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Abstract: Rapidly and accurately extracting tobacco plant information can facilitate tobacco planting
management, precise fertilization, and yield prediction. In the karst mountainous of southern China,
tobacco plant identification is affected by large ground undulations, fragmented planting areas,
complex and diverse habitats, and uneven plant growth. This study took a tobacco planting area
in Guizhou Province as the research object and used DJI UAVs to collect UAV visible light images.
Considering plot fragmentation, plant size, presence of weeds, and shadow masking, this area was
classified into eight habitats. The U-Net model was trained using different habitat datasets. The
results show that (1) the overall precision, recall, F1-score, and Intersection over Union (IOU) of
tobacco plant information extraction were 0.68, 0.85, 0.75, and 0.60, respectively. (2) The precision
was the highest for the subsurface-fragmented and weed-free habitat and the lowest for the smooth-
tectonics and weed-infested habitat. (3) The weed-infested habitat with smaller tobacco plants can
blur images, reducing the plant-identification accuracy. This study verified the feasibility of the U-Net
model for tobacco single-plant identification in complex habitats. Decomposing complex habitats to
establish the sample set method is a new attempt to improve crop identification in complex habitats
in karst mountainous areas.
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1. Introduction

Tobacco is one of the most important economic crops worldwide, mainly produced in
China, the United States, India, and Brazil [1,2]. Tobacco is important in China’s national
economy, with more planting areas. Guizhou is an important province for tobacco planting.
Tobacco has a long production cycle, high planting-labor intensity, and high technical
requirements. Tobacco yield is closely associated with the survival rate of tobacco seedlings
after transplanting. Obtaining accurate tobacco planting information is significant for the
growth of tobacco seedlings after transplanting, tobacco fertilization, and field manage-
ment [3]. Currently, tobacco seedling counting mainly relies on manual labor, which is
time-consuming and labor-intensive. With the rapid development of unmanned aerial
vehicles (UAV) in terms of being lightweight and stable, UAV remote sensing technology
has been widely used in crop plant protection, fertilization, and growth monitoring [4-6].
Using UAV remote sensing data to identify tobacco plants and monitor plant growth infor-
mation based on deep learning can save manpower and material resources and provide
accurate information for large-scale growth monitoring, fertilization, and transplanting [7].
This is applicable to the management of high-value-added economic crop cultivation [8,9].
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Guizhou is located in the central hinterland of one of the three major global karst
regions, the southwest China karst region. This region also has the most typical karst
landscapes worldwide, accounting for 62% of the total national land area. A total of 92.5%
of Guizhou Province is mountainous and hilly [10]. Guizhou Province, the only province in
China without the support of plains, belongs to one of the regions with the most significant
karst landscape development in southwest China [11]. Due to its topography and tectonics,
this province has high mountains, deep valleys, and a fragmented surface. It is affected
by cloudy, rainy, and foggy weather and environmental differences. Consequently, it is
difficult to obtain low and medium-resolution satellite imagery data. The information on
agricultural conditions cannot be rapidly and efficiently acquired, failing to satisfy the need
for agricultural monitoring [12]. Using a UAV low-altitude remote sensing platform to
obtain data has the advantage of low cost and high security, mobility, and customizability.
This can also effectively overcome the defect that satellite remote sensing cannot timely
obtain high spatial resolution images. Thus, point-surface fusion can facilitate real-time,
macroscopic, and accurate monitoring and assessment of crop growth situation can be
performed through point-surface fusion in order to formulate appropriate production and
management measures according to local conditions to improve crop quality and yield [13].
UAVs have the advantages of strong band continuity, large amounts of spectral data, high
centimeter-level resolution, and the ability to reach areas of interest in a short period. With
the increasing maturity of UAV technology, UAV multi-spectral remote sensing has been
widely used for crop growth monitoring in agriculture. This facilitates easier and faster
Earth observation and monitoring [14-16].

Obtaining accurate tobacco plant information in karst mountainous areas is challeng-
ing [17]. Deep neural networks were proposed in 2006 and became a popular machine
learning method [18]. Due to their robustness, deep neural networks have an impres-
sive track record of applications in image analysis and interpretation [19], initially in
biomedicine and later in agriculture [20,21]. Compared with traditional methods such
as a support vector machine [22,23], color space [24], random forest [25], artificial neural
network (ANN) [26,27], and hyperpixel space [28], deep learning methods can overcome
their shortcomings such as higher requirements for observer experience, higher labor
intensity, and insufficient extraction accuracy for precision agriculture. Chen et al. [29]
applied deep neural networks to high-resolution images in order to identify strawberry
yield, with an average accuracy of 0.83 and 0.72 in identifying 2 m and 3 m aerial height,
respectively. Oh et al. [30] used deep learning target detection technology with UAV images
for cotton seedling counting and analyzed plant density and precision management. The
target detection network identification method showed higher accuracy than traditional
methods. Wu et al. [31] used deep learning to extract apple tree canopy information from
remote images. This remote sensing technique had a precision of 91.1% and a recall of
94.1% for apple tree detection and counting, an overall precision of 97.1% for branch seg-
mentation, and an overall precision of more than 92% for canopy parameter estimation.
Deep learning methods can achieve higher accuracy than traditional methods. As the
depth of deep learning models continues to increase, their feature representation ability
and segmentation accuracy become increasingly higher. Despite these advantages, there are
some shortcomings. Deeper models are more complex and require more training samples,
higher hardware and software configuration for operation and longer training time [32].

