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Abstract: Cardiomyopathies (CMPs) are a group of myocardial disorders that are characterized by
structural and functional abnormalities of the heart muscle. These abnormalities occur in the absence
of coronary artery disease (CAD), hypertension, valvular disease, and congenital heart disease. CMPs
are an increasingly important topic in the field of cardiovascular diseases due to the complexity
of their diagnosis and management. In 2023, the ESC guidelines on cardiomyopathies were first
published, marking significant progress in the field. The growth of techniques such as cardiac
magnetic resonance imaging (CMR) and genetics has been fueled by the development of multimodal
imaging approaches. For the diagnosis of CMPs, a multimodal imaging approach, including CMR,
is recommended. CMR has become the standard for non-invasive analysis of cardiac morphology
and myocardial function. This document provides an overview of the role of CMR in CMPs, with a
focus on tissue mapping. CMR enables the characterization of myocardial tissues and the assessment
of cardiac functions. CMR sequences and techniques, such as late gadolinium enhancement (LGE)
and parametric mapping, provide detailed information on tissue composition, fibrosis, edema, and
myocardial perfusion. These techniques offer valuable insights for early diagnosis, prognostic
evaluation, and therapeutic guidance of CMPs. The use of quantitative CMR markers enables
personalized treatment plans, improving overall patient outcomes. This review aims to serve as a
guide for the use of these new tools in clinical practice.

Keywords: cardiomyopathies; tissue mapping; cardiac magnetic resonance; advanced diagnostic
techniques; non-dilated left ventricular cardiomyopathy; cardiogenetic

1. Introduction

Cardiomyopathies (CMPs) are a group of myocardial disorders characterized by
structural and functional abnormalities of the heart muscle, in the absence of coronary artery
disease (CAD), hypertension, valvular disease, and congenital heart disease (CHD) [1,2].
CMPs are an increasingly important topic in the field of cardiovascular disease, not least
because of the complexity of their diagnosis and management. This is demonstrated by the
fact that the European Society of Cardiology (ESC) guidelines on cardiomyopathies were
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published for the first time in 2023 and are not just an update of previous recommendations,
but a first edition. The boom in this field has been made possible by the development of
two techniques in particular: cardiac magnetic resonance (CMR) imaging and genetics [3,4].

Imaging techniques have evolved over the years, allowing a better understanding of
these diseases [5,6]. For this reason, a multimodal imaging approach, including ultrasound-
based techniques, CMR imaging, computed tomography (CT), positron emission tomogra-
phy (PET), and scintigraphy, is actually recommended in their diagnostic workup [2,7–9].
Among all these techniques, CMR has become over the years the gold standard for non-
invasive assessment of cardiac morphology, function, and myocardial tissue characteriza-
tion [10–12]. With this document we aim to provide an overview of CMR imaging findings
in CMPs that may be of practical use to clinicians.

2. CMR-Based Sequences and Techniques
2.1. Morphology and Function

Through the application of non-gated balanced steady-state free precession (b-SSFP)
sequences and the acquisition of cine images with high spatial and temporal resolution,
CMR represents the gold standard imaging modality for the quantification of cardiac cham-
ber size, volume, mass, and global or regional function, with a much greater morphological
characterization compared with echocardiography [13–16]. Furthermore, the deformation
(strain and strain rate) of myocardial segments can be measured through post-processing
analysis of b-SSFP sequences with feature-tracking (FT) technology in order to assess early
changes in myocardial mechanics and function [17,18].

2.2. Tissue Characterization

More recently, advanced non-invasive tissue characterization can be achieved us-
ing appropriate CMR sequences like late gadolinium enhancement (LGE) imaging and
parametric mapping techniques.

LGE T1-weighted (T1-W) images are based on the typical extracellular distribution
kinetic of a paramagnetic gadolinium-based contrast agent (GBCA), which is normally
washed away in 10–20 min. With damaged myocardial tissue, there is a larger extracellular
space and more enhancement after gadolinium, allowing MRI to detect myocardial infarcts
as well as nonischemic necrosis, fibrosis, and amyloid deposition. T2-weighted (T2-W) short
tau inversion recovery (STIR) images, instead, are effective in detecting water accumulation
due to inflammatory extracellular edema [13,15,19].

CMR parametric mapping uses several advanced imaging techniques, allowing for
a quantitative assessment of myocardial tissue properties. Unlike traditional imaging
methods, such as echocardiography, cardiac MRI mapping provides detailed information
on tissue composition, fibrosis, edema, perfusion, and contractility [20]. This modality
integrates data deriving from T1, T2, and T2* (star) mapping, as well as from extracellular
volume fraction (ECV) quantification, so that any change in myocardial composition can
be visualized, offering insights into pathological processes previously inaccessible, except
through histological examinations [15,21].

