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Abstract: This review paper discusses the development trends of agricultural autonomous all-terrain
vehicles (AATVs) from four cornerstones, such as (1) control strategy and algorithms, (2) sensors,
(3) data communication tools and systems, and (4) controllers and actuators, based on 221 papers
published in peer-reviewed journals for 1960–2023. The paper highlights a comparative analysis
of commonly employed control methods and algorithms by highlighting their advantages and
disadvantages. It gives comparative analyses of sensors, data communication tools, actuators, and
hardware-embedded controllers. In recent years, many novel developments in AATVs have been
made due to advancements in wireless and remote communication, high-speed data processors,
sensors, computer vision, and broader applications of AI tools. Technical advancements in fully
autonomous control of AATVs remain limited, requiring research into accurate estimation of terrain
mechanics, identifying uncertainties, and making fast and accurate decisions, as well as utilizing
wireless communication and edge cloud computing. Furthermore, most of the developments are at
the research level and have many practical limitations due to terrain and weather conditions.

Keywords: all-terrain vehicles; control algorithm; sensor; automatic control; actuator; artificial
intelligence; autonomous vehicles; agricultural ATVs

1. Introduction

Autonomous all-terrain vehicle (AATV)-based farming promises to produce more
crops with less effort and reduce environmental impact. Drones, self-driving all-terrain ve-
hicles, and seed-planting robots could play a crucial role in future food supplies. According
to the Global Market Insights report, the autonomous farm equipment market is projected
to grow at over 6% CAGR between 2021 and 2027. By 2027, industry shipments are expected
to exceed 210,000 units. Growth in the market is likely to be augmented by the growing
demand for autonomous farming equipment, especially in regions with a low farmer popu-
lation. Autonomous farm equipment market growth has been negatively impacted by the
COVID-19 pandemic. Several governments have imposed travel restrictions and lockdown
measures in response to the outbreak. As a result, several companies’ logistics and manu-
facturing capabilities have been hindered, resulting in lower sales figures. Additionally, the
introduction of travel regulations increased labor shortage challenges for farm owners and
restricted their ability to hire suitable workers to conduct fieldwork [1]. Food chains are
being affected by global farming shortages. With reference to the agriculture and agri-food
labor task force [2], there may be 114,000 labor shortages in Canada’s farming sector by
2025. The situation is similar in the US, where immigration changes have contributed
to a shortage of farm labor. The use of AATVs can improve management by facilitating
in-field tasks in a time-effective manner. A rise in farm labor costs and a fall in self-driving
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technology prices will also accelerate the transition. A growing body of evidence suggests
that precision agriculture is already saving growers money and increasing yields. A 10%
increase in farmer revenue could be achieved, as well as a reduction in labor costs [3]. In
addition to their lighter weight, the AATVs would reduce soil compaction because of their
compact size, which can reduce crop yields and has been a problem with heavy tractor
machinery in the past.

AATVs, which are mostly four-wheel vehicles and are now used for a variety of
purposes [4], are primarily used in agricultural fields for moving, carrying tools, applying
chemical fertilizers, plowing, mowing grass, spreading seeds, transporting livestock, weed
detection [5], and transporting firewood.

In agricultural operations, farmers are faced with different fields, each of which has
its own characteristics depending on the type of product or desired operation, and these
machines must perform as correctly as possible in these fields. In this regard, for future
intelligent manned and/or unmanned agricultural operations, a review of the management
of agricultural machinery was presented. Strategic, tactical, operational, and evaluation
aspects of mechanization [6]. Among this machinery, ATVs play an essential role in
agricultural operations. The special features of ATVs, such as low-pressure tires, short axle
distances, narrow track widths, and high centers of gravity, make them maneuverable [7].

Considering the numerous uses and versatility of ATVs, they form a dynamic field
of study. It is crystal clear that terrain properties influence the design, performance, and
mobility of vehicles. Better traction and minimal sinkage will increase maneuverability, es-
pecially in wet terrain. In other words, a significant objective is to reduce the amount of roll,
reduce steering effort, and thus enhance stability. As a result of increased maneuverability,
vehicles have to be more stable on the road, especially in rough terrain. It is possible to
reduce 85% of fatal events in agriculture by improving the balance control of these tools [8].
Any system failure in an ATV may lead to irreversible consequences [9]. Detecting such
faults accurately and timely is crucial to preventing critical hazards and halting operations.
For this reason, supervisory intelligent control algorithms and controllers should be con-
tinuously monitored in a smart setting to maximize ATV uptime and prevent potential
hazards [10]. Therefore, the importance of control systems in ATVs is crucial.

There are a few crucial issues to be considered while designing and building au-
tonomous ATVs that need to be investigated and improved, such as safety, especially
against overturning, being autonomous, using the latest artificial intelligence technologies,
and high-precision navigation. Improvement in each of these cases will increase the output
and farmers’ work efficiency. Experimental studies have been conducted on maintaining
the balance of AATVs [11]. Turning at low speed on surfaces with uneven slopes and sharp
turns on flat ground were included in these tests, and the car’s condition was assessed
statically and dynamically, but these tests were not repeatable because of remote control by
radio control [11], and considering human errors, the need for automatic speed control and
steering control systems in these kinds of experiments was deemed to be imperative [11].
An AATV was modeled, simulated, and tested on a test track [12]. The purpose of this
study was to examine the degree to which simplified ADAMS modeling can accurately
simulate the response of an AATV on uneven ground. The researchers concluded that
chassis flexibility affects the vibration response of the vehicle body in a significant way [12].

Wireless communication. In another experiment, using wireless control, Aras modi-
fied the ATV to have semi-autonomous control. Yaw motion was used to determine the
ATV’s stability. The ATV model was inferred using the MATLAB system identification
toolbox based on the results of the experiment or yaw motion [13]. A vehicle’s motion
is greatly influenced by rolling resistance, especially when it is operating off-road. As
a result of reduced rolling resistance, smaller motors can be implemented, which will
reduce manufacturing costs, reduce vehicle weight, reduce energy loss, and reduce rolling
resistance further. Petterson and Gooch presented new data for the rolling resistance of
seven different ATV tires in an agricultural environment [14]. They found rolling resistance
is heavily influenced by the diameter of ATV tires. Despite large tire diameters, significant
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tire width and a wide, deep tread were found to adversely affect rolling resistance. The
rolling resistance increased with speed at low speeds, and inflation pressure affected rolling
resistance significantly.

Rolling resistance. Rolling resistance is strongly influenced by the firmness of the
ground. In contrast to hard surfaces (such as concrete), soft soils (such as sand) produce a
much higher resistance force. Rolling resistance is also influenced by the ground surface.
Compared with tires driven on smooth surfaces, tires driven on rough macro- or micro-
textures will experience greater deformation and suffer larger energy losses [15].

Terramechanics. From the terrain mechanics aspect, there are three general categories
of modeling for ATVs: (1) empirical models, the simplest models but difficult to apply
beyond testing conditions; (2) physics-based models, exhibiting the greatest degree of
fidelity but at the expense of a high computational expenditure; and (3) semi-empirical
models, which are better suited for real-time estimation and control because they strike a
balance between computational efficiency and fidelity [16]. One of the most widely used
semi-empirical methods is the Bekker-based model [17,18]. For Bekker-based models to
produce an accurate representation of the complex stress distribution generated at the
contact patch, several parameters are considered, such as cohesion and internal friction
angle. In ATV operation, however, it is difficult to determine these parameters because
vehicles may operate on terrain that is unknown or whose properties vary. In addition,
SCM was used, but since stress is discretized and integrated, this method may not be
suitable for real-time applications due to its computational cost [19]. Other methods, such
as the Bekker-based SCM surrogate model, were developed to get better results. However,
model-dependent navigation algorithms, such as MPC, were difficult to use due to the lack
of twice-continuous differentiability [20]. Using a neural network terramechanics model
for terrain estimation, the tire’s lateral forces can be predicted with sufficient accuracy [20].

Operational environment. Agricultural AATVs, unlike other conventional autonomous
vehicles, cannot be controlled using traffic signs, road lanes, or other road guidance tools
for navigation on the farm. Therefore, the navigation system of AATVs is the most essential
part that differs from that of on-road autonomous vehicles. Plans [21], perceptions [22],
and control are major parts of an autonomous navigation system, as they make up the
majority of its components. ATV researchers have also conducted research in the field of
navigation, analyzing the effect of algorithms such as artificial neural networks (ANNs),
genetic algorithms (GAs), and Kalman filters (KFs) to enhance the accuracy of vehicle
control concerning a selected route (Figure 1) [23]. As Mousazadeh [23] concluded, an in-
telligent autonomous system would be enhanced by combining all categorized algorithms.
Kalman filters for precise navigation, machine vision for detecting crops and rows, neural
networks for weed and plant classification, fuzzy systems for detecting obstacles, and
other techniques would also be required. Moreover, the review presented by Zhou and
others [24] addresses path-planning problems involving multiple constraints. According
to their classification, there are three stages: stage 1—structural, kinematic, and dynamic;
stage 2—planning the route; and stage 3—planning the trajectory and motion, as well as a
review of various methods used for USVs [24].

Studies have also been conducted to determine the correct route for USVs in the fields
of route planning and motion planning, kinematics, and dynamics to design an optimal
control of such vehicles [24]. Another study used LoRa-based lidar sensors in electric ATVs
to predict movement paths by using data collected by the automatic driving algorithm.
Using the high-resolution LiDAR scanning system developed by Rus, an automated driving
algorithm was developed to map an enclosure to be used for autonomous driving purposes.
To predict the location of the autonomous vehicle, a LoRa communication system was
correlated with the LiDAR-type scanning system [25].

Automated vehicles currently range from (completely manual) to (fully autonomous) [26].
A vehicle’s operation is entirely under the control of the driver. However, there is still

the possibility of alerting the driver in case of a danger (fully manual).
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Figure 1. Basic control diagram of autonomous vehicles [23] (written permission obtained).

Self-driving vehicles can be classified into six levels. The levels, which are defined
by the Society of Automotive Engineers (SAE), and the process of driving a vehicle vary
depending on the degree of human interaction (Figure 2).
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L0: Fully human-operated and no assistance while driving.
L1: Driver assistance systems assist drivers while driving. As well as controlling

the speed of the vehicle, the steering wheel can also be maneuvered by the system
(driving assistance).

L2: Driving a vehicle is a shared responsibility between the driver and the automatic
system. In addition to controlling the vehicle’s speed and turning the steering wheel, the
car’s speed can also be monitored by the driver (partial automation).
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L3: In an autonomous vehicle, the environment can be monitored, and the vehicle can
drive itself as well. Driving is permissible, but drivers have to remain in charge if necessary
(conditioned automation).

L4: This system does not require human intervention; it can drive itself, it can monitor
its surroundings, and it can monitor its environment as well (high automation).

L5: In any road or environment, it can drive autonomously, without human interven-
tion (fully autonomous).