However, the U-Net model can overcome these shortcomings. Freudenberg et al. [33]
used the U-Net neural network to identify palm satellite image maps with a resolution of
40 cm and found that the method was reliable even in shaded or urban areas, with palm
identification accuracy ranging from 89% to 92%. Yang et al. [34] used the FCN-AlexNet
and SegNet models to estimate the rice fall area in UAV imagery, and the Fl-score reached
0.80 and 0.79, respectively. Using cigar tobacco plants as the research object, Rao et al. [35]
proposed a new deep learning model to learn the morphological features of the center of the
tobacco plants through some key features. They adopted a lightweight coder and decoder
to rapidly identify the tobacco and locate the counts from UAV remote sensing imagery,
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with an average accuracy of up to 99.6%. Li et al. [36] extracted dragon fruit plants from
UAV visible images of different complex habitat strains based on the U-Net model. The
identification accuracies were 85.06%, 98.83%, and 99.20% for the initial, supplementary
and extended datasets, respectively. Their experimental results show that increasing the
type and number of samples can improve the model’s accuracy in identifying dragon fruit
plants, and the accuracy of the U-Net model was also verified. The applicability of the
U-Net network model was verified in identifying features in plateau mountainous areas.
Huang et al. [37] proposed an accurate extraction method of flue-cured tobacco planting
areas based on a deep semantic segmentation model for UAV remote sensing images of
plateau mountainous areas. A total of 71 scene recognition images were semantically
segmented using DeeplabV3+, PSPNet, SegNet, and U-Net, with segmentation accuracies
of 0.9436, 0.9118, 0.9392, and 0.9473, respectively. Deep learning-based methods can
overcome the problem of insufficient characterization ability of traditional machine vision
methods. However, they need a large amount of sample data for training [38]. Under
deeper model layers, these models also require longer training time [39]. In contrast, the
U-Net model can obtain higher recognition results with fewer training samples. This model
needs less training time relative to other models, such as convolutional neural networks
(CNN) [40] and fully convolutional networks (FCN) [41], and saves experiment time with
higher running speed. Due to the complexity of the tobacco-planting environment, it is
difficult for traditional methods to extract high-precision tobacco plant information from
UAYV images. Thus, finding a new method to decompose complex scenes into multiple
homogeneous scenes and then perform scene-by-scene identification to improve the overall
accuracy is necessary.

In summary, most of the existing studies have extracted information on tobacco culti-
vation, and many models used in existing research have mainly been used for crops with
relatively simple growth conditions and plant types, strong regularity of sowing spacing
and plant types, relatively uniform spatial distribution of crop plants, relatively simple
growing environmental conditions, and obvious and relatively homogeneous features of
crop remote sensing images. In contrast, crops in karst mountainous areas have complex
growing environments and structures. The crops show a significantly dispersed three-
dimensional spatial distribution and have nonuniform plant sizes. This study used the
U-Net model as a binary semantic segmentation method for UAV visible light images of
tobacco plants at the root extension stage in complex habitats. According to the tobacco-
planting environment in the study area, the complex habitat was divided into eight tobacco
plant recognition habitats by considering four main factors (i.e., plot fragmentation, plant
size, presence of weeds, and shadow masking). The accuracy of each scenario was evalu-
ated to analyze the influencing factors of the recognition accuracy. This can promote the
application of UAV remote sensing in agriculture, accelerate dataset standardization, and
provide data and methodological support for fine agricultural management in the karst
mountainous areas.

2. Materials and Methods
2.1. Study Area

The study area (Figure 1) is located in Beipanjiang Town, Zhenfeng County, Qianxinan
Prefecture, Guizhou Province (105°35'53” E, 25°36'08” N). Beipanjiang Town is a karst
geomorphological area with a rugged and fragmented surface. The terrain in the territory
is high in the south, low in the north, hilly in the northeast, and smooth in the center,
with complicated topography and a relative altitude of 1475 m. The Beipanjiang River
Valley slope area has a deep cut. The climate is characterized as the subtropical monsoon
humid climate, with four distinct seasons. The annual average mild frost-free period,
sunshine hours, number of precipitation days, and precipitation are 300 days, 1549.2 h,
180 days, and 1100 mm, respectively. Due to the mild summer and winter, concurrent
rain and heat are the most suitable for tobacco planting. However, the study area has
mountainous characteristics such as fragmented cropland, the coexistence of regular and



Agriculture 2024, 14, 411

4 0f 20

narrow croplands, the coexistence of clear-contour and fuzzy-boundary croplands, cropland
patches with high fragmentation, and diverse farming methods. In 2023, more than
6900 acres of tobacco were planted in Beipanjiang Town, which is expected to achieve an
output value of more than CNY 25 million.
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Figure 1. Location maps of the study area: UAV image of the study area.