CMR sequences characteristics and applications are summarized in Table 1.

Table 1. CMR sequence characteristics and applications.

Sequence Characteristics Applications

Cine
b-SSFP sequences, cine images

with high spatial and
temporal resolution

Quantification of cardiac
chamber size, volume, mass,

and function
Black-blood imaging T1- or PD- weighted FSE Fatty infiltration
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Table 1. Cont.

Sequence Characteristics Applications

LGE T1-W IR-SSFP/IR-GRE sequences,
acquired after GBCA infusion

Extracellular GBCA
deposition (necrosis, fibrosis,

amyloid deposition)

STIR T2-W IR-FSE sequences
Water accumulation due to
inflammatory extracellular

edema

Native T1-mapping MOLLI/ShMOLLI IR-SSPF
sequences

Increased in amyloid
deposition, inflammatory
edema, ischemia, necrosis,

diffuse fibrosis; decreased in
iron overload, AFD

Native T2-mapping T2-prepared bSSFP, GraSE,
FSE sequences

Increased in necrosis,
ischemia, inflammatory

edema; decreased in iron
overload

Native T2*-mapping GRE sequences Decreased in iron overload

ECV-mapping
MOLLI/ShMOLLI IR- SSFP

sequences, acquired after
GBCA infusion

Increased in amyloid
deposition, necrosis, fibrosis

FT-GLS

post-processing analysis of
b-SSFP sequences with strain
and strain rate deformation

assessments

Assess early changes in
myocardial mechanics and

function

LGE T1-W: late gadolinium enhancement T-1 weighted; STIR T2-W: short tau inversion recovery T2 weighted;
T2*: T2 star; ECV: extracellular volume; PD: proton density; b-SSFP: balanced steady-state free preces-
sion; IR-SSFP: inversion recovery steady-state free precession; IR-GRE: inversion recovery gradient echo;
GBCA: gadolinium-based contrast agent; IR-FSE: inversion recovery fast spin echo; MOLLI: Modified Look
Locker inversion recovery; ShMOLLI: Shortened Modified Look Locker inversion recovery; AFD: Anderson–
Fabry disease; GraSE: gradient echo spin echo; FT-GLS: feature tracking global longitudinal strain.

3. Dilated Cardiomyopathy

Non-ischemic dilated cardiomyopathy (DCM) is a condition characterized by dila-
tion and weakening of the heart muscle, resulting in a reduced pumping capacity of the
ventricles [2]. The dilation is not caused by reduced blood supply to the heart muscle
or abnormal stress conditions but by other factors such as viral infections, autoimmune
reactions, toxins, alcohol abuse, genetic causes, or unknown factors [22].

It is important to note the superiority of magnetic resonance imaging over echocar-
diography in accurately quantifying the volume of the cardiac chambers and important
parameters, such as ejection fraction, for therapeutic decisions in this patient setting [23].

The 2023 guidelines on cardiomyopathies establish, for the first time, that the presence
of late LGE on MRI in patients carrying variants in genes associated with high arrhythmic
risk predicts an increased risk of sudden cardiac death [2]. This may indicate the need for
a prophylactic implantable cardioverter defibrillator in the presence of other variables or
when certain risk score cut-offs are reached. Diffuse interstitial fibrosis can be detected
by T1 mapping, whereas irreversible fibrotic replacement corresponds to the presence of
LGE [24,25]. Although each scanner has its own reference values, the normal range of
native T1 is 900–1035 ms at 1.5 T, with a higher value generally associated with the presence
of diffuse fibrosis. An observational study demonstrated that the existence of anomalies
in the native myocardial T1 relaxation times might serve as an even more effective and
autonomous indicator of unfavorable prognosis among individuals with DCM [26]. Other
investigations have established a link between ECV and cardiac incidents: in a cohort
of patients diagnosed with non-ischemic DCM, the degree of irregularity determined
through ECV mapping forecasts a progressively heightened susceptibility to heart failure
consequences [27]. The study found a strong correlation between ECV and major adverse
cardiac events (MACE) across various anatomical locations, with the most significant
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association observed in the anteroseptal region [27–29]. Furthermore, ECV exhibited an
additional and incremental predictive relationship with MACE when compared to native
T1, the presence of LGE, and the extent of LGE mass [27–29]. In a recent study, the potential
predictive value of quantitative CMR features for MACEs in patients diagnosed with
DCM was investigated. The study found that patients who experienced heart failure
or arrhythmia-related events had significantly higher levels of both native T1 and ECV
compared to non-ischemic DCM patients without MACE [28].

T2 mapping is highly effective in identifying early stage DCM, especially when my-
ocardial morphology is challenging to distinguish from athletic myocardial adaptation [30].
In DCM, higher values are reported than in normal subjects (62.9 ± 5.7 ms vs. 55.4 ± 3.5
in controls) [31]. It also holds prognostic value: the shortening of myocardial T2 relax-
ation time may indicate which patients are more likely to undergo left ventricular reverse
remodeling during treatment [32].