Level 4 and 5 ATVs are the subject of this review paper. ATVs used in agriculture have
been the subject of valuable studies [28,29] (Figure 3). A variety of navigation sensors (ma-
chine vision, GPS, laser sensors, reckoning sensors, IMUs, and GDS) were used to develop
positioning and orientation control algorithms and controllers. They have also included
various computational methods as well as navigation planning algorithms for agricultural
vehicles (AVs). There have been numerous research publications on the designs, control
algorithms, and methods employed by sensors. However, there are limited published
papers on the comparative analysis of settings and performances of the employed sensors,
algorithms, and control methods, communication tools and methods, control systems, and
uncertainties in the study environments of AATVs. Moreover, the published papers do not
cover sufficiently in-depth technical aspects of employed platforms, operational functions,
sensors, internal or external communication methods, control units, and test environments
of AATVs in conjunction. Another important point is that many guidance systems and
their components are commercialized [29]. Therefore, many essential technical details of
the guidance systems are not available.
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One of the potential advantages of automated ATVs is that they are capable of reducing
human-operator errors while providing stable and acceptable results and more accurate
control in the long run [11,30]. The same is true for autonomous ATVs.

ATVs with self-driving control systems have several advantages, including reducing
mortality, reducing overturning, especially in rough conditions, and eliminating human
error in control [11,30]. Moreover, autonomous ATVs increase the accuracy of calculations,
reduce labor costs, compensate for labor shortages, and enable cameras and robotic tools
with artificial intelligence to be used in precision agriculture while reducing production and
operating costs, particularly in products such as sugar beets and carrots that are sensitive
to compaction [31]. A study was conducted on the development of unmanned autonomous
ATVs using the remote-control system method [32]. Road routing, speed control, and wheel
and brake systems were tested along with three models of the autonomous command
control system. Platforms equipped with sensors and actuators can be specially developed
or used as hardware. As part of the robotic system, many components can be implemented
on the platform, including a steering wheel that can be controlled, a computer connected to
a programmable electronic control unit, as well as ports (input and output) for sensors and
actuators to connect and communicate.



Agriculture 2024, 14, 163 6 of 42

In agriculture, the autonomous concept will lead to the development of new equip-
ment based on small, intelligent machines capable of performing various tasks more
efficiently and environmentally friendly. Using smart tractors [33], for instance, the farm-
land and people can be kept safe by generating operational routes and avoiding field
obstacles intelligently.

AATVs have become prominent in precision agriculture (PAG) thanks to the efficient
use of information and communication technology tools to monitor crop yields and employ
variable-rate technologies on farms [34]. Due to the growing agricultural knowledge
system, large amounts of data are available. Based on a recent review, it was found that 37%
of robotic systems are four-wheel drive, and 22.06% are used for weeding. Furthermore,
50% of the navigation systems are equipped with cameras, 20% with RTK/GNSS/INS, and
16% with LiDAR [35]. According to these statistical data, a large amount of data are used
by AATVs to have an optimal result in real-time operations.

The PAG research trends could also benefit from the fifth- and sixth-generations of
communication (5G and 6G). The next generation of wireless communication technologies,
5G and 6G, feature high-frequency electromagnetic waves and low latency [36]. Compared
to previous wireless communication technologies, these networks offer faster data transmis-
sion speeds and greater throughput, providing device communications, user-side artificial
intelligence (AI) algorithms, distributed fault diagnosis methods, and complex security
strategies that may be useful in agriculture [37]. The main challenge of this technology is the
lack of network infrastructure in all regions, as well as spectrum availability and implemen-
tation difficulties. There are currently security concerns, and it is an expensive technology.

From an environmental aspect, due to the complexity and dynamic nature of the
work environment, challenges may arise from agricultural environments with varying
conditions, canopy structures, and physio-chemical properties [38]. Each environment
may have its own features and limitations. Depending on the weather conditions, such
as rain, fog, or dust, the sensor function may be adversely affected. When working in an
open field, lighting conditions, wind, and muddy soil may present different challenges
to the sensor. Navigating in orchards can be challenging due to the surrounding trees. A
major problem in paddy fields is muddy soil and the difficulty of maneuvering. Designing
an ATV should take the farming environment into account [39]. Agricultural farm fields
face several complicated factors. For example, working areas generally remain the same;
it is easy to place landmarks around the corners of a field and consider them stationary.
Generally, the plants are the same, and they can be identified easily [29].

In PAG operations, AATVs are in high demand for maneuvering and accuracy in
navigation. Developing a fully autonomous ATV capable of navigating and overcoming
obstacles reliably is a challenging task. To plan a vehicle’s drive path and maneuver the
vehicle, it is essential to be able to correctly estimate the vehicle’s dynamic behaviors, such
as stability, controllability, and maneuverability, which are directly linked with terrain
conditions, such as soil properties and obstacles, in real-time. The terrain can be clas-
sified based on topography and soil mechanics parameters by integrating ground and
environmental data systems. To minimize energy consumption, an energy cost-to-go map
of the unstructured environments can be coupled with a model predictive controller that
uses higher-fidelity models to capture important aspects of off-road energy consumption,
including terra-mechanics, altitude variations, and the dynamics of the vehicle [40]. In
addition, an index of wheel mobility performance can be extended to a vehicle mobil-
ity performance index, and a combination of the parameters could be used to describe
the vehicle’s technical productivity and efficiency, enabling the estimation and control
of vehicle mobility performance as well as facilitating the design of autonomous control
systems [41]. In recent review articles, some opportunities and challenges for ATTVs have
been discussed, and their functional subsystems have been analyzed. Research has been
summarized by application type and performance measures for evaluating AATVs, and
a large number of examples of AATV applications were presented. In comparison to pre-
vious reviews, this article aims to: (a) highlight the distinctive issues, requirements, and
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challenges in a more structural format, (b) describe existing approaches to implementing
these functions in AATVs as well as their relationship with other approaches, (c) provide
more detailed comparisons of different methods and approaches, and (d) discuss potential
future strategies for overcoming the limitations of these approaches.

2. Objective

In this paper, we present a structured and comprehensive review and analysis of the
studies dedicated to AATVs and their design and performance characteristics based on
published papers in peer-reviewed journals from four cornerstones. (1) control strategy
and control algorithm; (2) sensors; (3) data communication; (4) controllers and actuators
(hardware implementation). The following flowchart, shown in Figure 4, shows the overall
logical structure of the paper.
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The key objectives of this article are to (1) illustrate fundamental aspects of how AATVs
operate in agricultural environments and (2) provide a comparative analysis of the com-
monly employed control algorithms, sensors, controllers, actuators, and communication
tools in AATVs by highlighting their key advantages and drawbacks (3) elaborate common
challenges, technical and technological constraints in developing and building AATVs,
and (4) underline some future development trends for AATV designs. Figure 5 shows a
schematic of AATV and its features.
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3. Models and Control Algorithms

In an uncertain or contested environment, autonomous control systems (ACS) enable
the self-governance of vehicle control functions with little to no human intervention. They
are developed using model-based engineering, artificial intelligence (AI), machine learning
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(ML), and data acquisition. An AATV can be controlled by three elements: (1) actuators and
sensors serve as a reliable base for the ATV through which digital signals are used to control
the handlebars of the ATV in a forward direction; (2) speed feedback controls; and (3) brake
controls. Regarding the steering control system, an AI model with an image processing
system using real-time images can be used. Moreover, with the help of a trained machine
learning model, it is possible to pass the current position of the ATV and the expected
trajectory to the CAN bus, which is used to steer the ATV with the help of the handlebar
angle expected to be built on the predicted trajectory [43]. Using different types of control
strategies is another aspect of ATVs’ control systems. There are different types of control
systems: PID, adaptive, open-loop controls, and closed-loop controls. PID controllers,
encoders, and DC motors control the steering system of autonomous vehicles. Encoders
and PID controllers are used to control systems based on the required conditions. As the
steering wheel turns, the encoder generates pulses, which are sent to the DC motor attached
to the front axle that turns the vehicle. Using feedback from the error value, it is possible
to correct the required navigation parameters by using a PID controller. A PID controller
has three built-in functions, which are proportional-integral derivative, to control the error.
PID controllers are popular due to their easy-to-control and easy-to-implement capabilities.

Open-loop controls and closed-loop controls each have different situations when they
are needed. In open-loop control systems, there is no feedback or error handling required.
Despite its simplicity and economy, it cannot be optimized. Open-loop control systems
are easier to maintain. Control systems with closed loops handle feedback and errors. In
closed-loop control, feedback is the key difference. The advantages of closed-loop controls
include automatic correction of disturbances, the ability to maintain a set point, and the
ability to stabilize unstable processes. A process that is erratic and rarely changes output
merits open-loop control. On the other hand, vehicle guidance systems have recently been
a topic of renewed interest due to rapid advances in electronics, computers, and computing
technologies. Many different types of guidance technologies have been investigated, such
as mechanical guidance, radio navigation, optical guidance, and ultrasonic guidance,
among others [44,45]. The advent of autonomous navigation systems for agricultural
vehicles represents a significant advance in PAG and a promising alternative to a rapidly
declining farm labor force, as well as meeting the need for increased production efficiency
and safety [44,46].

3.1. Vehicle Motion Models
3.1.1. Kinematic Model

Geometric relationships within the system are described by a kinematic model. Based
on state-space representation, it describes the relationship between input (control) param-
eters and system behavior. Using differential first-order equations, a kinematic model
describes system velocities. It is usually sufficient to use kinematic models in wheeled
mobile robotic systems to design locomotion strategies. However, dynamic models are
necessary for other systems [47]. Kinematic models can be classified into several types:
internal kinematics, external kinematics, direct kinematics, and inverse kinematics. In inter-
nal kinematics, variables within a system are explained in relation to each other, such as
wheel rotation and robot motion. According to some reference coordinate frames, external
kinematics describes the position and orientation of a robot. Robot states are defined by
their inputs in direct kinematics, such as wheel speed and wheel steering. Motion planning
can be designed using inverse kinematics, which means that inputs for a desired robot state
sequence can be calculated [47]. ATV kinematics is concerned with the modeling of the
horizontal motion of the vehicle. Figure 6 shows a schematic diagram of an autonomous
tractor [48]. The linear velocities

.
xR and

.
yR and angular velocity

.
ψR at the rear axle of the

tractor (point R) are found from the kinematic Equations (1)–(3):

.
xR = vxcos ψ (1)
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.
yR = vxsin ψ (2)
..
ψR =

vxtan δ

L
(3)
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The variables vx ψ, δ, and L represent the longitudinal velocity, the yaw angle, the
steering angle, and the distance between the front axle and the rear axle of the tractor,
respectively. When the center of gravity (CG) is considered, linear velocities

.
x and

.
y are

projected onto the CG as given in Equations (4) and (5).

.
x = vxcos ψ − vysin ψ (4)

.
y = vxsin ψ + vycos ψ (5)

In this case, vy is the tractor’s lateral velocity at the center of gravity.
Despite the simplicity of kinematic models, researchers have used them to quantify

lateral errors without considering vehicle dynamics [49–51]. Due to sliding, deformed
tires, or changes in wheel-ground contact conditions, pure rolling constraints are almost
impossible to meet when performing agricultural tasks. In order to provide accurate
guidance, improved kinematic models have been developed that can be adapted to consider
tire slippage aspects [49–54].