2.2. Data Acquisition and Preprocessing

Due to rainy and cloudy weather and rugged and fragmented terrain, it is difficult to
acquire satellite optical remote sensing data in karst mountainous areas. Therefore, this
study used the UAV DJI (DJ-Innovations, acronyms DJI, Shenzhen,China) Mavic2 Pro v2.0
as the image data-acquisition platform. This platform was equipped with a 1-inch CMOS
sensor Hasselblad camera with 20 million photo pixels, a resolution of 5472 x 3684 pixels,
and a maximum wind resistance level of 5. It is small, low-cost, mobile, and flexible and
does not require a wide-level site for take-off and landing. Thus, it is suitable for collecting
data in mountainous environments with steep terrain, fragmented land, and difficulties in
obtaining high-precision satellite image data. The image was acquired between 15:00 and
16:00 on 4 June 2021, under clear weather and wind force 2.5, meeting safe UAV operation
requirements. In order to ensure the accuracy and quality of remote sensing images during
flight, the UAV captured images in the waypoint flight mode, with a heading overlap rate
of 80%, a side overlap rate of 75%, and a flight altitude of 120 m. This can facilitate clear
images with good quality.

The UAV photos were processed using Pix4Dmapper4.0 software for initialization,
feature point matching, image stitching, correction (deformation, distortion, blurring,
and noise due to UAV shaking), image enhancement, color smoothing, cropping, and
reconstruction to generate a high-resolution orthophoto map (Digital Orthophoto Map,
DOM). Finally, orthophotos with a spatial resolution of 6.4 cm were obtained.

2.3. Network Modeling and Model Parameter Selection
2.3.1. U-Net Model

The U-Net model is a network structure based on CNN proposed by Ronneberger et al.
in 2015 [42]. This model was initially applied to the semantic segmentation of medical im-
ages and achieved good performance in different biomedical segmentation applications [43].
Then, the U-Net network model was applied to agriculture. In recent years, the U-Net
model has made great progress in agricultural remote sensing and crop recognition [44-48].
Its structure is shown in Figure 2, consisting of the compressing path in the left half and
the expansive path in the right half. The core idea of the model is the introduction of jump
connections, greatly improving the accuracy of image segmentation. In contrast to CNNs,
U-Net uses feature splicing to achieve feature fusion [49]. Due to the elastic deformation of



Agriculture 2024, 14, 411

50f 20

data enhancement [50], encoders usually superimpose convolution and pooling operations
to gradually reduce the size of feature maps. Consequently, a large number of parameters
are introduced, reducing the model’s efficiency. In addition, downsampling constantly
loses spatial information. This can result in the loss of the image’s deep details and affect
the final segmentation result [51]. However, in contrast to other deep learning models,
the U-Net model is also suitable for rapid crop extraction due to its advantages of “fewer
training samples, shorter training time and higher accuracy”.
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Figure 2. The U-Net model [4].

2.3.2. Experimental Environment

The experimental study was conducted on a professional imaging workstation equipped
with Windows 10 (ACPIx64 processor). The computer was powered by an NVIDIA GeForce
RTX 2080 Ti (GPU) and an Intel(R) Core(TM) i9-10980XE CPU to accelerate relevant opera-
tions. The study was based on the Tensorflow-GPU version 2.0.0 deep learning framework
and used the Adma optimizer as the optimization function. Keras = 2.4.3 is a WrapperAPI
of Tensorflow, a layer of Tensorflow wrapping that allows for simpler model building [36].
The initial learning rate was set as 0.0001 for the model training. The total number of
iterations was 50. The training was performed on the workstation. The model was con-
stantly debugged to obtain optimal parameters, improving the recognition accuracy of the
U-Net model.

2.3.3. Model Parameter Selection

In order to study the influencing factors of complex tobacco habitats in the karst
mountainous area on identifying extracted tobacco using the U-Net model, two groups of
training samples were preset for model training. The first set of the experiments was to
train the model with all the training samples and labels, and the second set was to train
the model with eight habitats: smooth tectonics and weed-free (I); smooth tectonics and
unevenly growing (II); smooth tectonics and weed-infested (III); smooth tectonics and
planted with smaller seedlings (IV); subsurface fragmented and weed-free (V); surface
fragmented and shadow-masked (VI); subsurface fragmented and weed-infested (VII); and
surface fragmented and planted with smaller seedlings (VIII).

