such as superoxide dismutase (SOD), catalase, and glutathione peroxidase. However,
intense or prolonged exercise can also lead to an increase in reactive oxygen species (ROS) production
temporarily, resulting in oxidative stress. This phenomenon is referred to as “exercise-induced
oxidative stress”. The relationship between physical activity and oxidative stress in aging is complex
and depends on various factors such as the type, intensity, duration, and frequency of exercise, as
well as individual differences in antioxidant capacity and adaptation to exercise. In this review, we
analyzed what is reported by several authors regarding the role of physical activity on oxidative stress
in the aging process as well as the role of hormesis and physical exercise as tools for the prevention
and treatment of sarcopenia, an aging-related disease. Finally, we reported what has recently been
studied in relation to the effect of physical activity and sport on aging in women.
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1. Introduction

The improvement in living conditions and advances in medicine led to an increase in
life expectation. According to the World Health Organization (WHO) by 2050 people aged
60 years old and older will double from 12% to 22% reaching 2.1 billion while persons aged
80 years or older will triple, reaching 426 million [1].

Identifying strategies to maintain well-being in older age is important since the aging
global population is a relatively new problem worldwide. Biological aging is characterized
by changes in metabolism and physicochemical properties of cells that manifest with
several complex health conditions having an impact on public health [2]. Environment
and lifestyle, including factors like diet and physical activity, seem to play a key role in
healthy aging.

The relationship between sporting activity and the generation of oxygen-free radicals
with aging is complex. If the balance between physical activity and oxidative stress is
disturbed by an excessive workload or by the presence of age-related metabolic alter-
ations such as obesity or diabetes, cells, and organs may develop abnormalities due to
an abnormal acceleration of the aging process [3]. Such abnormalities, also referred to as
“exercise-induced oxidative stress”, may contribute to the development of chronic and
degenerative disorders such as arthritis [4], autoimmune disorders [5], cardiovascular [6],
and neurodegenerative diseases [7], inflammation, and cancer [8].

On the other hand, it is now clear that maintaining a correct physical activity program
generates a moderate and short-term increase in free radicals, which can activate molecular
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mechanisms useful for the cell to adapt and improve the immunological defenses of the
organism [8]. The extent to which reactive species are helpful or harmful depends on the
exercise duration, intensity, fitness condition, and nutritional status of the individual [9].
Therefore, subjects at any age, with particular attention to aging, can benefit from constant,
therefore repeated over time, physical activity to counteract the negative effects and toxicity
of oxidative stress on health. Regular exercise improves antioxidant defenses and reduces
lipid peroxidation levels both in adults and in aged individuals [10]. It alleviates the
negative effects caused by free radicals [11]. Moreover, it offers many health benefits,
including reduced risk of all-cause mortality, sarcopenia in the skeletal muscle, chronic
disease, and premature death in elderly people [12]. Given that most of the reviews that
have considered these aspects have largely oriented the discussion toward male-related
issues, the purpose of this review is to direct attention to some specific problems of women.

Understanding the interplay between physical activity, oxidative stress, and aging has
important clinical implications for the development of interventions aimed at promoting
healthy aging and preventing age-related diseases. Strategies such as regular exercise,
antioxidant supplementation, and lifestyle modifications can potentially help mitigate the
negative effects of oxidative stress and improve overall health and longevity in older adults.

2. Aging

Aging is a complex process characterized by a gradual decline in physiological function
and an increased vulnerability to diseases. It encompasses various physical, psychological,
and social changes that occur as individuals grow older. Biological aging is influenced
by genetic factors, environmental factors, lifestyle choices, and other variables. Some
common manifestations of aging include wrinkles, reduced muscle mass, decreased bone
density, diminished sensory functions, and cognitive decline. Oxidative stress, which
results from an imbalance between the production of reactive oxygen species (ROS) and the
body’s antioxidant defenses, is considered one of the key mechanisms underlying aging.
Moreover, biological aging is a complex process characterized by the accumulation of DNA
damage, cellular senescence, mitochondrial dysfunction, reduction in telomere length, loss
of proteostasis, imbalanced metabolism, and stem cell exhaustion (Figure 1a) [13]. All these
hallmarks lead to a progressive decline in tissue and organ function. Differences in aging
between men and women encompass various biological and physiological effects shown in
Figure 1b and in several points reported below [14].
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Figure 1. Biological aging. (a) Different factors influencing aging [4]; (b) differences in aging between
men and women. In men, there is an increase in visceral fat (arrow up) while in women there is a
decrease in bone density and estrogen levels (arrow down).