3.1.2. Dynamic Model

A dynamic model describes how a system moves when forces are applied to it. In
these models, forces, energies, mass, inertia, and velocity parameters are taken into account.
In dynamic models, differential equations of second order describe their behavior. Fully
autonomous vehicles that are capable of reliably navigating and overcoming obstacles are
a major challenge. It is crucial to predict vehicle dynamics and behavior in real-time based
on soil properties and obstacles. In addition, ground and environmental data systems
are integrated into the vehicle dynamics model, which can classify terrain based on soil
mechanics and topography. Predicting an optimal driving path requires a high-fidelity
vehicle dynamics model. For analyzing the dynamics of vehicles, Newton’s second law
of motion is commonly used [55,56]. In order to perform well in various operational
and environmental conditions, all-terrain vehicles need to be more flexible and adaptable.
As a result, it is necessary to better understand the stability and dynamic response of
the ATV under high nonlinearity and complex loading conditions. In order to achieve
high autonomy, an ATV must be able to operate in any natural environment. ATVs are
advantageous in poor terrain situations due to their good traversability capability and their
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capability to operate in unsafe conditions. ATVs, however, are characterized by low stability
margins, roll-over risks, and excessive side slippage due to dynamic constraints [57].

A mode is a natural vibration characteristic of a mechanical system, and each mode has
a particular natural frequency, damping ratio, and mode shape. In ATV design, modulation
analysis is capable of identifying weak links in the components of the mechanism during
the movement process, enhancing the stiffness of the structure, and providing a reference
for improving the design. Figure 7 shows a dynamic model of an autonomous tractor.
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Figure 7. Dynamic model of autonomous tractor [58].

A modal analysis and vertical motion of the system can be modeled as a spring-mass-
damper system [59]. Because of the tractor’s limited driving speed, we can assume the
lateral forces on the left and right wheels are equivalent and can be summed. As a result,
the tractor is modeled in 2D as a bicycle system. Figure 8 schematically illustrates the
velocities, sideslip angles, and forces acting on the rigid body of an autonomous tractor.
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Figure 8. Bicycle dynamics model for a tractor system [48], where γ, m, Ft,f , Fl,f , Fl,r represent the
yaw rate and the mass of the tractor, the traction and lateral forces on the front wheel, and the lateral
force on the rear wheel.

Dynamic motion models have been successfully studied in recent years. On the
basis of the nonlinear dynamic model established by Alipour, he developed a robust
sliding-mode trajectory tracking controller based on the lateral and longitudinal slips of
the wheel [60]. In another study, several critical factors, such as chassis kinematics, chassis
dynamics, the interaction between the wheel and the ground, and the wheel dynamics,
were included within Liao’s integrated dynamic model. Model-based coordinated adaptive
robust controllers with three-level designs for robot dynamics were developed by them [61].

For agricultural vehicle navigation, dynamic models are relatively complex since all
vehicle characteristics (inertia, sliding, and springing) must be described. It is difficult to
determine most of these parameter values (mass, contact conditions between wheel and
ground, tire and wheel deformation) even with experimental identification. Researchers
are interested in studying how agricultural vehicles handle dynamic tasks [62,63].
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3.1.3. Mathematical Modeling

As ATVs have many nonlinear subsystems, they are always nonlinear. The design of
appropriate controllers can be aided by mathematical modeling. The dynamic motion of an
ATV is usually described through mathematical modeling. The throttle of the engine, the
braking forces left and right, and the turning rate are just a few of the variables controlled
by AATV. The last three decades have seen a variety of mathematical models developed
for AATV, but none have considered all types of non-linearity. A lot of progress has been
made in the development of both human-controlled (manned or teleoperated) vehicles and
automatic guided vehicles; however, there is still a fundamental difference: compared to
autonomous controllers’ relative rigidity, humans can diagnose and adapt to changing or
unexpected operating conditions [64]. An UGATV/AATV recognizes its environment and
performs missions autonomously without human intervention [65]. UGATV’s/AATV’s
nonlinear mathematical model is crucial for the development of control systems and to
ensure good driving performance. In order to facilitate controller design and provide
computationally efficient simulations, nonlinear mathematical models should be as simple
as possible [66]. To design a controller, it is important to know how UGATVs/AATV’s
interact with terrain, and to design a controller requires nonlinear mathematical model-
ing [67]. Nonlinear aspects of AATV operations were modeled, and four different transient
conditions, namely increasing mass, change of slope of the road, and sudden right and
left breaks, were tested [68]. The controller results were compared, and the appropriate
controller was selected based on the comparison [68].

3.2. Logic and Control Systems

There are a number of logical and control systems that can be used in agricultural fields
in order to control lateral and longitudinal errors. This is due to the nonlinear behavior
of autonomous navigation. For example, neural networks, fuzzy logic, PID controllers,
FPIDs, or MPCs could be used. An orchard speed sprayer can be operated autonomously
using a fuzzy logic controller [69]. To maintain the drive path accuracy, predictive model
control can be employed to consider slippage and pseudo-slippage of agricultural vehicles
on slippery terrains [53].

3.2.1. PID

PID controllers are used to correct deviations between the reference and measurement
feedback within an acceptable period of time. In order to do so, it increases or decreases the
output of the process by using three main parameters known as gains (proportional gain,
integral gain, and derivative gain), which can accelerate, delay, and stabilize this correction
(Figure 9).
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To guide a tractor through crop rows, Kodagoda combined a feed-forward controller
with a fuzzy proportional derivative proportional integral controller [70]. They showed that
their controller was insensitive to parameter uncertainty, load, and parameter fluctuations,
and it could be implemented in real-time. In order to develop a closed-loop controller,
Cortner used a PID implementation in the microcontroller, which was developed for the
steering system of the AATV. Cortner found that the PID gains for the controller were
P = (3/4), I = (1/2048), and D = 4 [71]. Eski and Kus used a PID controller in order to
control a UAV. The results showed that there is an overshoot of 1 cm in 0.00001 s. After
this point, the unit step signal was tracked with no overshoot [72]. Due to the fact that
the autonomous vehicle modifies its speed according to the estimated size and type of
the reference trajectory curves, Hossain used PID controllers in his study to maintain an
optimal speed while following the given trajectory [73].

3.2.2. Fuzzy Logic

Fuzzification, fuzzy inference, and defuzzification are the three steps of fuzzy logic
control. Fuzzification transforms crisp input values into fuzzy ones. By applying fuzzy
IF-THEN rules and logical operations, fuzzy values are mapped to different fuzzy values.
Mamdani and Sugeno [74] are two types of fuzzy inference systems. Systems of all types
are classified as Mamdani types, while dynamic nonlinear systems are classified as Sugeno
types. In the defuzzification process, the linguistic output values from the previous step are
aggregated. After the defuzzification process is completed, a single crisp value is produced
as an outcome (Figure 10).
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Using many-valued fuzzy logic (FL), Sumarsono built an ATV control system using
GPS data [75]. To obtain useful data for hardware implementation, a fuzzy logic controller
(FLC) simulation model was developed. To determine the radius and speed of the vehicle,
the FLC used two inputs: the vehicle heading and the offset from the planned path. Expert
experience and knowledge were FLC’s control knowledge base, and the center of gravity
for singletons (CoGS) was used for defuzzification [75]. In addition, Sumarsono showed
that the accuracy of FLC is dependent on the determination of membership functions [75].
In the membership functions of heading, offset, steering angle, radius, and speed, the
appropriate numbers were set to 5, 5, 7, 7, and 3. Based on the constructed kinematic
bicycle model of a tractor and implement, a fuzzy logic-based controller was proposed
to automatically steer an implement using hydraulic cylinder actuators to cover crop
fields [76]. To navigate in agricultural environments, Bonadies and others [77] applied PID
and fuzzy controllers to an unmanned ground vehicle. Agricultural produce and ground
are differentiated from an image obtained from the camera. Within the image, the left and
right boundaries of the crops and the center of the row were identified (Figure 11). The
average percent overshoot for the fuzzy controller was 45.75%. The average velocity was
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35.26 rpm, with a velocity standard deviation of 0.32 rpm and an absolute average error of
28.37. In his study, he found that fuzzy logic and PID controllers performed similarly [77].
Using an improved fuzzy logic control method, Yao and others [78] generated optimal
steering angles for a wheeled autonomous vehicle to track a sequence of waypoints. In
developing the path-tracking algorithm, accuracy, stability, and convergence speed were
considered. The proposed IFM provides higher accuracy, stability, and convergence speed
when compared with conventional fuzzy logic control [78].
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3.2.3. Genetic (Evolutionary) Algorithms

A genetic algorithm (GA) is a global, parallel search and optimization method that
uses a population of potential solutions to solve a problem. Within the population, each
individual represents a particular solution to the problem, which is usually encoded in
genetic code. Over generations, the population evolves to produce better solutions to
the problem. GA are efficient and appropriate optimization methods for control system
design [79] for both feedback controllers and feedforward controllers. Figure 12 illustrates
the algorithm schematically.
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GA’s operational principle is based on natural selection to select better-fit solution can-
didates and to generate the most-fit solution by using crossover operations and very limited
artificial mutation operations. A genetic algorithm is a method of solving optimization and
search problems using true or approximate solutions. Inheritance, mutation, selection, and
crossover are techniques that are inspired by biological evolution. Gas was used by Ryerson
and Zhang to plan a guided vehicle’s optimal path [81]. They found that the total coverage
achieved was greater than 90% on four of the eight runs. There was an average coverage
of 89%. Several combinations of lateral and heading deviations were tested by Ashraf
using genetic algorithms [82]. According to their finding for vehicles moving along sloped
land, the mean and standard deviation of lateral deviation along contour directions were
0.047 m and 0.039 m, respectively, which are highly insignificant. Shiltagh and Jalal used a
modified genetic algorithm (MGA) developed for global path planning, and the application
of MGA to the problem of navigation was investigated under the assumption that a model
of the environment had been developed [83]. The simulation results demonstrated that this
algorithm had a great potential to solve path planning with satisfactory results in terms
of minimizing distance and execution time, and it was also determined that 374.47 s were
required to find the shortest generated path (distance) with a length of 30.86 m [83]. In
another similar study to Shiltagh research, the genetic algorithm used the grid method to
mark the geographical environment information and map the environmental information
to the grid [84]. According to the algorithm in this paper, mutation probability had the
greatest impact on the effective path ratio. According to the study, when the mutation
probability is 0.09, the effective path ratio is 80.65%. Furthermore, the effective path ratio
remained approximately 80%, regardless of how the population size, evolutionary algebra,
and crossover probability were selected.