In order to obtain the optimal tobacco identification model parameters, multiple
parameters can be set to compare the model training. Figure 3 presents the accuracy
and loss-changing curves of the model trained with different parameters. The parameter
changes included the learning rate and the number of iterations. There were some dif-
ferences in the trend of the loss and accuracy curves of the model trained with different
parameters. In order to explore more suitable model parameters for tobacco identification,
all the samples and labels of eight habitats were used for model training together, with a
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ratio of 8:2 for the training set and the test set. Firstly, the number of iterations was set as
50, and the learning rate was 0.0001 (Figure 3a,b) and 0.001 (Figure 3c,d), respectively. It
can be concluded from the experiments that the learning rate of 0.0001 was more suitable
for the tobacco identification model. Secondly, the learning rate was set as 0.0001, and
the number of iterations was set as 100 and 50. When the number of iterations was set as
50, the loss and the accuracy curves in Figure 3e,f showed better fitting results. The loss
and accuracy curves under 100 iterations are shown in Figure 3g,h. After many rounds of
model training, the comparative analysis shows that the model was more robust when the
learning rate and the number of iterations were set as 0.0001 and 50, respectively. Therefore,
the model parameter setting with a learning rate of 0.0001 and 50 iterations in the whole
model training can meet the research needs.
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curves; (gh) are the learning rate of 0.001 and the epochs of 100 the model training curves).



Agriculture 2024, 14, 411

7 of 20

2.4. Dataset Construction
2.4.1. Classification of Complex Habitat for Tobacco

The dataset used for model training is also known as the training sample, which is
the basis of the whole model classification algorithm. The quality of training samples
directly affects classification results. Therefore, representative and typical samples with the
completeness of regional sample points should be selected [52]. In order to better extract
information on complex habitats of tobacco, the UAV visible light images in June 2021
were selected to extract tobacco plants according to the complexity of the tobacco-planting
habitat in the study area. The tobacco plants were at the rooting stage, with nonuniform
growth and size. In order to better analyze the model recognition accuracy under the
complex crop growth habitat and explore the suitability of different habitats, four main
factors were considered, i.e., the plot fragmentation, plant size, presence of weeds, and
shadow masking according to the tobacco planting habitat in the study area. Then, the
eight habitats were classified, as shown in Figure 4: smooth tectonics and weed-free (I);
smooth tectonics and unevenly growing (II); smooth tectonics and weed-infested (III);
smooth tectonics and planted with smaller seedlings (IV); subsurface fragmented and
weed-free (V); surface fragmented and shadow-masked (VI); subsurface fragmented and
weed-infested (VII); and surface fragmented and planted with smaller seedlings (VIII).
In this scene classification system, training samples were constructed based on the UAV
visible light images.

@

(VIII)

Figure 4. Study area habitat delineation map.(smooth tectonics and weed-free (I); smooth tectonics
and unevenly growing (II); smooth tectonics and weed-infested (III); smooth tectonics and planted
with smaller seedlings (IV); subsurface fragmented and weed-free (V); surface fragmented and
shadow-masked (VI); subsurface fragmented and weed-infested (VII); and surface fragmented and
planted with smaller seedlings (VIII)).
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2.4.2. Construction of Sample Datasets

The ROI tool of ENVI5.3 (Exelis Visual Information Solutions, Dallas, TX, USA) was
used to manually annotate the outline of the tobacco plants in order to generate .xml files.
These files were then converted to vector files. The pixels of tobacco plants were labeled
as black (pixel value was 0), and the pixels of non-tobacco plants were labeled as white
(pixel value was 255) using the ArcGIS 10.2 (ESRI, Redlands, CA, USA) conversion tools.
The binary mapping of labels was used to evaluate the segmentation and the information
extraction of the tobacco plants. A total of 6617 plants were labeled. Since the whole UAV
image was directly used as a sample, the data volume was too large. Thus, the performance
requirements for the computer were high. This was not conducive to model training.
Thus, the images and the corresponding labeled tobacco plants were randomly cut into
samples with a size of 224 x 224 pixels. The randomly cut samples have cross-overlapping
parts with random sizes, inducing different samples and enhancing the randomness of the
samples. The information in the UAV visible light images can be fully utilized. Finally,
2300 samples were obtained to constitute the tobacco dataset. The tobacco dataset included
a sample image folder and a manually labeled label folder. The sample image folder
corresponded to the sample images, which were named and arranged in numerical order.
The label file contained the manually labeled data corresponding to the sample images.
Some captured tobacco plant images and corresponding labels are shown in Figure 5.