Incorporating these quantitative CMR markers of diffuse interstitial disease into
clinical practice allows for the customization of therapeutic approaches, including the
consideration of implantable cardioverter defibrillator (ICD) placement and cardiac resyn-
chronization therapy (CRT), as previously mentioned [33]. The use of these markers can
help tailor treatment plans to individual patients, improving their overall outcomes.

The idea that the presence and size of LGE is only the “tip of the iceberg” and that it is
necessary to characterize diffuse myocardial fibrosis to improve risk stratification in DCM
patients is gaining ground [27].

4. Non-Dilated Left Ventricular Cardiomyopathy

Since 2023, the ESC has introduced a new category of cardiomyopathies named
non-dilated left ventricular cardiomyopathy (NDLVC). This new classification includes
cases where there are abnormalities in wall kinetics or scar tissue in the left ventricle
without dilation [2]. This category may include patients in the early stage of dilated
cardiomyopathy (DCM) or those who were previously classified within the spectrum
of non-dilated hypokinetic cardiomyopathies, as well as all forms of arrhythmogenic
involvement of the left ventricle that were once grouped under the umbrella term of
arrhythmogenic cardiomyopathy (ACM).

Few specific studies on the subject have been published, and the prevalence, diagnosis,
and management of NDLVC remain undetermined [34–37].

In this context, it is important to use MRI to detect all areas of myocardial scar or
fibroadipose replacement that echocardiography cannot highlight, given the definition of
NDLVC. The guidelines themselves highlight the importance of quantifying and describing
the LGE pattern for suspecting a specific genetic etiology: in dystrophinopathies, LGE
typically manifests as extensive inferolateral patterns, while LMNA carriers commonly
exhibit mid-wall septal LGE; DSP and FLNC variant carriers often present with a ring-
like LGE pattern [2,38]. Little is still known about the role of mapping in this patient
category, although it is presumed to be similar to that implied for individuals with DCM.
The detection of myocardial edema may suggest an inflammatory or myocarditic origin [2].

MRI will be crucial in the early identification of individuals affected by NDLVC and
their family members. It could aid in prognostic stratification, although initial data show
no significant difference in the incidence of cardiac events between NDLVC with reduced
ejection fraction and individuals with classic DCM [37]. Therefore, both categories require
equal attention in follow-up and management [37].

5. Hypertrophic Cardiomyopathy

Hypertrophic cardiomyopathy (HCM), characterized by excessive myocardial wall
thickening or mass and impaired diastolic filling that is not solely explained by abnormal
loading conditions [1,2], benefits from the ability of cardiac MRI to accurately measure
myocardial thickness, ECV, and regional strain.
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HCM is often correlated with the appearance of diffuse myocardial fibrosis, detected
by late gadolinium enhancement (LGE). Elevated native T1 values have been identified not
only in regions corresponding to LGE, but also even in the absence of regionally apparent
LGE and hemodynamic obstruction [39,40]. This implies that native T1 could identify tissue
abnormalities prior to the development of fibrosis detected by LGE [39,40]. Individuals
with HCM exhibit heightened interstitial fibrosis within the hypertrophied sections, even
in the absence of late gadolinium enhancement (LGE). Additionally, elevated T1 and ECV
measurements were linked to the left ventricular mass index across the entire HCM patient
group [41].

The severity of left ventricular hypertrophy is expressed to a greater extent by the
prolongation of T2 time than T1 time [42]. T2 time is also used to distinguish compensatory
hypertrophy in athletes, with a greater increase in T2 observed in patients with HCM [43].

MRI is considered the gold standard in the differential diagnosis of different forms of
cardiomyopathy with hypertrophic phenotype (Figure 1).
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Figure 1. Cardiac MRI of hypertrophic cardiomyopathy (HCM). A case of a 38-year-old male with
a history of premature ventricular beats. Panel (a) (SSFP sequences) represents a four-chamber
and short axis views (top left panel and top middle panel, respectively) showing a marked and
asymmetric hypertrophy of the interventricular septum (white arrowheads). Panel (b) (TIR t2
sequence) represents a short-axis view showing a higher signal al the level of the septum (white
arrowheads) compared to the remote myocardium. Panels (c,d) represent increased values on T1
mapping sequences at the level of the basal and middle septum (white arrowheads), respectively.
Panel (e) represents increased values on extracellular volume (ECV) sequence at the level of middle
septum (white arrowheads black outlines). Panels (f–h) (LGE sequences) display a non-ischemic
pattern of hyperenhancement at the level of septum (white arrowheads). Taken together, these
findings are diagnostic of asymmetric HCM.
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T1 and T2 mapping helps identify areas of fibrosis, edema, and inflammation, aiding
risk stratification and treatment planning. Quantitative cardiac MRI data contribute to
a better understanding of disease progression and guide interventions, such as septal
reduction therapies.