3.2.4. Artificial Neural Network

Typically, neural networks consist of three layers: input, hidden, and output (Figure 13).
One or more layers could make up the hidden layer, depending on the requirements. Adap-
tations were made to the neural networks to compensate for inclinations and magnetism
errors. Prior to performing the main maneuvers, it was necessary to train the neural network
and the AATV. Due to the hidden layers in neural networks, one of the major disadvantages
was the use of unidentified boxes (so-called black boxes) in programming. In order to
explain the input-output relationship of vehicle motion on sloping land, Torisu developed
a neural network (NN) vehicle model rather than a dynamic or kinematic model [85]. In a
comparison of experiments and simulations of vehicle motion in slope-land environments,
Zhu found that the NN model was suitable to represent the input-output relationship of
vehicle motion. Also, the NN vehicle model was deemed suitable for representing the
tractor’s motion on sloping terrain for autonomous navigation [76]. Eski and Kus showed
that the unmanned agricultural vehicles with a model-based neural network PID control
system followed the given reference trajectory with minimum errors in formidable road
conditions and that they reduced overshoot to a considerable extent [72]. A neural net-
work’s backpropagation algorithm is probably its most fundamental component. A chain
rule algorithm is used to train neural networks effectively. The backpropagation method
performs a backward pass through a network after each forward pass while adjusting the
model’s parameters (weights and biases). By using the back propagation algorithm, Ashraf
developed a NN vehicle model for sloped terrain conditions. In order to generalize the opti-
mal steering for different land slopes, Ashraf developed a model that utilizes an NN-based
steering controller. With a prototype test tractor, he conducted autonomous travel tests
on sloping lands and found that the tractor could follow predetermined rectangular paths
precisely [82]. As a result of his study, the average lateral deviations were only 0.058 m and
0.063 m for the four rectilinear motions, whereas the average heading angles were 2.950
and 1.935, both of which are insignificant for tractor motion even on flat terrain.
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3.2.5. MPC

MPC consists of predicting the future behavior of the controlled system over a finite
time horizon and computing an optimal control input that maximizes a priori-defined
functional cost while satisfying the system constraints. For a more precise calculation of
the control input, an optimal open-loop control problem of finite horizon is solved at each
sampling instant. After applying the first part of the optimal input trajectory to the system,
the horizon is shifted, and the process is repeated. As a result of its ability to explicitly
incorporate a performance criterion and hard state constraints into its design, MPC is
particularly successful (Figure 14).
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Multivariate, complex, and unpredictable are the characteristics of agricultural sys-
tems [86]. Traditionally, control technologies such as on/off, P, and PID are easy to im-
plement, but they cannot control time-delayed processes [87,88]. In addition, adjustment
of the controller takes considerable time and effort [89]. In the past few decades, MPC
has been extensively investigated as a promising control strategy [90–93] and has also
been applied in the industrial sector [94]. There are a few alternative versions of the MPC
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algorithm used in autonomous vehicle control, e.g., a prescribed performance control algo-
rithm proposed to establish accurate tracking control for a tractor trailer [95]. A combine
harvester was controlled using constraint MPC and an alternative ASM as part of the
cruise control process [96]. A navigation task was completed by Backman using NMPC. It
is necessary to have sufficient accuracy for lateral errors of up to 10 cm at 12 km/h [97].
It is also possible to use the MPC for inland navigation in addition to the navigation of
agricultural machines [98]. It is extremely difficult to control path-tracking in agriculture
because there are so many complex bodies involved. Using NMHE and rapid distributed
nonlinear MPC, Kayacan developed an estimation scheme for the state and parameters of
the system [99]. As part of the path-tracking error control of unmanned ground vehicles,
linear MPC was designed, resulting in an average Euclidian distance error of 23.49 cm and
21.21 cm on straight lines, respectively, while the average Euclidian distance error was
39.82 cm and 36.21 cm on curved lines. LMPC calculates in approximately 1.1 ms, which is
faster than NMPC [48]. Based on an mp-MIQP technique, Yang presented explicit MPC for
the reduction of trailer tracking errors and smoothing tractor steering angle behavior [100].
MPC outperformed LQC in tracking multivariate systems under constraints, according to
Yakub [101]. A high-precision closed-loop tracking method based on LTV-MPC has been
proposed by Plessen. Precision tracking is possible within millimeters [102]. Addition-
ally, MPC could be used to track the path of hydraulic forestry cranes in forests [103,104].
MPC uses a model to predict and optimize the steering angle and velocity of an AV, as
well as other features of the process. To overcome the shortcomings of PID, ANN, and
other similar controllers, different types of MPC were developed, such as hybrid MPC,
robust MPC, adaptive MPC, nonlinear MPC, tube-based MPC, distributed MPC, stochastic
MPC, and explicit MPC [105]. The MPC controller can be used for a number of reasons,
including: (1) MPCs are capable of handling MIMO systems in the same way as ANNs. It
is useful when inputs and outputs are predicted to have some interaction. A prediction
model, a rolling optimization, and feedback adjustments are all involved in the MPC. In
MPC, the outputs are controlled simultaneously by a multivariable controller, which takes
into account all variables within a system. (2) As AVs violate constraints, they will have
unwanted consequences, which can be handled by MPC. There should be a safe distance
between autonomous vehicles and obstacles, and multi-robot systems should follow speed
limits. The acceleration limits of AVs are also a limitation. An MPC algorithm should track
a desired trajectory if all these constraints are met. In the MPC, previewing is like feedback
control. In the event that the controller is unaware that a corner is approaching, the AV
can only apply its brake during cornering when it is traveling on a curve or turning at the
headland. AVs with safety sensors, such as cameras that provide trajectory information,
will provide information to the controller ahead of the upcoming corner. As a result, it is
able to brake sufficiently so that it can stay on the road safely. Control performance can be
improved by incorporating future reference information into the MPC.

3.2.6. Kalman Filter

Digital control engineering is one area in which the Kalman filter (KF) is frequently
used. Control engineers use the filter to eliminate measurement noise that may interfere
with the performance of a system under control. Additionally, it provides an estimate of
the current state of the process or system. The KF is used (1) to estimate future position and
velocity based on the current position of objects or people. (2) To estimate the state, position,
and velocity of a vehicle, navigation systems use the output of an inertial measurement
unit (IMU) and a global navigation satellite system (GNSS) receiver. (3) To feature tracking
or cluster tracking applications based on computer vision. Figure 15 shows the intuitive
explanation of the KF. The KF process has two steps: 1. Prediction step: Based on previous
measurements, the KF predicts the system’s next state. 2. Update step: KF calculates the
system’s current state based on measurements taken at that time.
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Multi-sensor data fusion is based on the KF, which offers a solid theoretical framework.
The approach relies on tracking the vehicle’s location at all times or the system’s state. INS
and GPS need to be integrated using Kalman filters in a highly dynamic system that is
likely to experience significant acceleration. When the GPS signal is lost, these integrated
systems can provide short-term positioning information that is reliable. A wide range of
literature exists on integrating INSs with GPSs and/or other sensors [107–110]. KF was
applied to draw DGPS measurements and effectively reduce the RMS positioning error by
removing DGPS noise [111]. Using a bandpass filter and extended KF, Hague and Tillett
combined image processing with bandpass filtering [112]. A new sigma-point filter has been
proposed in order to improve the KF performance [113]. Based on simulations, Zhang found
that the sigma-point Kalman filter had better numerical robustness and computational
efficiency [114]. By considering ATVs’ multiple positioning systems and comparing them,
Pratama uses the Extended Kalman Filter (EKF) to detect abnormal deviations. Based on
residue values, their model can detect one fault condition at a time [115]. An innovative,
robust CKF with a scaling factor was presented by Gao in his study. The Mahalanobis
distance criterion is used to identify abnormal observations. An increased observation
noise covariance was achieved by adding a robust factor (scaling factor) to the standard
CKF by using the Mahalanobis distance criterion. This results in a decrease in filtering gain
when abnormal observations are present. In addition to improving the robustness of CKF,
the proposed solution does not depend on abnormal observations to influence navigation
solutions [116]. GPS-based navigation was developed that allowed an autonomous ATV
to follow a virtual path in the field [32]. Their ATV was equipped with an EPS, PID, low-
level servo controller, and high-level controller based on the estimation algorithm, EKF.
The position data was obtained by an RTK global navigation satellite system and used to
precisely turn the EPS motor on the ATV’s steering shaft [32].

3.2.7. Machine Learning: DRL

Reinforcement learning (RL). Machine learning techniques such as reinforcement
learning reward and/or punish desired behaviors. There are two types of RL methods:
model-free and model-based. An approach based on value-based model-free learning takes
a state and action as inputs and outputs the value. By selecting the action that maximizes
the value function, the policy is extracted. An approach based on models learns a predictive
function from the current state and a sequence of actions to predict the future state. Utilizing
predicted future states, policies are extracted by selecting actions that maximize future
rewards. A model-free algorithm is capable of learning complex tasks [117]; however, they
are typically sample-inefficient, as opposed to model-based algorithms, which are sample-
efficient but difficult to scale to complex, high-dimensional tasks. Reinforcement learning
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agents are capable of interpreting their environment, taking actions, and learning through
trial and error. RL focuses on the problem of goal-directed agents interacting with uncertain
environments, which is crucial for navigating rough terrain in unknown conditions.

Deep-reinforcement learning (DRL) has been incredibly successful since its
introduction [118]. Particularly, DRL has found a niche in robotic manipulation based
on vision. It has been shown that robots controlled by neural networks with DRL-trained
representations can solve complex tasks even in unstructured environments without re-
quiring imitation learning. DRL-based local navigation of unknown rough terrain was
presented by Josef and Degani. In comparison with traditional local planning methods,
their method reduced planning time and improved planning success rates. In a goal-
directed task, they used reward shaping to provide a dense reward signal [119]. With
Kahn’s algorithm, robot navigation policies can be learned in a self-supervised manner
that requires minimal human interaction, using samples in an efficient, stable, and high-
performing manner [120]. Deep RL is capable of learning control for rough terrain vehicles
that have continuous, high-dimensional observations and actions in their environment,
according to Wiberg [121].

A comparison analysis of control algorithms for AATVs is shown in Table 1, which
shows the advantages and disadvantages of commonly used control algorithms.

Table 1. Comparison of commonly used algorithms of AATVs.

Control Method Advantages Disadvantages References

Fuzzy

• Comparable to human reasoning (based on
membership rules and functions)

• Using linguistic models.
• Applying simple mathematics to nonlinear,

integrated, and even complex systems.
• High level of precision.
• Fast operation.

• More fuzzy grades result in exponentially
increasing the rule.

• Low speed and longer run time of the system.
• Response time is not real-time.
• A learning strategy cannot simply be

implemented by receiving feedback.
• A limited number of input variables can be used.
• It is impossible to determine the membership

function parameters and the optimal number of
fuzzy rules in a straightforward manner.

[74–79]

GA

• Optimization based on global
non-derivatives.

• No matter what mathematical theories are
included, optimizing goals should be
the focus.

• Applicable to real-time applications only in
some cases

• Relatively low accuracy (~80%)
[79–84]

ANN

• An excellent ability to predict models.
• Identifies and controls nonlinearly.
• Can be applied to non-mathematical models.
• Ability to manage an abundance of input

variables and data.
• Assurances of trustworthiness

• The neural network must be trained before it
can operate.

• Large neural networks take a long time
to process.

• Taking a long time to train off-line.
• A lot of data are required to make quality

predictions.
• Computationally costly.

[72,76,82,85]

MPC

• Enhanced energy savings at a low cost.
• Robustness to disturbances and shifts in

performance conditions.
• Multi-variable control within bounds.
• Improvements to steady-state responses and

reductions in offset errors.
• Disturbance prediction.
• Predicting future control actions.
• Improved transient response.
• Controlling slow processes through

time postponements.
• Capacity to shift peak loads.
• Better regulation and reduction of

fluctuations from a set point.
• Performance improvements and efficiency.
• Reduced computation time.