)

20.png

Figure 5. Cont.
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Figure 5. Images of tobacco with manual annotation labels: subsurface fragmented and weed-free
(1.png, 2.png, and 3.png); subsurface fragmented and weed-infested (4.png, 5.png, and 6.png);
surface fragmented and shadow-masked (7.png, 8.png, and 9.png); surface fragmented and planted
with smaller seedlings (10.png, 11.png, and 12.png); smooth tectonics and weed-free (13.png, 14.png,
and 15.png); smooth tectonic and weed-infested (16.png, 17.png, and 18.png); smooth tectonics and
unevenly growing (19.png, 20.png, and 21.png); smooth tectonics and planted with smaller seedlings
(22.png, 23.png, and 24.png).

2.4.3. Optimization Sample

In order to improve the generalization ability and segmentation accuracy of the U-Net
model, the samples in the datasets were optimized. The optimized datasets can provide
samples closer to real tobacco plants (such as geometric morphological features) for model
training. Particularly, some samples were interfered with by environmental factors such as
light, shadow, and ground reflection. To accommodate these interferences, the effects of
sample quantity and quality on model accuracy were explored. The ArcGIS10.2 software
(https:/ /www.esri.com/en-us/home, accessed on 12 January 2024) was used to optimize
the sample dataset and enhance the tobacco plants. The following four aspects were
mainly addressed and improved: (1) boundary accuracy for samples with smaller plants;
(2) difficulties in distinguishing tobacco plants accompanied by weeds; (3) weak ground
reflections and shadow interference; the interference of incorrectly labeling shadows as
tobacco samples can be excluded; and (4) strong ground reflection and indistinct tobacco
plant information characteristics; consequently, tobacco plant samples are missed. Partial
samples and optimized samples are shown in Figure 6, where the blue color indicates
original samples and the yellow color indicates optimized samples. In addition, since the
samples were randomly split, the number of training samples was increased to 9500 in
order to enrich the content and diversity of the samples.
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Figure 6. Comparison between partial samples and optimized samples. (tips:where the blue color
indicates original samples and the yellow color indicates opti-mized samples).

2.5. Evaluation Index

Multiple metrics are usually used in image segmentation to evaluate algorithm pre-
cision. In this study, four quantitative metrics, namely, precision, recall, Fl-score, and
Intersection over Union (IOU), were used to quantitatively evaluate the model recognition
results and the segmentation precision of the tobacco plants in each scene of the UAV
remote sensing images.

Precision indicates the probability of actually being a positive sample out of all samples
identified as positive:

TPTFP @

Recall is used to find how many samples that are actually positive are identified
as positive:

precision =

TP
TP + FN @)
The F1-score is a common measure for classification problems and is a harmonic mean
of precision and recall ranging from 0 to 1. The closer the Fl-score is to 1, the more robust
the model is:

Recall =

Fl-score = — 2 _—ax grec%se x Recall 3)

P + ool recise + Recall
IOU is a commonly used evaluation method in semantic segmentation and can mea-
sure the degree of overlap between the target detection frame and the true frame. Thus,
IOU can be used as a criterion to determine whether the detection frame is a positive sample
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or not. Comparison with the threshold can help to determine whether it is a positive or
negative sample. Generally, when the identified frame and the real frame IOU > 0.5, it is
considered to be a positive sample:

TP

IOU:TP+FP+FN

4)
where TPindicates that a tobacco sample is correctly identified as tobacco, FN indicates
that a tobacco sample is incorrectly identified as non-tobacco, and FN indicates that a
non-tobacco sample is incorrectly identified as tobacco.

3. Results
3.1. Quantitative Analysis of Plant Extraction Precision

Using the U-Net model to identify UAV remote sensing visible flue-cured tobacco
images, the accuracy of the segmentation results is shown in Table 1. The recognition
accuracies of the eight habitats were in the following order: subsurface fragmented and
weed-free (V) > surface fragmented and planted with smaller seedlings (VIII) > subsurface
fragmented and weed-infested (VII) > smooth tectonics and weed-free (I) > smooth tectonics
and unevenly growing (II) > surface fragmented and shadow-masked (VI) > smooth
tectonics and planted with smaller seedlings (IV) > smooth tectonics and weed-infested
(II). Comparing the whole image with the recognition results of the eight scenes, Scenes
III and IV showed lower accuracy. Then, the other scenes were compared with the whole
image of the study area, and the overall accuracy of the whole image was lower, with a
precision of 0.68, a recall of 0.85, an F1-score of 0.75, and an IOU of 0.60. Maize, as the same
green crop as tobacco, was incorrectly identified as tobacco by the U-Net model. This is
due to the fragmented surface, complex planting structure, mixed cultivation of tobacco
and maize plots, and more bushes and weeds along the cultivated soil canals. Thus, the
accuracy of the whole image was low.

Table 1. Identification results for different scenes.