6. Cardiac Amyloidosis

Amyloidosis is a rare group of infiltrative diseases caused by protein misfolding and
the subsequent extracellular deposition of the abnormal proteins (amyloid fibrils) in various
tissues and organs, leading to gradual organ failure [44]. Cardiac amyloidosis (CA) is a
serious and underdiagnosed condition, mainly caused by deposition of two precursor
proteins in myocardial tissue: transthyretin amyloid (ATTR) and monoclonal light chain
amyloid (AL). AL amyloidosis, due to production of monoclonal light chains by a small
B-cell clone, has long been considered the most common form of systemic amyloidosis,
with cardiac involvements in 50–70% of cases [45]. However, recent studies show that
the prevalence of the different forms may vary considerably [46]. ATTR amyloidosis is
caused by the deposition of misfolding transthyretin, a protein synthesized in the liver,
normally responsible for the transport of retinol and thyroxin binding protein [44]. The
non-hereditary wild type form (ATTRwt) has late onset and involves exclusively the heart,
while the hereditary form (ATTRh) affects younger patients and is typically associated with
polyneuropathy [47,48].

Endomyocardial biopsy (EMB) is the gold standard for the diagnosis of CA: amyloid
fibrils are recognized by their characteristic apple green birefringence with Congo Red
coloring and observation under a polarized light microscope [49]. The limitations of EMB
are errors in tissue processing and availability of expertise. Imaging offers a noninvasive
alternative to evaluate the whole heart: long thought to be of limited use in this pathology,
CMR has been shown to be a reproducible and sensitive imaging modality that plays a key
role in the diagnostic algorithm of CA and helps to assess the progression or regression of
cardiac involvement during the course of therapy [46–48].

CMR allows for the assessment of cardiac morphology and function using cine images
obtained with SSFP sequences acquired in long- and short-axis planes covering the left
ventricle (LV) [47,48]. The most common phenotype of ATTR patients is asymmetrical LV
hypertrophy, while symmetrical and concentric LV hypertrophy is present in 68% of AL
patients [45].

LGE has a characteristic distribution and is correlated with the degree of the LV infil-
tration: in early stages it is fuzzy and focal; in advanced stages it is diffuse, subendocardial,
transmural, or binary, with greater involvement of basal segments than the apical one [50].
QALE (query amyloid late enhancement) score can also quantify the degree of LGE: the
total score ranges from 0 (no LGE) to 18 (global transmural LV LGE and right ventricle (RV)
involvement) [51].

The LGE pattern is also associated with different kinetics in the clearance of gadolinium
in the blood and myocardium [52]. Unfortunately, LGE should be administered with
caution in patients with moderate to severe renal disease (eGFR < 30 mL/min), which
represents a substantial number of subjects with CA, particularly AL CA, because of renal
infiltration of the AL amyloid [44,53].

In patients where GBCA is contraindicated, native T1 mapping (nT1) and ECV have
emerged as quantitative techniques to track myocardial amyloid infiltration and monitor
disease severity [45]. ECV and nT1 are typically increased in patients with CA; nT1 is
frequently higher in the early stages of CA prior to the development of detectable LGE and
biventricular thickening [44].

Baggiano et al. show that nT1 has excellent diagnostic accuracy in an overall popula-
tion of patients with clinical suspicion of amyloidosis, potentially supporting the routine
use of non-contrast CMR in this setting: in a subject with myocardial native T1 > 1164 ms
(z-score, 3.5), cardiac amyloidosis can be diagnosed with very high diagnostic accuracy
(PPV 98%); in a subject with native myocardial T1 < 1036 ms (z-score, 0.4), CA can be
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excluded [54]. A recent single-center prospective study involving 221 patients with AL
CA demonstrated how nT1 can track response to chemotherapy treatment in this disease:
patients who decreased native T1 had a good prognosis and better hematologic response
to treatment, in contrast to patients whose native T1 increased or remained stable [55].
This study therefore confirms and paves the way on the role of native T1, not only in
the diagnosis of amyloidosis but also as an accurate marker of response to treatment and
correlated with survival [55].