• The system needs to be modeled properly.
• Installation/implementation can be costly.
• The algorithm is considerably complex.

[86–105]
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Table 1. Cont.

Control Method Advantages Disadvantages References

ML: DRL

• Works with large datasets.
• Due to its ability to learn different levels of

abstraction from data, it can solve more
complicated tasks with less prior knowledge.

• Has accelerated progress in RL
• Most useful for state space problems with

high dimensions
• Relatively easier to implement.
• No mathematical modelling required.

• For better decision-making, large datasets
are required.

• Increasing model complexity requires more data
for reinforcement learning algorithms.

• Reinforcement learning models are limited by the
agent’s exploration of the environment.

• In a constantly changing environment, making a
good decision can be challenging.

• Designing reward structures is a challenge.

[117–121]

PID

• Among the most widely used controllers in
the industry.

• In the field of ATVs, researchers have studied
these control techniques for a long time

• Feedback controller
• Combating sudden changes in system load

with derivative terms

• Creating undershoots and overshoots, cause
sudden forces to the actuators and cause them to
depreciate over time.

• Mathematical modeling of the system required.
• This method is not suitable for non-linear,

complex, or uncertain information systems.
• Unreliable in long testing time.
• Considerable performance limitations.
• It is difficult to adjust the controller parameters.

[70–73]

Kalman filter

• Efficient in terms of computation
• High-dimensionality can be handled with

limited or no extra computational cost
• Capable of handling short periods of

sensor silence
• Combining pattern recognition with

parameter estimation
• Various version

• Assumptions are too restrictive
• Only capable of representing

Gaussian distributions
• It has significant limitations in extremely

uncertain conditions.

[106–116]

4. Sensors

Sensors are one of the main components of robots. Data from sensors are transmitted
to the controlling unit. There are three main types of sensors deployed in AATVs: position
sensors that measure the robot’s location, attitude sensors that determine its orientation,
and safety sensors that alert in case of an emergency. There are six categories of sensors
based on their applications: ground-based beacons, active ranging sensors, heading sensors,
tactile sensors, motion/speed sensors, and vision-based sensors [122,123].

Ground-based beacons are used to locate and position Avs [124]. An AV’s orientation
and attitude are determined by heading sensors. Physical contact is detected by the tactile
sensors. Geometric triangulation, reflectivity, and time-of-flight, which is an approach
to measuring the distance between a sensor and an object, are all measured by active-
ranging sensors. In motion-speed sensors, Avs can be measured based on their speed and
acceleration relative to fixed or moving objects. Using vision-based sensors, we can range
objects, analyze images, segment them, and recognize obstacles [125–127].

4.1. Attitude

In autonomous navigation, the attitude sensor indicates the vehicle’s orientation.
When tunnels, trees, or buildings prevent the GPS signal from being received, sensor
fusion methods can improve positioning accuracy. Agricultural robots previously used
GDSs to measure heading angle (so-called yaw). There are two major problems with these
sensors: Magnetic fields affect their accuracy, and the inclination of the vehicle can cause
errors. It was then that FOG sensors became popular; however, their cost makes them
unsuitable for agricultural robots. Vehicle orientation can be indicated most accurately
with IMUs. Sensors like these are capable of measuring quaternions, headings (pitch, roll,
and yaw velocity, as well as indirect pitch, roll, and yaw angles), linear accelerations, and
gravity. IMUs have inertia sensors, gyroscopes, and accelerometers, and some also have
magnetometers. Sensor fusion combined with an IMU and RTK-GPS can provide high-
accuracy vehicle guidance. Automated driving relies heavily on slip angle and attitude. An
IMU-based method is used to estimate a vehicle’s slip angle and attitude based on vehicle
dynamics and GNSS [128].
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4.2. Navigation Planners

Agricultural vehicles use navigation planners to drive autonomously, which convert
position deviations (headings and positions) into steering angles. Navigation planning
must incorporate tracking methods as well as sensor information and vehicle motion to
guide the vehicle in the desired direction. Two parts are involved in local navigation on
unknown, rough terrain. In the first step, the UGV’s/ATV’s kinematic constraints and
surface geometry are used to plan a possible path toward the target position. Second, the
UGV/ATV must track a selected path while considering the terrain’s interactions with
it [129].

4.3. Tracking Methods

In navigation planning, there are four methods to consider: tracking the position,
tracking the line, tracking the map, and avoiding obstacles. A guideline line or trajectory
is usually used when operating a guidance system. Usually, this method uses crop rows,
swath edges, and tilled or untilled boundaries. A weakening or disappearance of the
tracking signal, however, results in a failure of the operation. GPS systems often use map
tracking, which is time- and labor-intensive [29].

4.4. Sensor Types
4.4.1. Vision

The machine vision sensor on a vehicle can sense its surroundings and determine
the relative position and heading of the vehicle. Two static image sensors as subsystems
can be used to control a single main system mounted on a robotic platform, utilizing the
triangulation principle as a control method [130]. An angle from the base line and a distance
between two subsystems determine the robot’s location based on a predetermined distance
between the two subsystems. A common machine vision application is the detection of
guidance directions in rows of crops, edges of harvested crops, and soil tillage. Benson
developed a guidance combine harvester that was based on the position of the lateral edge
of the crop cut [131]. The Hough transform was used by Marchant and Brivot for real-time
row tracking (sampling rate of 10 Hz), and the method was tolerant of outliers (such as
weeds) when the number of outliers was low [132]. As a result of Søgaard and Olsen’s
machine vision guidance method, plant segmentation was not required. The position and
orientation of rows were determined using weighted linear regression instead of calculating
the center of gravity for each row segment in the image [133]. Crop rows were segmented
using Han’s k-means clustering algorithm. Tractors were then guided by this information.
In order to guide a weeding cultivator, Okamoto developed an automatic guidance device.
In order to calculate the offset between the machine and target row, the images from the
color CCD camera were processed by a computer [134]. The vision guidance system is
relatively insensitive to weeds’ visual “noise”. In order to identify outliers as a means of
row guidance, the researchers performed linear regression on three crop row segments
and calculated a cost function that was comparable to the moment of the best-fit line [135].
Researchers have combined two monocular field images taken simultaneously from a
binocular camera into a three-dimensional (3D) field image using stereovision systems.
To reduce ambient light influence, 3D images are reconstructed from monocular images
of different disparities. Using stereovision, a crop-row tracking navigation system was
developed for agricultural machinery. Up to 3.0 m/s and following both straight and
curved rows, the RMS error was 3–5 cm [136]. It is worth mentioning that the speed of
up to 3 m/s is very slow and practically makes such systems meaningless to employ in
agricultural processes such as seeding, tillage, plowing, or harvesting.

Computational Methods

In an autonomous agricultural vehicle guidance system, the main purpose of a com-
putational method is to detect image features from the processing of images or to provide
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basic information by combining sensor data. Hough transform and Kalman filter are two
main approaches to computational methods.

Hough Transform

An image can be analyzed using the Hough transform technique to isolate specific
features. Initially, the transform identified lines in an image, but later it was extended to
identify arbitrary shapes, such as circles and ellipses. Hough transforms have the advantage
of being quite robust, so they can still find a straight line if a group of points varies. Several
publications have discussed how the Hough transform can be used to deduce guidance
signals from plant structures [132,137–141]. Agricultural machinery guidance systems were
used to develop an automated tractor guidance system based on stereovision. In order to
detect crop rows, the algorithm is composed of stereo-image processing, elevation map
generation, and navigation point detection [136].

Kalman Filter

For multi-sensor data fusion, the Kalman filter [142] provides a solid theoretical
framework. Tracking the vehicle’s location or the system’s status is the key to the approach.
GPS receivers often use Kalman filter models to estimate position based on raw GPS signals.
There is abundant literature related to the integration of inertial navigation systems (INS)
and/or other sensors with GPS systems [109,110,143,144].

4.4.2. Position
GPS

As a global guidance sensor, GPS receivers have been widely used since the
1990s [145–148]. Four of the most important positioning systems are the GNSS, GPS,
DGPS, and RTK-GPS. RTK GPS, GNSS, and DGPS have several differences. All of them
follow the same general principles. With the GPS, attitude and longitude are determined by
three satellites, and altitude is determined by one satellite, ensuring 3 m accuracy [39]. GPS
systems are not adversely affected by weed densities, shadows, missing plants, or any other
condition that reduces their performance in comparison with machine vision guidance
systems. The GPS guidance system can also be programmed to follow curved rows, which
is another advantage [149]. The satellites orbiting Earth transmit their locations to ground
control stations, which calculate ground position through trilateration, forming a GNSS.
The term GNSS encompasses a wide range of satellite-based PNT systems. PNT plays
a critical role in telecommunications, land surveying, precision agriculture, scientific re-
search, and so on. An antenna (or cellphone) is carried by the mobile unit (rover) to receive
GNSS signals. An RTK-GPS can provide a minimum accuracy of 5 cm. Using GPS for
vehicle guidance has three limitations. A major limitation of GPS is that it cannot provide
consistent positioning accuracy within centimeters in all terrains (for example, steep hills
or trees and interruptions in satellite signals) [29]. Due to the inherent time delay (known
as data latency) that is required for location determination due to signal processing, high
field speeds can present control system challenges. Finally, for agricultural applications,
the cost is high [29]. An RTK-GPS is a system for correcting the position of mobile units
based on positional coordination from a base station. An RTK GPS guidance system was
utilized in order to control an autonomous tractor along a curved path [150,151]. An RMS
error of 6 cm with a maximum error of 13 cm was recorded while following a sinusoidal
path at 6.5 km/h with an amplitude of 2.5 m and a wavelength of 30 m [150,151]. Using
RTK GPS position information as a reference, a number of low-cost GPS receivers were
evaluated for their dynamic accuracy, and on average, these receivers were found to have
a cross-track error of around 1 m [152]. For an automated six-row rice transplanter, an
RTK GPS was used for positioning and FOG sensors for maintaining inclination [109]. In
DGPS, atmospheric errors are similar between two receivers that are relatively close to each
other. A GPS receiver must be installed at a precisely known location in order to use DGPS.
The base station, or reference station, is this GPS receiver. Satellite signals calculate the



Agriculture 2024, 14, 163 23 of 42

position of the base station receiver, which is then compared with the known location. The
second GPS receiver, called the roving receiver, records GPS data by applying the difference.
Real-time correction of field data can be applied by radio signals or by postprocessing
with specialized software after data capture using the roving receiver. In DGPS, a known
positional coordinate is used to enhance the position. It is possible to achieve an accuracy
of 10 cm using DGPS [39].

LNAV is an off-the-wire navigation system that uses electromagnetic induction along
with power cables installed around the field. There is a strong correlation between the
amount of magnetic field generated and the distance from each cable. Manually teaching
the robot the boundaries of the field was required to use this positioning system. In large
fields, the cost of construction can be dramatic, but this system can perform well in different
weather conditions.