Among biological factors, hormonal changes are due to menopause experienced by
women which leads to decreased estrogen levels that can influence bone density [15],
skin elasticity [16], and other physiological functions. On the contrary, men showed a
testosterone decline, they experience a gradual decline in testosterone levels with age,
which can affect muscle mass, bone density, and sexual function [17].

Among physiological differences, authors reported the following:
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Muscle Mass: Generally, men have greater muscle mass and strength compared to women
due to higher testosterone levels, although this difference tends to diminish with age [18].
Fat Distribution: Women typically have more subcutaneous fat, particularly around the hips
and thighs, while men tend to accumulate more visceral fat around the abdomen, which
can increase the risk of cardiovascular diseases [19].
Bone Density: Women are at a higher risk of osteoporosis due to hormonal changes post-
menopause, leading to decreased bone density and increased susceptibility to fractures [15].
Cognitive Decline: While both men and women experience cognitive decline with age,
research suggests that women may have a slightly lower risk of developing cognitive
impairment and Alzheimer’s disease compared to men [20].

2.1. Oxidative Stress in Aging

Oxidative stress occurs when there is an imbalance between the production of ROS
and the body’s ability to detoxify them or repair the resulting damage. ROS are highly
reactive molecules that can damage cellular components such as proteins, lipids, and DNA,
leading to cellular dysfunction and contributing to the aging process [21].

Specific actions of ROS depend on their chemical nature and the cellular context
in which they are produced. Superoxide anion is produced primarily by the electron
transport chain in mitochondria, and it directly damages cellular components [22] or can
be converted into hydrogen peroxide that can diffuse across cell membranes. It can be a
signaling molecule in various cellular processes or be detoxified by antioxidant enzymes
such as catalase and glutathione peroxidase [23]. The most reactive molecule is hydroxyl
radical formed through the Fenton reaction, involving the interaction of hydrogen peroxide
with iron or copper and it is responsible for damaging DNA, proteins, and lipids [24]
Although ROS play important roles in cell signaling and homeostasis, their accumulation
can cause DNA strand breaks, base modifications, and cross-linking, leading to mutations
and genomic instability, potentially leading to cell death or carcinogenesis [25]. ROS
can also oxidize several amino acid residues in proteins, and this can disrupt enzymatic
activity, protein–protein interactions, and cellular signaling pathways [26]. ROS can initiate
lipid peroxidation, a chain reaction that can disrupt membrane integrity and lead to cell
dysfunction [26]. Overall, while ROS plays essential roles in physiological processes, their
excessive accumulation can lead to cellular damage and contribute to the pathogenesis of
various diseases.

In aging, several factors contribute to increased oxidative stress. Several of these are
summarized below and in Figure 2.