Postcontrast T1 mapping, which can be incorporated into standard LGE-CMR proto-
cols, is useful to compute an ECV increase caused by amyloid infiltration (Figure 2). Recent
studies demonstrated that high levels of ECV (ECV > 0.40%) can help to diagnose CA early
on and are a prognostic sign in both ATTR and AL amyloidosis [56,57].
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Figure 2. Cardiac amyloidosis. A case of a 79-year-old man, with magnetic resonance imaging
(MRI) showing a hypertrophic (white arrows) left ventricle (LV) of 17 mm in the steady-state free
precession (SSFP) sequences (panels (a–c) show four-chamber, three-chamber, and two-chamber
views, respectively). Mid panels show diffuse high values at T1 mapping sequences, represented by
the orange tonality as indicated by the white arrows (panels (d,e) at the level of the basal and mid-
LV short-axis views, respectively) and diffuse high values at extracellular volume (ECV) sequence,
represented by the yellow tonality as indicated by the white arrows (panel (f) at the level of the
basal LV short-axis view). Late gadolinium enhancement (LGE) sequences showed a non-ischemic
enhancement pattern in both ventricles (white arrows), a hyperenhancement of the atrio-ventricular
valves (red stars), of the left atrium wall and the interatrial septum (white arrowheads) (panels
(g–i) show four-chamber, three-chamber, and two-chamber views, respectively). All these findings
are diagnostic of cardiac amyloidosis.

T2 mapping is a noncontrast sequence and, as compared to T1 mapping, is more
specific to detect myocardial oedema. T2 mapping values are increased in patients with
both forms of CA, with a greater prevalence in AL than in ATTR.
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7. Anderson–Fabry Disease

Anderson–Fabry disease (AFD) is an X-linked lysosomal storage disorder, associ-
ated with the mutation in the α-galactosidase gene, which results in the deposition of
glycosphingolipids in several organs and tissues [58]. Cardiac involvement, which oc-
curs in approximately 70% of cases, represents the most prevalent cause of death in these
patients [58]. It involves the accumulation of sphingolipids in all cardiac tissues: in the
cardiomyocytes, leading to concentric hypertrophy and myocardial dysfunction; at the
valve level, causing structural and functional changes (most commonly mitral and aor-
tic regurgitation); in the conduction tissue, causing electrophysiological remodeling that
may lead to arrhythmias; and finally at the endothelial level, where inflammatory and
fibrotic mechanisms may lead to endothelial dysfunction and coronary microvascular
ischemia [59,60].

CMR represents the predominant non-invasive imaging modality in the early diag-
nosis and staging of AFD, as it combines the assessment of cardiac involvement and the
characterization of tissue abnormalities [61] (Figure 3).
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The most common morphological finding is a concentric hypertrophy of LV and of pa-
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is the presence of LGE, described as myocardial fibrosis areas, in the basal inferolateral mid-
wall of the LV with sub-endocardial sparing, found in up to 50% of subjects [58]. 
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cially at the basal septum, even at the early stage, that often precedes ventricular hyper-
trophy and may therefore be useful as a marker for early initiation of enzyme replacement 

Figure 3. Anderson–Fabry disease. One case involves a 67-year-old man who was diagnosed with
Anderson–Fabry disease through genetic testing during family screening (because of his affected
brother). He remains completely asymptomatic. Cardiac magnetic resonance (CMR) imaging showed
concentric LV hypertrophy with a mild reduction in ejection fraction (EF) in steady-state free pre-
cession (SSFP) sequences (panels (a–c) show three-chamber, four-chamber, and short-axis views at
the basal level, respectively). Panel (d) shows oedema (white arrowheads) at the level of the mid-LV
short-axis view (T2-weighted sequence). Panels (e,f) display T1 mapping sequences with a low
value in the septum (white arrowheads) and higher values in the lateral wall (white arrowheads
with black outlines) at the level of LV papillary muscles and the mid-LV short-axis view, respectively.
Panels (g,h) display T2 mapping and extracellular volume (ECV) sequences, respectively, with low
values in the septum (white arrowheads) and higher values in the postero-lateral wall (white arrow-
heads with black outlines) at the level of the mid-LV short-axis view. Late gadolinium enhancement
(LGE) sequences display a non-ischemic hyperenhancement pattern (white arrowheads) at the level
of the lateral wall (panels (i–l) show three-chamber, four-chamber, mid-LV short-axis, and apical LV
views, respectively).
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The most common morphological finding is a concentric hypertrophy of LV and of
papillary muscles, usually associated with hypertrophy of RV [62,63]. Another typical find-
ing is the presence of LGE, described as myocardial fibrosis areas, in the basal inferolateral
mid-wall of the LV with sub-endocardial sparing, found in up to 50% of subjects [58].

Intracellular accumulation of glycosphingolipids causes a reduction in nT1, especially
at the basal septum, even at the early stage, that often precedes ventricular hypertrophy and
may therefore be useful as a marker for early initiation of enzyme replacement therapy [64].
This makes this method useful for the early identification of cardiac involvement, before the
morphological and functional alterations typical of the full-blown phases of the disease [65].