Scenes Precision Recall F1-Score 10U

Smooth tectonics and weed-free (I) 0.76 0.86 0.81 0.67

Smooth tectonics and unevenly growing (II) 0.74 0.89 0.81 0.67

Smooth tectonics and weed-infested (III) 0.49 0.69 0.57 0.40

Smooth tectonics and planted with smaller seedlings (IV) 0.58 0.79 0.67 0.50
Subsurface fragmented and weed-free (V) 0.85 0.84 0.84 0.73

Surface fragmented and shadow-masked (VI) 0.73 0.87 0.79 0.66
Subsurface fragmented and weed-infested (VII) 0.77 0.88 0.82 0.69
Surface fragmented and planted with smaller seedlings (VIII) 0.77 0.79 0.78 0.64
The whole image 0.68 0.85 0.75 0.60

Subsection-scene-recognition accuracy is shown in Figure 7, with some differences.
The factors affecting the recognition accuracy in each scene were also different. The scene of
“subsurface fragmented and weed-free (V)” had the highest accuracy (precision = 0.85), fol-
lowed by “surface fragmented and planted with smaller seedlings (VIII)” (precision = 0.77).
The scene of “smooth tectonics and weed-infested (III)” had the lowest recognition accuracy
(precision = 0.49).

The tobacco plants were smaller and fuzzy in the training samples. The contours of
the tobacco were unclear. The model would omit smaller tobacco plants, leading to a lower
accuracy in recognizing Scene IV.

Comparative analysis reveals that the recognition accuracy of Scene VIII was higher
than that of Scene IV. This is mainly attributed to the relatively homogeneous planting
habitat in Scene VIII, with more bare rock on the fragmented surface, fewer green vegetation
such as weeds, and significant differences between tobacco plants and background texture
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features in the images. Thus, the U-Net model was less affected in tobacco identification,
resulting in higher identification accuracy of tobacco plants.

1.0

0.85

0.8 -
0.76 474 073 0.77 0.77

0.6 H 0.58
0.49

Precision

0.2 1

0 . 0 I I I I I I I I
II II IV A% Vvl  VII VII

]

Complex scenes
Figure 7. Complex identification precision histogram.

3.2. Visual Analysis of Tobacco Plant Extraction

In Figure 8, based on the model, sample quality and quantity, and complex habitat
dataset recognition results, the red contour represents the identified tobacco plants. Scenes I
and V were taken as the control. Scene I had regular tobacco planting and connected tobacco
leaves, with overall even recognition accuracy. Scene V had irregular tobacco planting.
Tobacco plants were smaller due to the water and fertilizer conditions. Its single-plant
recognition accuracy was high.

Scene III had regular tobacco planting and good plant growth. The model identified
non-tobacco parts as tobacco plants during continuous plant identification. Weeds and
tobacco plants are both green vegetation and have similar spectral and texture features.
These were the main reasons for the low recognition accuracy of Scene III. Scene VII had
irregular tobacco planting. There was weed confusion to some extent. Compared with
Scene III, Scene VII had less continuous tobacco planting. Thus, the recognition accuracy of
Scene VIl increased by 0.28 compared to that of Scene IIL

Scenes IV and VIII were taken as the control. Tobacco plants in Scene IV were affected
by the transplanting time sequence, and the tobacco plant seedlings were smaller than
those in Scene VIII. Thus, the tobacco feature information of the training samples was
insignificant. The U-Net model may omit smaller tobacco plants during training, resulting
in a lower identification accuracy of Scene IV than that of Scene VIII by 0.19.
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Figure 8. Identification results of the U-Net model. (the red outlines in the figure indicate the tobacco
plant outlines recognized by the U-Net model).

3.3. Optimization Sample Precision Analysis

The U-Net model was trained using the optimized sample dataset. The results show
that the recognition accuracy of the eight complex scenes was generally improved, as
shown in Figure 9. Among them, the scene broken surface with weeds (VII) had the highest
recognition accuracy, followed by broken surface shadow masking (VI) with 0.92 and 0.90,
respectively. The optimized samples were targeted at the scene with broken surfaces with
weeds to clarify the boundaries of tobacco and weeds in the training samples. Tobacco
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plants on the broken surface were distinguished from bare rocks. The characteristics of
tobacco plants were significant. The model showed strong generalization ability with
high recognition accuracy. In the fragmented surface and shadow masking (VI), the area
without tobacco blocked by trees was regarded as a non-tobacco area. The UAV images
were combined with the analysis of synthetic images to improve the recognition accuracy.
Scene I1I had the lowest accuracy rate, followed by Scene II, with accuracy rates of 0.74 and
0.78, respectively. Scene III had a relatively flat ground. The drone acquired the image in
the afternoon, and the shadow of the weeds and tobacco plants had a greater impact on the
recognition accuracy of the tobacco plants and reduced the model’s accuracy in identifying
tobacco plants.