DGPS, a TMS, and an IMU were used in the SNAV developed by JAEI [153]. In order
to improve the interval of the positioning system, the IMU and TMS are utilized. However,
the cost, information service, and reference station of SNAV limited its use. Sanyo Electric
Co. manufactured XNAV on behalf of BRAIN-IAM. Optical measurement systems were
used for this positioning sensor. In the reference station, it was possible to observe the
target, which was installed on the vehicle, and measure both the diagonal distance and the
horizontal angle from the reference station [39].

Dead-Reckoning Sensors

An inexpensive, reliable dead-reckoning sensor is used for short-distance mobile
robots. Using a simple mathematical formula, it determines a vehicle’s current location
by advancing its previous position along a predetermined path over a specified time
period. Odometry is a simple form of dead reckoning. Error accumulation without
limit is inevitable in odometry because it integrates incremental motion information over
time. The use of odometry in robot navigation systems remains important despite these
limitations [154,155]. Additionally, dead reckoning is widely used by autonomous vehicles
in conjunction with other sensors [156].

4.4.3. Laser Sensors

Compared to other sensors, laser sensors offer a wider range and higher resolution. In
order for guidance systems to function properly, there should be at least three reflectors
(landmarks) around the work area.

Based on the time when the laser beam is detected, the guidance system uses tri-
angulation to determine the vehicle’s location. It is important to note that, despite the
fact that laser-based sensors are insensitive to environmental conditions, they have two
major disadvantages. If artificial landmarks are moved, they do not work well [29]. To
register natural landmarks in the map-building process, it is necessary to update the map if
they are used for navigation. Second, road unevenness leads to noisy laser measurements.
Laser-based sensors are widely used in orchards because tree canopy frequently blocks
satellite microwaves. A system for navigating between rows of trees was developed, and
as a result, there was an 11 cm lateral error and a 1.5◦ heading error [137]. A machine
vision and laser radar-based autonomous guidance system was developed for citrus grove
navigation [157]. A gyroscope, laser rangefinder, and RTK GPS were incorporated into an
autonomous tractor system [158].

4.4.4. Ultrasonic Sensor

The ultrasonic sensor transmits and receives information using sound waves. In
the next step, the duration is converted to a distance measurement by using the speed
of sound (340 m/s). An ultrasonic sensor is used to detect objects in the real world. In
an experiment, according to Chandan and Akhil [159], ultrasonic sensor accuracy varies
between 92.20% and 92.88%, whereas LiDAR sensor accuracy varies between 92.55% and
93.33%. In conclusion, the LiDAR sensor is slightly more accurate than the ultrasonic sensor
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in the proposed research study [159]. By using a frequency-modulated ultrasonic sensor,
Harper and Mckerrow detected and categorized plants and returned a signal containing
geometric information about the plants in order to improve their navigation [160].

4.4.5. Light Sensor (LiDAR)

LiDAR measures the range of a target object using the light emitted by sensors. To
estimate the range of a target object. Since light travels at a constant speed, the sensor
emits a light pulse and then measures the time it takes for the reflected pulse to be received.
Sophisticated software processes all this data, creates a route, and sends instructions to
the actuators that control acceleration, braking, and steering. Up to 2.2 million points
can be produced per second by modern LiDAR sensors with multiple lasers or channels,
8–128 [161]. With some LiDAR units, the field of view is 360 degrees horizontally, produc-
ing a dense point cloud representing the surrounding area. Light pulses can be used to
gather multiple returns from LiDAR sensors. This is because several objects, such as the
leaves and branches of a canopy of trees, may reflect the light pulses as they travel from the
sensor. By recording this information, LiDAR sensors can provide detailed information
about the tree canopy as well as the underlying structure. A LiDAR has several advantages,
such as quick and precise data gathering; integration with other sensors such as sonar, IMU,
and GPS; and 24-h operation thanks to an active lighting sensor. As long as a LiDAR is
configured properly, it can run quite independently and can collect a lot of data on large
areas of land. Among the disadvantages of LiDAR are: LiDAR can be extremely expensive
due to the project specifications; when it is raining, thick clouds, fog, smoke, or when
transparent obstacles are present, it is ineffective; it may take some time and resources to
analyze the large amounts of data collected; LiDAR laser blades can damage eyes; and
penetration of extremely dense materials can be challenging. Autonomous vehicles are
capable of detecting obstacles quickly and interpreting the environment using LiDAR sys-
tems combined with video cameras and radar sensors [162]. An online LiDAR localization
approach based on range images was presented by Chen. A triangular mesh-based map
representation, combined with range images generated from LiDAR scans, allowed this
method to successfully localize autonomous systems [163]. A number of studies have
been conducted over the last few years on simultaneous mapping and localization for
autonomous vehicles. By keeping track of the location and constructing maps of unknown
environments, SLAM accomplishes its purpose. A framework for solving the dynamics
of SLAM problems is proposed in the article “Semantics Aware Dynamic SLAM Based on
3D MODT”. The dynamic regions of the scene were handled with a Visual-LiDAR using
MODT. A dataset developed for LiDAR-based autonomous driving was used to evaluate
and compare the framework with state-of-the-art SLAM algorithms. With budgeted com-
putational resources, it is possible to perform real-time SLAM using the proposed dynamic
framework [164].

4.4.6. Radar Sensor

Radar, or radio detection and ranging, was developed before World War II. The
principle involved emitting electromagnetic waves within an area of interest and receiving
dispersed waves or reflections from targets in order to process the signals and determine
the range information of the targets. Based on the Doppler property of electromagnetic
waves, it determines the relative speed and position of identified obstacles [165]. The
Doppler effect, also known as the Doppler shift, describes the variation in wave frequency
caused by relative motion between a wave source and its target. The frequency of the
detected signal increases when the target travels in the direction of the radar system. Radar
sensors monitor blind spots for distance control and braking assistance purposes by using
short-range (24 GHz) and long-range (77 GHz) radio waves.
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4.4.7. Inertia Sensor

There are numerous applications for inertial sensors in vehicles [109,141,166]. An
inertial sensor measures how a vehicle is performing internally. Due to their packaging and
seals, inertial sensors could withstand harsh environmental conditions. Accelerometers
and gyroscopes are two common forms of inertial sensors. Inertial reference frames are
used to determine the acceleration of an accelerometer. Gravitational, rotational, and linear
accelerations are included in this definition. A gyroscope measures rotation speed inde-
pendent of a coordinate frame. These sensors are also capable of detecting wheel slippage.
The problem with this type of sensor is that it is prone to drifting in its position [167]. GPS,
or machine vision, is used most often with inertial sensors. Using a vision sensor, fiber
optical gyroscope (FOG), and RTK GPS, Zhang and Reid developed an on-field navigation
system. GPS, or machine vision, is used most often with inertial sensors [168]. A GPS and
an inertial measurement unit were developed by Noguchi for agricultural navigation [169].

4.4.8. Geo-Magnetic Sensor

The GDS detects the earth’s magnetic field. In a similar manner to an electronic
compass, it can be used as a heading sensor [44]. Electromagnetic interference is one of
the limitations of GDS sensors. Other sensors are generally supplemented by the GDS.
GPS and GDS were used to guide vehicles in straight lines or directional lines [49]. They
managed to track a straight line with an average error of less than 1 cm by controlling these
error sources and combining GDS with a medium-accuracy GPS (20 cm). Agricultural
guidance systems have been explored using GDS in conjunction with sensor applications.

4.4.9. Safety Sensor

The safety sensors on AATVs include laser scanners (2D/3D), cameras (2D, 3D, and
OSV), and switches (tap switches, proximity switches, bumper switches, and emergency
switches). This type of sensor can either cover a specific safety zone (such as a circle
with a diameter of 10 m) or be operated physically. A dynamic stability index can be
calculated using angle sensors and accelerometers, which can be used to control protective
measures such as automatically deployable ROPS [170]. Field mapping and hazardous
location identification have been conducted using static stability indices (based on static
stability angles) [171]. Using low-cost sensors and the MEMSIC accelerometer, Nichol
detected potential tractor instability and alerted the operator [172]. An accelerometer was
incorporated into the sensing device to sense static and dynamic accelerations and calculate
the tractor’s angle of rotation. In order to identify an upset vehicle and contact emergency
personnel for rescue, a smartphone-based stability sensor was developed [173]. To improve
the accuracy of the roll and pitch angles and the roll and pitch rates, a complementary filter
was used to combine data from the accelerometer, gyroscope (MPU-6050), and GPS (Skylab
SKM53) sensors.

4.4.10. Power Status Sensors

A wide variety of sensors are classified in the literature for autonomous vehicles on
the basis of parameters, energy, and application [174,175].

First and foremost, sensors are classified according to the type of parameters they
contain, which may be internal (so-called proprioceptive) or external (so-called exterocep-
tive) [123,176]. Proprioceptive sensors measure the internal parameters of AVs, such as
motor speed and joint angle, or force through load cells. With exteroceptive sensors, AVs
are able to detect obstacles and measure distances from their surrounding environments,
such as LiDAR or laser scanners [177]. A sensor with an external sense is usually used for
observing the environment, mapping it, determining autonomous navigation, estimating
action, or describing its variables. It is possible to use them as safety sensors, positioning
sensors, attitude sensors, or any combination of these sensors [39].
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Energy

Secondly, the direction of energy is classified based on whether it originates from the
sensors (so-called active sensors) or is directed toward them (so-called passive sensors) [123].
Active sensors such as encoders, laser rangefinders, and ultrasonic sensors transmit energy
into the environment to determine how it reacts. Passive sensors such as thermal sensors
and probes for measuring temperature are used in order to measure the energy entering
the sensor from its surroundings [127].

4.4.11. Sensor Fusion

Sensor fusion is used to combine information from multiple sensing sources in order
to automate navigation operations in various vehicles and environments. Sensors will
function in accordance with their field status during operation. Still, under certain field
conditions, multiple sensors can provide superior results in terms of data integration over
those using an individual sensor. An agent for agricultural navigation was developed,
and several positioning sensors (DGPS, digital compass, and dead-reckoning system) and
safety sensors (laser rangefinder, bumper, inclinometer, emergency stop) were integrated
into the farming vehicle, along with onboard processors, wireless communication systems,
and electrohydraulic actuators. Sensor-fusion algorithms were developed to provide
continuous and precise positioning without GPS signals [178]. By using sensor fusion
technology, Kulkarni used both sensors (IMU and GPS) and removed the drawbacks of
both sensors, such as slow update rates, accumulating errors, and drifts over time [179].
Table 2 shows a comparison analysis of sensors.

Table 2. Comparison analysis of sensors.

Sensor Advantages Drawbacks Accuracy Energy
Efficiency Robustness

Vision

• Reduces the possibility of
human error

• Downtime is small.
• Improves throughput
• Measurement accuracy
• Good object identification.

• Dependent on the location of
the camera

• Low to zero accuracy in foggy or
similar situations

• Expensive
• Requires heavy data analysis

Up to 250 m
Working distance

GPS

• Easy to navigate.
• GPS works well in different

temperature conditions.
• Affordable.
• 100% coverage around the globe.
• Integration with other

technologies is easy.

• Insufficient accuracy due to
obstructions or atmospheric conditions.

• High power consumption: GPS chips
drain batteries in 8 to 12 h.

• Do not penetrate solid walls.
• Susceptibility to radio interferences.