However, it has been shown that, at a more advanced stage of the disease, when
inflammation is active and there is a recall of lymphocytes, there is a pseudo-normalization
of T1 time that could mislead the clinician [66]. This phenomenon has led experts to propose
a three-phase model of AFD: in the initial phase, termed accumulation, there is a reduction
in T1 mapping; in the second phase, termed inflammatory, ventricular hypertrophy begins
to manifest and T1 mapping can be within a normal range; finally, there is the irreversible
terminal phase, with the development of fibrosis and evidence of LGE [66,67].

Regarding T2-weighted (T2W) images and T2 mapping sequences, these play a crucial
role in assessing overall myocardial inflammation, particularly during the initial phases of
the disease [68].

In the research conducted by Frustaci et al., myocardial edema associated with AFD
was identified in the basal antero-septal wall (70%) and occasionally in the antero-lateral
wall, showing a sporadic distribution within the mid-wall region [69]. Furthermore, they
demonstrated that myocardial edema increased simultaneously with LV hypertrophy in
31% of the patients [69]. Conversely, Perry and colleagues, in their study, observed an
elevated signal in the basal inferior-lateral area and a reduction in T2 relaxation time pro-
portional to the reduction in LV mass and thus to the response to therapy [65]. Furthermore,
Augusto et al. established a correlation between T2 mapping values and troponin levels,
implying that cardiac involvement in AFD leads to a persistent inflammatory cardiomy-
opathy: in stages where the disease is more active and myocardial damage is ongoing, T2
mapping increases in proportion to the degree of oedema and hs-TnI [68].

As a result, comprehensive cardiovascular magnetic resonance (CMR) assessment
should always include T1 and T2 mapping sequences to effectively identify and monitor
AFD in both suspected and confirmed cases.

8. Arrhythmogenic Right Ventricular Cardiomyopathy

According to the latest ESC guidelines on CMPs, arrhythmogenic right ventricular
cardiomyopathy (ARVC) is defined as the presence of predominantly RV dilatation and/or
dysfunction in the presence of histological involvement and/or electrocardiographic ab-
normalities, based on the revised International Task Force (ITF) criteria for the diagnosis
of ARVC published by Marcus et al. in 2010 [2,70]. Recently, the identification of two
other possible phenotypes (biventricular and left-dominant) has led to the proposed term
“arrhythmogenic cardiomyopathy” (ACM) and to new diagnostic criteria that include LV
involvement, but they still need to be externally validated (Table 2) [71]. Therefore, the
discussion focuses on RV involvement.

CMR represents the gold-standard imaging technique in patients with a suspected
diagnosis of ARVC, allowing for the evaluation of RV volume, morphology, mass, thickness,
and wall motion abnormalities (RV regional akinesia, dyskinesia, or bulging) [70,72–74].

MRI (magnetic resonance imaging) is essential for detecting intracardiac shunts that
can cause right ventricular volume overload. It is also useful in cases of suspected inflam-
matory conditions such as myocarditis or sarcoidosis, which may primarily affect the right
side of the heart [75].
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Table 2. CMR diagnostic criteria for ARVC.

ITF Criteria (2010) Padua Criteria (2020)

Global or regional dysfunction
and structural alterations

Major:
Regional RV akinesia or
dyskinesia or dyssynchronous
RV contraction and 1 of the
following:

- Ratio of RV EDV to BSA
≥ 110 mL/m2 (male) or
≥100 mL/m2 (female)

- or RV EF ≤ 40%

Minor:
Regional RV akinesia or
dyskinesia or dyssynchronous
RV contraction and 1 of the
following:

- Ratio of RV EDV to BSA
≥ 100 to <110 mL/m2

(male) or ≥90 to
<100 mL/m2 (female)

- or RV EF > 40% to ≤45%

Morpho-functional
ventricular abnormalities

Major:
Regional RV akinesia,
dyskinesia, or bulging plus
one of the following:

- global RV dilatation
(increase in RV EDV
according to the imaging
test specific nomograms)

- global RV systolic
dysfunction (reduction
of RV EF according to
the imaging test specific
nomograms)

Minor:
Regional RV akinesia,
dyskinesia, or aneurysm of
the RV free wall

Structural myocardial
abnormalities

Transmural LGE (stria pattern)
of ≥1 RV region(s) (inlet,
outlet, and apex in
2 orthogonal views)

ITF: International Task Force; RV: right ventricle; BSA: body surface area; EDV: end-diastolic volume; EF: ejection
fraction; LGE: late gadolinium enhancement.

Furthermore, early regional abnormalities can be identified with CMR strain imaging,
even with preserved RV global systolic function, and in some cases can predict arrhythmo-
genic substate in ARVC better than LGE [76,77].

Black-blood images are useful to identify fatty infiltration of the RV myocardium, but
this finding should be used only as a confirmation tool in presence of others diagnostic
criteria due to is low sensitivity [78].