4— Samples
1.0 e Optimization Samples
0.92
0.9 | 0'.90 8
087 0.86
A 0.80 20.85

0.8 F \ ’ 00.81
o 0.76 6078 / 077
) e
'z * 0T
2 0.74% o5 A
§ o7k 0.74 073
=9

0.6 |

A(.58
0.5F x0.49

I I 11 1Y \Y VI Vil VIII

Scenes
Figure 9. Recognition precision for the original sample and optimized sample datasets.

4. Discussion

To address the problems of a fragile natural environment, fragmented plots, and
complex planting structures in the karst mountain areas of southern China, we constructed
eight sample datasets of tobacco plants in complex scenes to train the U-Net model. Tobacco
information was accurately extracted from UAV remote sensing imagery in complex scenes.
The factors affecting the recognition accuracy of the U-Net model in different complex
scenes were discussed in two aspects: tobacco plant omission and wrong extraction.

4.1. Analysis of Omitted Factors

In order to investigate the factors affecting the U-Net model on the segmentation of
tobacco plants in different complex habitats, we analyzed the influencing factors through
the segmentation results of the eight habitats. The segmentation accuracy of Scene III
was the lowest, with a precision of 0.49 and a recall of 0.69. A total of 410 plants were
omitted, including 95 whole plants (23%) and 315 incomplete plants (77%). The omission
of complete plants mainly included two factors: weed cover and small saplings of tobacco
plants. For incomplete tobacco plants, the omission mainly resulted from the small size
of tobacco plants covered by weeds. Weeds and tobacco plants had similar texture and
spectral features. The soil background had low reflectance. These factors affected the
recognition accuracy of the scene with smooth tectonics and weed cover. Overall, the
omission of the tobacco plant in this scene was mainly attributed to weed cover.
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For tobacco images in Scene 1V, 420 plants were missed, including 187 whole plants
(45%) and 233 incomplete tobacco plants (55%). The omission of the whole tobacco plants
was mainly because the tobacco plant sapling was smaller. Larger UAV flight height re-
duced the UAV image resolution, resulting in low tobacco identification accuracy. In the
low-altitude remote sensing multi-scale recognition of complex habitats in karst moun-
tainous areas, Li [4] found that the accuracy of UAV images for tobacco plant recognition
decreased with increasing height. In this study, the UAV flight altitude was 120 m. The
tobacco plants at the rooting stage were small. Thus, the image resolution was low, and
some tobacco plant features were lost. This resulted in the low accuracy of the U-Net model
in segmenting the tobacco plant scene

4.2. Analysis of Erroneous Factors

Further detailed analysis was conducted to reveal the factors affecting the recognition
accuracy of the model incorrectly identifying non-target features as target features (tobacco).
The model incorrectly identifying non-target features as target features was referred to as
misidentification. The six main factors that caused misidentification were identified using
overlay analysis of the experimental results (Table 2), i.e., the edge of tobacco plants, maize
plants, bushes, white mulch, bare rocks, and weeds. Particularly, the edge of the tobacco
plants was the most mislabeled, accounting for 67.21% of the whole image mislabeled. This
is mainly because the segmentation level of the U-Net model was at the pixel level. In
addition, the data was collected between 15:00 and 16:00. The sun altitude angle varied.
There was a shadow on the leaves of the tobacco plants, and the model incorrectly identified
the shadow of the tobacco leaves as the real tobacco leaves. Thus, there was a discrepancy
between the validation labels and the manually drawn ones in identifying the contour of
the tobacco plants.

The second was the misidentification caused by the confusion of maize plants and
weeds, accounting for 24.50% of the misidentification of the whole image, and weeds
accounted for 7.40%. The karst mountainous area had fragmented surfaces, scattered
cultivated plots, and complex planting structures. The tobacco plots were adjacent to
the maize plots and covered with weeds. The tobacco plants and weeds were all green
vegetation with similar shapes, textures, and spectral features. Thus, the model incorrectly
identified maize and weeds as tobacco, leading to more misidentification in the U-Net
model and lower recognition accuracy. The U-Net model may incorrectly identify weeds as
tobacco plants during tobacco identification.

Table 2. Statistics of factors influencing misidentification.

Factor

Tobacco

Shrub Bare Rock White Plastic

Typical incorrect
recognition patches

Misidentification

1,008,072.52 367,544 110,935 7643 3204 2574

Percentage

67.21% 24.50% 7.40% 0.51% 0.21% 0.17%

4.3. Analysis of the Impact of Optimized Samples on the Accuracy of the Model in Identifying
Tobacco Plants

Figure 10 and Table 3 indicate that the sample quality had a certain impact on the
recognition accuracy of the U-Net model. In this experiment, the recognition accuracy of the
model trained by the optimized samples was higher than that of the original samples. The
recognized tobacco plants were closer to the real tobacco plants. The identification accuracy
of Scene Il increased by 25.31%. In order to better evaluate the impact of the sample on
the model, the results from the scene with smooth tectonics were used as the evaluation
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indicator of the model trained by the two dataset samples. The calculation results were
analyzed to reveal their differences. Positive values indicate that the accuracy is improved,
and negative values indicate that the accuracy is reduced. Regarding the accuracy, Scene
IV showed the highest increase (22.81%). Scene V showed the lowest increase (0.78%),
followed by Scene II (3.82%).