2 m (CEP)
Approximately

99.88%

Power
usage:

On
average
around

30 mA at
3.3 V

GPS signals
typically have a
−125 dBm power

level.

Dead-
Reckoning

• Continuous positioning
• Ability to work in

closed environments
• Help in the lack of technology or

Internet based things

• With the increase of distance from the
known position, estimation
errors increase

• Require a lot of memory
• For accurate position determination,

both speed and direction must
be known

• Errors are cumulative

------- ------- -------

LiDAR

• A high level of accuracy is
maintained while data are
collected quickly.

• It is capable of collecting elevation
data even in dense forests.

• Works both during the day and
at night.

• There are no distortions in
the geometry.

• Human supervision is minimal.
• Extreme weather is not an issue.

• Rain and low hanging clouds make it
ineffective.

• Reflections and high sun light angles
affect it.

• Large amount of data.
• There is no international protocol.
• Cannot penetrate thick vegetation.
• Health hazard: human eyes can be

affected negatively by powerful
laser beams.

• Special data analysis skills are required.
• Operates at low altitudes.
• Expensive.

Range of
accuracy is 0.5

to 10 mm.
Up to 1 cm

horizontal and
2 cm vertical

mapping
accuracy.
Accuracy

range:
92.55% to

93.03%

8–30 W
power

consump-
tion

200 m working
distance

Inertial

• providing absolute position
and attitude

• External electromagnetic
interference does not affect it

• Can work all day long
• information is continuous and

low noise.
• A high rate of data updates

• Accuracy is poor over the long term
• Prior to each use, long alignment times

are required
• Expensive
• It is not possible to provide time

information
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Table 2. Cont.

labeltabref:agriculture-2819813-t002

Sensor Advantages Drawbacks Accuracy Energy
Efficiency Robustness

GDS • Absolute for “heading” • Heading is distorted by a
magnetic anomaly

Ultrasonic
Sensor

• Affected by neither color nor
transparency of objects

• Dark environments are not
a problem

• Cost-effective
• Environments with dust, dirt, or

high moisture are not a major issue

• Temperature changes of 5–10 degrees or
more affect sensing accuracy

• Detection range is limited
• Inapplicable to high-speed operations

Accuracy
range:

92.20% to
92.88%

Average
operating
current:
5 mA

Up to 20 m
Working distance

5. Data Communication
5.1. Types of Communications
5.1.1. Internal Communication

In a vehicle, internal communication always takes place between the electronic control
unit (ECU) and the controlling personal computer (PC). Early agricultural vehicles did
not have an ECU, so communication with a PC was impossible. Normally, such situations
require direct control of the actuators, where the PC controls the actuators directly. There is
no communication system in the direct control method, and the motor is controlled by an
IO port, an AD, a DA, and a PMC. Later, autonomous vehicles with ECUs were controlled
directly by an ECU. The ECU controlled the actuators based on the signals from the PC.
There were several standards being used at that time, such as the RS232c standard that was
used for slow and low-speed communication, as well as the RS422 and RS485 standards
that were used for multidrop serial buses, Ethernet, and USB. In contrast to the RS232c
standard, which is limited to communicating between two devices at the same time, 10 to
32 devices can simultaneously communicate using the RS422 and RS485 standards [39].

CAN

Designing an autonomous ATV requires robust electrical signaling protocols for all
major subsystems. In 1990, ISOBUS was published as an international communication
protocol. The agricultural vehicle communication system is defined by ISO 11783, which
is based on SAE standard J1939. The development of controller-area networks was a
result of the adoption of this standard [180]. Using a bus connection, many ECUs, PCs,
and IOT devices, as well as microcontrollers, can communicate with each other. As a
result of vehicle robotics laboratories developing ‘direct control’ communication systems,
RS232 communications were further developed, and eventually CAN-bus networks were
employed. CAN is an asynchronous TDM protocol. In vehicles, the CAN bus reduces the
number of cables running between sensors and controls. There are two wires in a CAN
bus, each capable of transmitting data at a rate of up to 1 megabit per second. Data or
information are transmitted between the nodes through a half-duplex CAN bus, which
has two wires, CAN L and CAN H (Figure 16). A dominant level refers to the logic that
is being transmitted at 0 V when TTL = 0 V, and a recessive level refers to the logic that is
being transmitted at 5 V when TTL = 5. In bus arbitration, dominant levels always override
recessive levels [181]. It is important to understand that CAN buses are carrier-sense
broadcast buses, which allow efficient distributed control with high security and can be
connected by a number of different processors in real time [182,183]. The CAN model
contains three processes. The processor queues a message into the queueing window. The
processor then checks the status of the CAN bus. If there is a message using the bus at
the same time as the queued message, the queued message will wait until the state is idle.
Transmission of the queued message occurs at the end of the process [184]. Henderson has
successfully installed a CAN bus network on the ATV. For steering control, a new node was
developed. The throttle and brakes were controlled by another node. The steering control
node and remote-control functionality were reintegrated into the system [185].
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ROS

Robot software can be written using ROS, a flexible framework. In fact, ROS is not
a communication protocol but rather a middleware framework for developing robotic
software. It is used to communicate between different components of a robotic system.
The robot behavior framework consists of tools, libraries, and conventions for building
robust and complex robotic behaviors across a wide range of platforms [186]. In essence,
it is a meta-operating system for robots that is open source. Operating systems provide
many services, including hardware abstraction, low-level device control, implementing
commonly used functionality, and passing messages between processes [186]. A ROS imple-
mentation consists of nodes, messages, topics, and services, where nodes are computation
processes (Figure 17). There are typically many nodes in a ROS system; its modularity is
fine-grained. Messages are passed between these nodes to communicate. Multiple nodes
can publish and/or subscribe to a single topic concurrently, and a single node can publish
and/or subscribe to multiple topics at once (Figure 8). Using ROS, Rhoades enabled an
existing RC-controlled ATV. Adding more sensors was necessary after the base robot had
been tested. It is possible with ROS to deploy advanced localization methods and mapping
techniques in a short period of time and easily. The ROS commands sent by ROS must
be enabled by the user since they operate at a high level [187]. Using an open-source
framework, Zhu presented an UAV system. There are four layers in the system: firstly, the
robot body; second, the data service; third, the cloud service; and lastly, the user interaction
layer [188].
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5.1.2. External Communication

An external communication system can connect an ATV with a computer, a switch, or
another vehicle far from its control center. The AVs can also be controlled from control and
monitoring rooms, cloud servers, and user interfaces, as well as from separate vehicles like
tractors, combine harvesters, and drones. External communication is required for this kind
of communication. Communication can be one-way, two-way, or between master and slave.
Based on the system application and research target, Wi-Fi routers, cell phones, Bluetooth
devices, or PDAs may be used for external communication.

There are three types of connectivity: wired, wireless, and hybrid wired-wireless. Wire-
less technology is the predominant communication technology involved, which is mostly
used in external communication [189]. There are different kinds of external communication
technologies, such as Wi-Fi, ZigBee, LORA, RFID, mobile communications, Bluetooth, and
so on. A number of different devices, including computers, smartphones, IoT devices, and
others, can be connected through them. An overview of existing wireless communication
technologies can be found in Table 3.

Table 3. Comparison of existing external communication technologies [190].

Parameters Standard Frequency Band Data Rate Transmission
Rate

Energy
Consumption Cost

Wi-Fi IEEE
802.11a/c/b/d/g/n [191] 5–60 GHz 1 Mb/s–7 Gb/s 20–100 m High High

ZigBee IEEE 802.15.4 [191] 2.4 GHz 20–250 kb/s 10–20 m Low Low

LoRa LoRaWAN R1.0 [189] 868/900 MHz 0.3–50 kb/s <30 Km Very low High

RFID ISO 18000-6C [192] 860–960 MHz 40 to 160 kb/s 1–5 m Low Low

Mobile communication
2G-GSM, CDMA

3G-UMTS, CDMA2000,
4G-LTE,5G-LTE,

GPRS [193]
865 MHz, 2.4 GHz

2G: 50–100 kb/s
3G: 200 kb/s

4G: 0.1–1 Gb/s
Entire Cellular

Area Low Low

Bluetooth IEEE 802.15.1 [191] 24 GHz 1–24 Mb/s 8–10 m Very low Low

A low-power wide-area network (LP WAN) enables long-range data transmission
up to a few tens of kilometers at a low data rate, with a range of up to a few hundred
meters. LoRa is the most widely used LP WAN radio modulation technology, which is
combined with the LoRaWAN standard that defines how LoRa devices communicate with
gateways [189]. Despite its development for data transmission, recent research has shown
that LoRa can also be used to estimate the location of transmitting devices. The location
of the signal source can be determined by estimating the distance between the LoRa node
and multiple gateways, which are spatially separated [194]. Locations can be determined
with good accuracy up to tens of meters, but they are often evaluated under very optimal
conditions, such as line-of-sight communications. LoRa localization is not effective in
real-life conditions because the estimated distance between a node and a gateway varies
greatly depending on the location of the node and the radio channel attenuation [194]. Rus
developed a vehicle location and positioning system using a LoRa system and LiDAR and
laid the foundation for autonomous vehicles with safety and reliability [25].

There are other technologies, such as Wi-MAX, Sig-Fox, and Narrowband Internet
of Things (NB-IoT), that can be used for communication. Both LoRA and NB-IoT are
promising technologies, although they differ in a number of ways [195]. LoRaWAN will be
described in this paper based on its key characteristics.

Cloud

Cloud-based technologies, communications, and networking innovations have the
potential to revolutionize the driving experience by transforming the ATV into a fully
connected device. In ATVs, communication will be a key technology. Using the cloud, they
can benefit from the experiences of other vehicles, download their data into freely accessible
maps in real-time, and transmit danger warnings to their surroundings (Figure 18). There is
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a strong need for a stable, reliable network system that could handle real-time communica-
tion between the devices and the cloud infrastructure in order to realize a cloud-controlled
robotic system [196]. In addition to providing ease of maintenance, moving the control
logic to the cloud improves the system’s resilience to software and hardware failures. Gerla
discussed in 2012 the design principles, issues, and potential applications of vehicular
cloud computing (VCC) [197]. A cloud-based Octree design was proposed in the same year
by Kumar for autonomous vehicles to help plan their trajectory [198]. Figure 18 illustrates
the high-level system architecture.
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It is necessary for autonomous vehicles to access vast amounts of data, such as sensor
network data, maps, images, videos, weather forecasts, programs, algorithms, etc. Cloud
infrastructures provide unlimited elastic storage capacities on-demand over cloud servers
that are capable of storing large amounts of big data as well as facilitating intensive
computations [200].