The presence and extension of fibro-fatty myocardial replacement (ARVC pathologic
hallmark) can be detected using LGE imaging and is found in up to 88% of patients, with
a diagnostic accuracy of 98% when wall motion alterations and pre-/post-contrast signal
abnormalities were considered together [78–80], although LGE can be detected in other
conditions (e.g., sarcoidosis, rheumatic disease, myocarditis), and its interpretation can be
difficult due to RV limited thickness [81] (Figure 4).

More controversial is the role of CMR mapping as a tool for ARVC diagnosis and risk
stratification. CMR mapping, recognizing areas of fibrofatty replacement in the RV, can be
useful for discovering early stage disease and guide patient management [82]. In the study
by Bourfiss et al., patients with genotype-positive ARVC and their at-risk family members
have higher native T1 values compared to controls [83].
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Figure 4. Arrhythmogenic right ventricular cardiomyopathy. A case of a 50-year-old female with a
history of premature ventricular beats. Cardiac magnetic resonance (CMR) imaging showed multiple
bulging of both LV and RV ventricles (white arrowheads) in steady-state free precession (SSFP)
sequences (panels (a,b) show 2 slightly different four-chamber views). Possible fat infiltration of
posterolateral wall emerged by proton density (PD) sequences (white arrows in panel (c) displaying a
mid-LV short-axis view). Panels (d–f) show short-axis views of the mid-LV at T1 and T2 mapping
and ECV, respectively, with evidence of a higher value at the level of the lateral wall compared to the
remaining myocardium (white arrows). Late gadolinium enhancement (LGE) sequences displayed
a non-ischemic hyper-enhancement pattern (white arrows) at the level of the septum, LV, and RV
multiple positions (panels (g–i) show four-chamber, three-chamber, and mid-LV short-axis views,
respectively). These findings are diagnostic for biventricular arrhythmogenic cardiomyopathy.

9. Cardiac Sarcoidosis

Sarcoidosis is an inflammatory disorder of unknown etiology characterized by the
development of non-caseating granulomas that can be localized in many organs (most
frequently lymphnodes, lungs, eyes, skin, nervous system), with a cardiac involvement
between 27% and 80% in different autopsy series [84,85].

Cardiac sarcoidosis (CS) diagnosis remains controversial, including a proper combi-
nation of clinical signs and symptoms, ECG abnormalities, cardiac or extracardiac biopsy,
and multimodal imaging (CMR, PET, CT). Two diagnostic criteria are currently used in
clinical practice, one by the Japanese Circulation Society (JCS) of Sarcoidosis and Other
Granulomatous Disorders and the other by the Heart Rhythm Society (HRS), both including
two pathways to reach a diagnosis of CS: an histologic diagnosis, when CS is confirmed on
endomyocardial biopsy, and a clinical diagnosis, when there is an histologic diagnosis of
extracardiac sarcoidosis and cardiac involvement is confirmed by other findings [86,87].

Cardiac biopsy, despite being highly specific for the diagnosis of CS, has a poor sensi-
tivity related to myocardial sampling errors. Cardiac non-invasive imaging, particularly
CMR, has instead the ability to perform a global heart evaluation providing both functional
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and structural information to detect different inflammatory phases of the disease, with a
sensitivity and a specificity of 93% and 85%, respectively, for diagnosing CS [88,89].

In the acute phase with ongoing myocardial inflammation, cine sequences are useful
to visualize left and right heart contractile disfunction; regional ventricular wall thickening
or thinning; and other anomalies like ventricular aneurysms, pericardial effusion, and
valve pathology [88,90,91]. Moreover, signal hyperintensity on STIR T2-weighted images
can describe free water accumulation due to acute inflammatory extracellular edema [92].
Global longitudinal strain abnormalities can be found in both left and right ventricles, even
in asymptomatic patients, allowing for the early detection of cardiac involvement [93,94].

In the chronic phase with interstitial myocardial scarring and fibrosis, the presence of
LGE, although not specific, is considered an important diagnostic parameter with a typical
mid-wall or subepicardial patchy distribution in the septum, basal, and lateral wall, with
possible extension to the RV [91,95,96].

Parametric mapping represents a relatively recent field of interest in CS. A few studies
have shown higher values of T1 and T2 in pre-enhanced sequences (T1/T2 mapping) and in
post-enhanced sequences (ECV mapping) in patients with CS compared to heathy people,
even without LGE [94,97,98].

10. Iron Overload Cardiomyopathy

The term iron overload (IO) includes a group of disorders characterized by systemic
iron accumulation and subsequent organ damage. Primary IO, known as hereditary
hemochromatosis, is a genetic disease with uncontrolled intestinal iron absorption and
progressive IO, while secondary IO can be caused by iatrogenic iron administration, red
blood cell transfusion, hematologic conditions with ineffective erythropoiesis, or liver
disease [99,100].