Decline in Antioxidant Defenses: The body’s antioxidant defenses, including enzymes like
superoxide dismutase (SOD), catalase, and glutathione peroxidase, decline with age. This
reduction in antioxidant capacity makes older individuals more susceptible to oxidative
damage [27].
Mitochondrial Dysfunction: Mitochondria, the energy-producing organelles within cells, are
a major source of ROS. As mitochondria age, they become less efficient at producing energy
and more prone to generating ROS as a by-product of respiration. This contributes to a
vicious cycle of oxidative stress and mitochondrial dysfunction [28].
Inflammation: Chronic low-grade inflammation, often termed “inflammaging”, is a hallmark
of aging. Inflammatory processes can stimulate the production of ROS and exacerbate
oxidative stress. Conversely, oxidative stress can also promote inflammation, creating a
feedback loop that contributes to age-related tissue damage [29].
Accumulation of Damage: Over time, cumulative oxidative damage to cellular components
like DNA, proteins, and lipids can impair cellular function and contribute to age-related
decline in tissue and organ function [30].
The consequences of oxidative stress in aging are wide-ranging and can affect various
physiological systems reported here:
Cellular Aging: Oxidative damage contributes to cellular senescence, a state of irreversible
growth arrest that limits the replicative capacity of cells and contributes to tissue aging [31].
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Tissue Dysfunction: Oxidative stress plays a role in age-related degenerative diseases such as
cardiovascular disease, neurodegenerative diseases (e.g., Alzheimer’s disease, Parkinson’s
disease), and age-related macular degeneration [32–35].
Cancer: While oxidative stress can promote DNA damage and increase the risk of mutations
that lead to cancer, paradoxically, cancer cells often exhibit increased antioxidant defenses
to protect themselves from oxidative damage [36,37].
Immune Function: Oxidative stress can impair immune function, making older individuals
more susceptible to infections and less responsive to vaccines [38,39].
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Figure 2. Oxidative stress in aging: (a) factors producing ROS in aging 1 [27]; 2 [28]; 3 [29]; 4 [30];
(b) consequences of oxidative stress in aging 5 [31]; 6 [32]; 7 [36]; 8 [38].

Efforts to mitigate oxidative stress and its effects on aging include lifestyle interven-
tions such as maintaining a balanced diet rich in antioxidants, regular exercise, avoiding
tobacco smoke and excessive alcohol consumption, and managing chronic conditions like
diabetes and hypertension. More than 300 theories have been proposed to explain the
phenomena of aging but a single theory could not explain all the mechanisms of aging [30].
ROS are important for the defense mechanism and signaling transduction [40,41]. These
pathways play an important role in various cellular processes such as cell growth, in-
flammatory response, autophagy, or adaptive response to oxidative stress [42]. However,
accumulations of ROS have a negative effect on health and induce oxidative stress (OS) [43].
The primary endogenous sources for ROS production are mitochondria via oxidative phos-
phorylation but in mammals’ cells, different protein complexes are responsible for ROS
production [44].

2.2. Hormesis, Aging and Physical Activity

Southam and Erhlich indicate the effect of plant extracts on fungi culture [45] used the
term hormesis for the first time in the scientific literature in 1943. Hormesis is a biological
phenomenon where exposure to low doses of a stressor or toxin induces adaptive responses
in an organism, resulting in improved health and longevity. This concept suggests that
mild stressors can activate cellular mechanisms that enhance resilience and resistance to
more severe stressors. Exercise, for example, is one of the hormetic stressors that has been
extensively studied for its beneficial effects on aging. In the context of aging, hormesis
has been proposed as a potential mechanism to delay or mitigate age-related decline and
promote longevity. Several stressors, such as calorie restriction, exercise, heat shock, and
certain phytochemicals, have been studied for their hormetic effects on aging [46]. The
hormetic effects of physical activity on aging are thought to involve multiple mechanisms,
including the activation of cellular stress response pathways (such as the AMPK and sirtuin
pathways) [47], enhanced autophagy [48], and improved mitochondrial function [49]. These
adaptations help the body cope with stress more effectively, leading to greater resilience and
longevity. Regular physical activity, particularly aerobic and resistance training, induces
mild oxidative stress and inflammation, which triggers adaptive responses in muscles,
bones, and other tissues, leading to improved function and resilience with age [50]. This
stress triggers a cascade of physiological responses aimed at adapting to the demands
placed upon it. These adaptations, shown in Figure 3, include:
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Muscle Growth and Strength: Resistance training, such as weightlifting, places stress on
muscles, leading to microscopic damage to muscle fibers. In response, the body repairs
and rebuilds these fibers, resulting in increased muscle mass and strength [51].
Cardiovascular Fitness: Aerobic exercise, like jogging or cycling, stresses the cardiovascular
system by increasing heart rate and blood flow. Over time, the heart becomes more
efficient at pumping blood, and the blood vessels become more elastic, leading to improved
cardiovascular fitness and reduced risk of heart disease [52].
Bone Density: Weight-bearing exercises, such as walking or running, stress the bones,
stimulating bone remodeling and increasing bone density. This helps prevent osteoporosis
and reduces the risk of fractures [53,54].
Metabolic Health: Exercise enhances insulin sensitivity, promotes glucose uptake by muscles,
and improves lipid profiles, all of which contribute to better metabolic health and reduced
risk of conditions like type 2 diabetes and metabolic syndrome [55,56].
Mood and Cognitive Function: Physical activity triggers the release of endorphins and
other neurotransmitters that promote feelings of well-being and reduce stress and anxiety.
Regular exercise has also been linked to improved cognitive function and reduced risk of
cognitive decline with aging [56,57]. It is important to note that while moderate exercise
provides a beneficial hormetic effect, excessive or overly intense exercise can have the
opposite effect, leading to excessive stress, inflammation, and potential injury.
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Therefore, finding the right balance and incorporating rest and recovery into exercise
routines is crucial for reaping the full benefits of hormesis from physical activity [49,58].
Overall, hormesis provides a theoretical framework for understanding how exposure to
mild stressors can stimulate adaptive responses that promote health and longevity. While
more research is needed to fully elucidate the mechanisms underlying hormesis and its
implications for aging, the concept holds promise for developing interventions to delay
age-related decline and extend lifespan.