Scenes (I1II) Scenes (IV) Scenes (V) Scenes (VI)

Figure 10. Recognition results of training the U-Net model with original and optimized samples
(Note: blue color indicates original sample training results, and yellow color indicates optimized

sample training results).

Table 3. Differences between the evaluation indexes of the original and optimized sample for training

the U-Net model.
Scenes Precision Recall F1-Score I0U

Smooth tectonics and weed-free (I) 10.93% 0.77% 6.16% 9.10%
Smooth tectonics and unevenly growing (II) 3.82% —9.35% —2.08% —2.87%

Smooth tectonics and weed-infested (III) 25.31% 7.68% 18.10% 20.34%

Smooth tectonics and planted with smaller seedlings (IV) 22.81% —7.81% 8.92% 10.74%
Subsurface fragmented and weed-free (V) 0.78% —4.17% —1.80% —2.65%

Surface fragmented and shadow-masked (VI) 16.92% —8.65% 4.29% 6.10%
Subsurface fragmented and weed-infested (VII) 15.72% —6.97% 4.34% 6.44%

Surface fragmented and planted with smaller seedlings (VIII) 4.59% —25.21% —13.18% —15.93%

The optimization samples were optimized for the situation where the boundary feature
information of the original tobacco. The weed samples were insignificant in the scene of
fragmented surface and weeds. Thus, the boundary information of tobacco and weeds
in the training sample can be more distinct. The generalization ability of the model can
be enhanced, thus improving the model recognition accuracy. Tobacco planting had a
time sequence. The late-planted tobacco plant was smaller. At the same flight altitude,
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the feature information of smaller tobacco plants was not prominent, which affected the
recognition accuracy. Therefore, the morphological features of the smaller tobacco plants in
the training samples were optimized during the sample optimization. Then, the labeled
plants can be closer to the real tobacco plants, improving the model recognition accuracy.

In summary, most models used in existing research have mainly been used for crops
with relatively simple growth conditions and plant types, strong regularity of sowing
spacing and plant types, relatively uniform spatial distribution of crop plants, relatively
simple growing environmental conditions, and obvious and relatively homogeneous fea-
tures of crop remote sensing images. In contrast, crops in karst mountainous areas have
complex growing environments and structures. The crops show significantly dispersed
three-dimensional spatial distribution and have nonuniform plant sizes. In this study, the
U-Net model was used to identify tobacco plants in karst mountainous areas. The complex
scene was deconstructed into eight single scenes. The accuracy of individual scenes and
the overall accuracy were discussed separately. The accuracy was improved by optimizing
the geometric features of the samples and other methods. The results in Table 1 indicate
that the U-Net model has limitations in recognizing tobacco plants in complex habitats in
karst mountainous areas.

5. Conclusions

The sample datasets derived from UAV visible light images were used to train the
U-Net model. The experimental results indicate that it is effective and practical to some
extent to use the trained model to identify tobacco plants in UAV visible light images under
different planting environments. Scene segmentation reduced the interference of factors on
the accuracy of tobacco plant identification, such as plot complexity and planting structure.
This is a new attempt to improve the classification of crop recognition in complex habitats
in karst mountainous areas (particularly habitats with fragmented surfaces).

The findings also reveal that the U-Net model showed different abilities in identifying
features in different habitats due to the influence of some main factors such as plot frag-
mentation, plant size, presence of weeds, and shadow masking. Thus, it is necessary to
construct the datasets by scene, increase samples, and eliminate interferences in a targeted
manner according to the complexity of different scenes and the main factors affecting the
model in order to improve the accuracy of the model in classifying complex scenes.

It was found that tobacco plant contour was the most significant influencing factor of
the U-Net model in identifying tobacco plants in complex habitats in karst mountainous
areas. This is related to the sample preparation error, followed by the accompanying
interference of maize and weed. Maize, weeds, and tobacco are all green vegetation
and have similar shapes, spectra, and texture features, leading to the misidentification
of the U-Net model. In order to address this problem, the next step of this study is
to increase the image bands and spectral information of the ground and use “shape-
spectrum” joint features to eliminate different spectra or to improve the identification
accuracy by removing the influence of noise, such as weeds, through morphological erosion
and dilation operation.

The generalization ability and robustness of the U-Net model were strongly influenced
by sample quality and quantity. The optimized sample dataset was used to train the model,
which improved the sample profile, quality, and quantity. The accuracy of each scene was
higher than the original sample. Therefore, in future research, we can further improve
sample quantity and quality to improve the model performance.
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