Historically, iron overload cardiomyopathy (IOC) has been defined as the presence of
cardiac dysfunction secondary to increased deposition of iron in the heart, representing the
most frequent cause of death in these patients [101,102]. Cardiac iron overload begins from
the epicardium, presenting in the early stages with diastolic dysfunction and preserved LV
systolic function until late phases of the disease (restrictive cardiomyopathy); subsequently,
iron deposition extends to the endocardium, leading to chamber dilatation and impaired
LV systolic function (dilated cardiomyopathy) [102].

CMR represents the best imaging technique to quantify myocardial IO. Due to its
paramagnetic effect, iron modifies MRI signal intensity, decreasing T1, T2, and T2* relax-
ation times [103,104]. T2*-mapping, using gradient echo sequences, is particularly useful to
identify magnetic field alterations and is currently the gold standard in IOC diagnosis [105].
A three-tier risk model for cardiac IO should be used: low risk if T2* values > 20 ms; inter-
mediate risk if T2* values are from 10 to 20 ms, suggesting mild to moderate myocardial
iron deposition; and high risk if T2* values < 10 ms, suggesting severe iron deposition [21].
Since reduced cardiac T2* is associated with an increased risk of heart failure, ventricular
arrhythmias, and death, T2* monitoring has a crucial role to guide chelation therapy and
assess iron overload status [106,107]. Furthermore T1- and T2-mapping can be helpful to
detect patients with only mild cardiac IO, with high sensitivity and specificity [108,109].
LGE and increased ECV can be detected in patients with IO, reflecting diffuse myocardial
fibrosis [110,111]. Feature tracking CMR strain imaging is a sensitive parameter for early
prediction of systolic dysfunction, even in patients with normal T2* values [112] (Figure 5).
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heart (T2* > 20 msec), with a pathological value of iron in the liver (T2* 9 mg/g); panels (d–f) show 
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of T2* decay expressed in msec, respectively. T1 mapping showed a lower value of T1 (mean T1 900 

Figure 5. Iron overload. A case of a 38-year-old man in follow-up for thalassemia. Cardiac magnetic
resonance (CMR) imaging showed a mild reduction in left ventricle ejection fraction (LVEF) in
steady-state free precession (SSFP) sequences (panels (a–c) show four-chamber, two-chamber, and
mid-LV short-axis views, respectively). The T2* sequences showed a normal value of iron in the heart
(T2* > 20 msec), with a pathological value of iron in the liver (T2* 9 mg/g); panels (d–f) show the
mid-LV short-axis view, the colorimetric display of T2* at the same level, and the graphical curve
of T2* decay expressed in msec, respectively. T1 mapping showed a lower value of T1 (mean T1
900 msec), suggesting iron overload in the heart; panels (g–i) show the basal-LV short-axis, mid-LV
short-axis, and apical-LV short-axis views, respectively (white stars).

11. Conclusions

CMR and mapping techniques have revolutionized the diagnosis and management of
cardiomyopathies by providing precise and quantitative insights into myocardial tissue
characteristics. As the technology continues to advance, cardiac MRI mapping promises to
further enhance our understanding of cardiomyopathies and improve patient outcomes.
Its integration into routine clinical practice represents a significant step forward to treat
these complex heart diseases.
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Abbreviations

ACM arrhytmogenic cardiomyopathy
AFD Anderson–Fabry disease
AL light chain amyloid
ARCV arrhythmogenic right ventricular cardiomyopathy
ATTR transthyretin amyloid
ATTRh hereditable transthyretin amyloid
ATTRwt wild-type transthyretin amyloid
b-SSFP balanced steady-state free procession
CA sardiac amyloidosis
CAD coronary artery disease
CHD congenital heart disease
CMR cardiac magnetic resonance
CS cardiac sarcoidosis
CT computed tomography
CRT cardiac resynchronization therapy
DCM dilated cardiomyopathy
DSP desmoplakin
EBM endomyocardial biopsy
ECV extracellular volume fraction
ESC European Society of Cardiology
FLNC filamin C
FT feature-tracking
GBCA gadolinium-based contrast agent
HCM hypertrophic cardiomyopthy
HRS Heart Rhythm Society
ICD implantable cardioverter defibrillator
IO iron overload
IOC iron overload cardiomyopathy
ITF International Task Force
JCS Japanese Circulation Society
LGE late gadolinium enhancement
LV left ventricle
MACE major adverse cardiac events
MRI magnetic resonance imaging
n-T1 native T1 mapping
NDLVC non-dilated left ventricular cardiomyopathy
PET positron emission tomography
QALE query amyloid late enhancement
RV right ventricle
STIR short tau inversion recovery
T1-W T1-weighted
T2-W T2-weighted
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