2.3. Physical Activity in Aging

Regular physical activity has been shown to have numerous benefits for overall
health and well-being, including mitigating some of the effects of aging. Exercise helps
improve cardiovascular health, maintain muscle mass and strength, enhance cognitive
function, and increase overall longevity [59]. Regular physical activity helps to prevent
cardiovascular and metabolic disease, obesity, falls, cognitive impairments, osteoporosis,
and muscular weakness are decreased by regularly completing activities ranging from low
intensity walking through to more vigorous sports and resistance exercise. But despite



Antioxidants 2024, 13, 557 6 of 15

evidence showing that it is safe for healthy and older people, the participation of the latter
remains low.

In general, the more often a person is physically active, the better their physical
capability. This is due to adaptations of physiological systems, most notably within the
neuromuscular system to coordinate movements, the cardiopulmonary system to more
effectively distribute oxygen and nutrients around the body, and metabolic processes
particularly those regulating glucose and fatty acid metabolism, which collectively increase
overall aerobic power and physical capability. Thus, the trajectory towards frailty is directly
modifiable through physical activity habits [60,61]. Physical activity is extremely important
for elderly individuals as it offers a wide range of physical and mental health benefits.
Regular physical activity can help improve strength, flexibility, balance, and cardiovascular
health, all of which are crucial for maintaining independence and reducing the risk of falls
and injuries in older adults [62].

Engaging in physical activity can also help manage chronic conditions such as arthritis,
osteoporosis, and diabetes. It can improve mood, reduce symptoms of depression and
anxiety, and enhance cognitive function. Additionally, staying physically active promotes
social interaction and can contribute to a greater sense of well-being and overall quality of
life [63]. It is important for elderly individuals to choose activities that are appropriate for
their fitness level and health status. This might include walking, swimming, cycling, tai chi,
yoga, or strength training exercises [64]. It is also important to consult with a healthcare
professional before starting any new exercise program, especially if there are underlying
health concerns [65]. Overall, encouraging and supporting elderly individuals to remain
physically active can significantly improve their health and vitality as they age [66].

3. Sarcopenia in Aging

Sarcopenia refers to the gradual loss of muscle mass, strength, and function that occurs
with aging. It is a natural part of the aging process, typically starting around middle age
but accelerating after the age of 75. Several factors contribute to sarcopenia, including
decreased physical activity as reported in Figure 4 [67,68]. It is a multifactorial and complex
phenomenon whose underlying mechanisms are not clearly defined. Based on etiological
factors sarcopenia is classified as primary when no specific cause other than aging is evident
and secondary when other factors like inflammatory and endocrine diseases are evident.
Moreover, bad habits like physical inactivity and undernutrition may be a factor that
contributes to the development of sarcopenia [69].