6. Control Units and Actuators
6.1. Control Units

Control units are always used to control the autonomous navigation of an AATV.
Control is carried out by a computer with multiple connections. To write the controlling
program, various languages are used, including C# and C. A direct control system was
used for robot navigation when vehicles did not have ECUs. PCs connected to actuators
and sensors via AD, DA, or PMC boards were usually used for this type of controlling
system. Microcontrollers, such as Arduino, Raspberry Pi, and Renesas, became increasingly
common in control units over time. The use of such a control unit allows a computer
program to control an actuator based on signals received from sensors. The steering,
throttle, and braking are controlled by the control unit (microcontroller). Vehicles without
ECUs may benefit from this type of control system. Microcontrollers can be used as ECUs
for vehicles. An ECU-equipped vehicle can be controlled by a computer connected to the
ECU. As opposed to a direct control system, which uses multiple control boards, the ECU
is connected only to the PC. PCs only send commands to ECUs; ECUs control movements.
Manufacturers of ECUs provide an API library for developing control algorithms using
predetermined standard codes. Vehicle sensors and actuators are connected to the ECU,
and external sensors and communication systems are connected to the PC. A CAN bus has
been developed to replace RS-232c as a mechanism for communication between the PC and
the ECU [39]. A CAN-bus communications system allows the addition of different ECUs for
different units. Implements and external functions can be connected to the external ECU.
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6.2. Actuators
6.2.1. Steering

A steering wheel converts the driver’s turning movements into a change in the steer-
ing angle of the wheels. There are different types of steering—rack and pinion steering,
hydraulic power steering (HPS), parameterizable hydraulic power steering (PHPS), elec-
trohydraulic power steering (EHPS), and electromechanical power steering (EMPS)—that
can be used in ATVs, Table 4. EPS offers the advantages of being lightweight, high effi-
ciency, reducing energy consumption, and gradually replacing hydraulic power steering
(HPS) [201]. Direct-current brush motors and surface permanent magnet synchronous
motors are the two most common power-assisted motors used by EPS [202]. In general,
brushed DC motors have a short service life due to their structural design. A small size,
a high power density, and a large torque-to-inertia ratio define SPMSM motors [203,204].
The SPMSM can provide smoother electric power torque [205]. It is crucial that steering
controllers have the ability to control steering action based on several parameters, such
as equipment operation state, vehicle speed, tire cornering stiffness, surface conditions,
and a number of other parameters that are important to steering dynamics. Guidance
systems have been developed and implemented using PID, feed-forward PID, and fuzzy
logic steering controllers [168,206]. Different types of terrain often present challenges to
agricultural vehicles, including even and uneven terrain or changing and unpredictable
surfaces such as asphalt or spongy top soil. Depending on the equipment operation state,
travel speed, tire cornering stiffness, ground conditions, and many other parameters influ-
encing steering dynamics, steering controllers should be capable of providing appropriate
steering action in automatic or autonomous navigation. Therefore, agricultural vehicle
steering controller design is complex. A hydraulic steering system is used in most modern
agricultural vehicles, and recent advances in autonomous steering controllers incorporate
advanced modifications to existing hydraulic systems to account for vehicle dynamics, such
as terrain conditions and vehicle speed (and acceleration). AVs have a control algorithm
(steering controllers) that makes decisions [207]. By using this algorithm, a kinematic
and dynamic model is developed that controls the lateral and longitudinal errors of the
vehicle and guides it along the desired path. As a result, an optimal steering controller
with curved-path guidance was achieved with good results [151]. Based on the kinematic
model, the hydraulic actuator and front wheels are gain-related through steering linkage
geometry [51]. The autonomous steering system drives the steering wheels to follow the
desired steering angle calculated by the path-tracking system [208]. It is widely used
to control steering wheels using PID controllers and sliding-mode controllers [209]. As
discontinuous functions, state feedback and control signals in SMC are insensitive to para-
metric uncertainties and external disturbances [210]. Due to this, SMC performs well in
nonlinear systems.

6.2.2. Speed Control

In an internal combustion engine-based vehicle, the throttle angle is the primary
input to the speed controller. An intake manifold’s throttle angle refers to the position
of the throttle plate. The throttle plate restricts nearly all airflow into the engine when
the throttle opening is close to 0”. With an increasing throttle angle, the throttle plate
becomes less restrictive and allows more air to pass through, allowing the engine to produce
more torque. Pneumatic actuators are most commonly used to adjust the throttle angle.
Generally, stepping motors mounted directly on the throttle plate are used when a faster
and more accurate throttle response is required. A fuzzy speed controller was developed for
throttle-regulated internal combustion engines on ATVs. Results showed smooth throttle
movement, robustness in varying terrain, and commanded speeds ranging from 2 to
30 mph [211]. Alvarado and García used fuzzy-neural-network-based algorithms in order
to update velocity according to the terrain roughness in such a way that, as fast as possible,
the vehicle safely navigates. Based on fuzzy-neural-network algorithms, Alvarado and
Garcia updated the vehicle’s velocity according to the terrain roughness in order to ensure
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that the vehicle navigated as safely as possible [212]. AGV longitudinal speed tracking
control was proposed to use a proportional and internal model controller [213]. MPC with
longitudinal velocity tracking is robust to model uncertainty and external disturbances,
yielding a faster response and less overshoot than PI [214]. A SMC controller with an
input–output linearization method was presented by Cao [215]. A new velocity control
strategy for collision avoidance, collision prediction, and a velocity generator are used
to adjust the velocity of autonomous agricultural vehicles depending on the movement
state, the degree of danger of obstacles, and the distance between the obstacles and the
vehicles [216]. An integrated cloud model was used to implement the velocity generator.
This algorithm met the real-time requirement with an average processing time of 0.2 s [217].

Table 4. Steering types and Components, Advantages and Drawbacks.

Steering Types Main Parts Advantages Drawbacks

Rack and pinion steering • Rack and pinion gear

• Eliminate the need for center link
and pitman arm

• Two tie rod ends
• Reduction of gears

• It takes more energy to drive
• High manufacturing cost
• Complex structure

Hydraulic power steering

• Fluid reservoir
or tank

• Rotary valve
• Hydraulic pump
• Hydraulic chamber

• More powerful than electric and
rack and pinion power steering

• Good feedback.
• Less expensive than EPS.
• The mechanism is more reliable.

• Consumption of more power.
• Hydraulic fluid needs to be

replaced from time to time.
• HPS pumps do not work well with

high revving motors.
• Steering is a little complex.
• In comparison to EPS, it is heavier.

Electric power steering

• Steering angle sensor
• Torque sensor
• Reduction gearbox
• ECU
• Vehicle speed sensor
• Electric motor

• Less maintenance needs
• Do not require power

steering fluid
• Fuel efficient
• Smaller dimensions of the

mechanism

• Higher the cost of the mechanism
and its elements

• Less powerful

Electro Hydraulic power
steering

• Vane pump
• Two electric motors
• Steering gearbox
• Electronics equipment

• It does not need the engine
running to drive the
hydraulic pump.

• Low energy consumption

6.2.3. Brake Control

As a result of the brakes’ design, the vehicle can be stopped in the shortest amount of
time and distance possible. ATV safety depends heavily on the brakes. In order to maintain
steering control under heavy braking and use all of the deceleration capacity of all four
tires, the system must deliver optimum braking force balance between the front and rear
wheels. Figure 19 shows the types of brakes. During braking, kinetic energy is converted
into heat energy, slowing the speed of the vehicle. In addition to friction between the rotor
and pads, caliper pads apply a clamping force to brake rotors. Therefore, large amounts of
heat are produced and dissipated. Figure 19 shows different types of brakes in ATVs, and
Table 5 presents their main parts, advantages, and disadvantages.

6.3. Operation Control Consistency

There are two types of control methods in the references. A path controller is devel-
oped in the first group to track position and trajectory commands based on time [217,218].
Even though several experiments have been conducted [217,219], validation of the per-
formance of these types of control methods is not trivial since, in practice, it is difficult
or meaningless to command the AGV/ATV appropriately in all situations based on time-
dependent position trajectory commands. In a second approach, the path controller is
designed to follow the velocity and heading angle commands [220,221]. In contrast to time-
dependent commands, velocity and heading angle commands can be generated simply
and intuitively with this approach. It is particularly advantageous to develop velocity and
heading angle controllers for steering-type ground vehicles separately because the dynamic
model can be divided into longitudinal (velocity) and lateral (yaw motion) subsystems. In
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PID controllers, heading reference commands were followed [222]. To control the lateral
motion, a robust control method with continuous control input was developed [223], and
time-varying nonlinear lateral vehicle models were controlled using robust gain schedul-
ing [224]. In addition, the lateral motion controller was developed to deal with steering
systems that exhibit backlash-type hysteresis [224]. Since Ohnishi proposed DOB in 1983, it
has been one of the most widely used and robust control tools. The robustness of systems
is simply achieved by feedbacking the estimations of disturbances by DOB-based robust
control, which is based on identified dynamics and measurable states of plants. As rough
terrain has lots of uncertainties, the robustness of the path control system is essential, and
Shin proposed a DOB-based control method to improve its robustness [21].
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Table 5. Brake types used in ATVs and their advantages and drawbacks.

Brake types Main Parts Advantages Drawbacks

Electromagnetic braking
system

• Friction disc
• Field coil
• Armature hub
• Plate Spring

• Fast and cheap
• Maintenance cost is low
• Capacity of the system is more

(like higher speeds, heavy loads)
• a negligible amount of heat
• They are very fast
• Its operation is smooth

• Their initial cost is high
• Incompatible with

high temperatures
• Requirement of more electric

power supply

Hydraulic braking system

• Master Cylinder
• Oil Reservoir
• Brake Shoes
• Pipeline

• The force is higher compared to
the mechanical braking system.

• Brake failure is very less (safe)
• Compared to mechanical brakes,

heat is dissipated more thoroughly
• Less wear and tear makes

them durable
• Compared to mechanical brakes,

they are more effective
• There is no difference in braking

effort between tires

• They are more expensive than
mechanical brakes

• It is important to use brake fluid
that is compatible with the
brake material

• If braking fluid leaks, brakes
could fail

• The construction and maintenance
are more complex

Mechanical braking
system

• Friction pads
• Caliper
• Disc
• Fluid reservoir
• Pipeline

• Construction and maintenance
are simple

• Compared to hydraulic brakes, it
is less expensive

• Suitable for emergency and
parking brakes

• Enormous heat is produced
• Brake failure is high
• Not as effective than

hydraulic brake

7. Conclusions

There have been significant developments in AATVs used in agriculture in recent
years, thanks to advancements in wireless and remote communication, fast data processors,
electronic sensors, and computer vision, as well as broader AI applications. New techniques
and methods have been proposed and verified for sensor data analysis. Some ideas are in
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the early research stages, while others are mature for industrial application. However, fully
autonomous control capabilities in AATVs are limited and require further study in terra-
mechanics, uncertainty identification, faster decision-making, and wireless communication.

Most developments are on a research level, with practical limitations on farmlands
due to terrain and weather conditions. A major drawback is their low speed, approximately
3 m/s, making them impractical for farming operations. Despite this, there is a growing
demand for AATVs, driven by broader AI applications and electromechanical systems.

Future studies will focus on energy-efficient powertrains, steering, and robust control
for AATV designs capable of reaching speeds of around 7 m/s on soft soil terrains. Im-
proving tracking robustness and studying dynamic models, especially terra-mechanics,
combined with AI, will be crucial. Deep RL is expected to play a key role in vehicle con-
trol, particularly in high-dimensional state spaces. Additionally, future work will involve
repeatable navigation and rollover simulations during field tests with accurate steering
control systems. Testing AATVs in real environments using 5G connectivity and Edge
Cloud environments will also be explored.
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