The European Working Group on Sarcopenia in Older People (EWGSOP) proposed
diagnostic criteria based on muscle mass, muscle strength, and physical performance [70].
In 2018, EWGSOP revised the parameter of sarcopenia diagnosis giving more importance
to muscle strength than muscle mass to predict adverse outcomes [71]. Lack of exercise
is one of the major risk factors of sarcopenia and resistance exercise is the main non-
pharmacological tool for the management of sarcopenia [72]. In aging muscle, there is an
imbalance between protein synthesis and degradation that leads to a decrease in muscle
mass [73]. The consequences of sarcopenia can be significant, as it can lead to decreased
mobility, increased risk of falls and fractures, loss of independence, and overall decreased
quality of life. It has also been associated with increased mortality rates [74].

Preventing and managing sarcopenia involves a multifaceted approach that includes
regular physical activity, especially resistance training to maintain muscle mass and
strength, adequate protein intake to support muscle repair and growth, and overall good nu-
trition [75]. Additionally, managing chronic illnesses and addressing hormonal imbalances
can help mitigate the effects of sarcopenia [76,77].

Early detection and intervention are crucial in combating sarcopenia. Regular assess-
ments of muscle mass, strength, and function can help identify individuals at risk, allowing
timely interventions to preserve muscle health and function as people age [78].
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3.1. Sarcopenia, Mitochondrial Dysfunction and Physical Activity

Different studies have highlighted the link between mitochondrial dysfunction and sar-
copenia. In aging muscle, evident mitochondrial alterations like morphological changes and
downregulation of PGC1-alpha, are the factors that regulate mitochondrial biogenesis [79].
Otherwise, mitochondrial damage induces the accumulation of ROS [80]. Furthermore,
PGC-1α expression stimulates the expression of antioxidant genes, including heme oxy-
genase 1 (HO-1) [81]. The imbalance between the production of ROS, Reactive Nitrogen
Species (RNS), and antioxidant defenses in the body is an early biomarker of sarcopenia [82].
ROS are produced during muscle contraction by the mitochondrial electron transport chain
during normal oxidative respiration [83]. With aging, skeletal muscle increases the pro-
duction of ROS, which contributes to increased damage of cells and muscle atrophy [84]
because enhancing the ubiquitin–proteasome system, resulting in skeletal muscle atro-
phy [85]. Progressive resistance training is the most studied method of exercise. Aerobic
exercise otherwise contributes to activating mitochondria biogenesis [86] and increases
the synthesis of muscle proteins like myostatin whose mRNA expression increases [87].
In general, aerobic exercise tends to ameliorate mitochondrial-associated problems. In
older adults, no particular type of exercise satisfies all the needs requested for the use of
exercise as a therapeutic tool in age-related sarcopenia, and thus well-rounded aerobic and
resistance exercise programs are recommended [88]. Moreover, vibration therapy in case of
inability is able to improve physical measurement [89].

3.2. Aging and Physical Activity in Women

Aging in females involves a complex interplay of physiological, psychological, and
social changes that occur, as women grow older. Physical activity plays a crucial role in
mitigating many of the physiological and psychological changes associated with aging in
females. Overall, aging in females is a multifaceted process influenced by various factors.
Here and in Figure 5, some key aspects of aging in females and how physical activity can
positively influence them are summarized.

Menopause: Characterized by a decline in hormone levels, particularly estrogen and proges-
terone, which can lead to various symptoms such as hot flashes, mood swings, weight gain,
decreased bone density, and increased risk of cardiovascular disease. Regular physical
activity can help alleviate many of these symptoms and improve overall well-being during
menopause [90].
Bone Health: Women are at a higher risk of osteoporosis compared to men, particularly after
menopause. Osteoporosis is characterized by decreased bone density and an increased
risk of fractures. Maintaining regular exercise is crucial for preserving bone health, weight-
bearing and resistance exercises help to maintain bone density and strength, reducing
the risk of osteoporosis and fractures. Activities such as walking, jogging, dancing, and
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weightlifting are beneficial for bone health [91,92]. Moreover, several authors reported
that resistance training exercises help to build and maintain muscle mass, strength, and
function, which can decline with age. Strong muscles support joint health, balance, and
mobility, reducing the risk of falls and injuries [93].
Weight Management and Metabolic Changes: Menopause often brings about weight gain,
especially around the abdomen. The metabolic rate tends to decrease with age, making
weight management more challenging. Regular physical activity helps to maintain a
healthy weight, improve insulin sensitivity, and reduce the risk of metabolic conditions
such as type 2 diabetes and cardiovascular disease. Both aerobic exercise (e.g., walking,
swimming, cycling) and strength training contribute to metabolic health [94,95].
Cardiovascular Health: Post-menopausal women have an increased risk of cardiovascular
disease, partly due to changes in hormone levels [96,97]. Managing risk factors such as
high blood pressure, high cholesterol, and diabetes through lifestyle modifications and
medical treatment is essential for maintaining heart health [98]. Aerobic exercises such as
brisk walking, cycling, and swimming are effective for improving cardiovascular fitness,
reducing blood pressure, lowering cholesterol levels, and decreasing the risk of heart
disease and stroke [99,100].
Cognitive Health, Psychological, and Social Well-being: While cognitive decline can occur with
age, women may have a lower risk of developing certain neurodegenerative diseases such
as Alzheimer’s disease compared to men [101]. However, they may experience cognitive
changes associated with hormonal fluctuations and aging [102]. Moreover, aging can bring
about psychological and social changes, including shifts in roles and relationships, retire-
ment, caregiving responsibilities, and coping with loss [103]. Physical activity improves
mood, reduces symptoms of anxiety and depression, and enhances cognitive function and
brain health in older adults. Engaging in regular exercise can boost self-esteem, promote
relaxation, and alleviate stress [104,105].
Moreover, participating in group-based physical activities or exercise classes can provide
opportunities for social interaction, connection, and support, which are important for
overall well-being and quality of life, particularly as women age [106–108]. It is important
for women to choose activities that they enjoy and that fit their individual preferences,
abilities, and health goals. Consulting with a healthcare provider or a fitness professional
can help in developing a safe and personalized exercise program tailored to individual
needs and medical conditions.
Functional Independence: Maintaining physical fitness and functional abilities through regu-
lar exercise supports independence in activities of daily living, such as dressing, bathing,
cooking, and household chores, allowing women to maintain autonomy and quality of life
as they age [109–112].
Joint Health and Flexibility: Activities that promote joint mobility and flexibility, such as
yoga, Pilates, and stretching exercises, help to maintain joint health and range of motion,
reducing the risk of stiffness and arthritis-related pain [113–116].

3.3. Sport and Elderly Women

Regular participation in sports helps women maintain physical fitness, strength, flexi-
bility, and cardiovascular health as they age (Figure 6). Activities such as running, swim-
ming, cycling, tennis, and team sports provide opportunities for aerobic exercise, muscle
strengthening, and agility training, contributing to overall health and vitality.
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Moreover, sports participation can enhance self-esteem, self-confidence, and a sense of
empowerment in women of all ages [117]. Achieving personal fitness goals, mastering new
skills, and overcoming challenges in sports can build resilience and a positive self-image,
particularly as societal attitudes toward aging continue to evolve. Engaging in sports offers
opportunities for continuous learning, skill development, and personal growth throughout
the aging process [118]. Women can explore new sports, adapt their training routines, and
set new goals to stay active and motivated as they navigate different life stages [119]. It is
important for women to choose sports and physical activities that align with their interests,
abilities, and health goals, and to consult with healthcare professionals or fitness experts as
needed to ensure safety and appropriate exercise programming. With the right support
and resources, sports participation can enrich the lives of women as they age, promoting
health, vitality, and overall well-being.
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4. Conclusions

What is reported in this review suggests that normal daily activity in elderly subjects
preserves the independence of the elderly and keeps their oxidative state at low levels.
Moreover, encouraging physical activity and sports practice among the elderly, regardless
of gender, should be a priority in healthcare and community settings. Tailored exercise
programs, accessibility to suitable facilities, social support networks, and education on
the importance of staying active can all contribute to improving the physical and mental
well-being of elderly men and women. Additionally, addressing specific barriers faced by
each gender group can help in promoting inclusivity and participation in physical activities
among the elderly population.
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