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Abstract: A field’s historical performance data are used for management zone delineation in precision
agriculture, but including abnormal data leads to inappropriate zones. This paper introduces a frame-
work incorporating historical performance data and a new Zoning Dissimilarity Metric (ZDM) to
detect abnormal zoning data automatically. The methodology identifies abnormal zoning data among
the field’s performance indicators extracted from satellite images to enhance the accuracy of the
delineated zones. We experimented with our framework using Sentinel-2 images on 39 fields across
Canada. Our experimental results, which involve both real and synthetic data, clearly demonstrate
the importance of ZDM in effectively excluding abnormal data during the zone delineation process.

Keywords: anomaly detection; precision agriculture; satellite imagery; management zone delineation;
historical field performance

1. Introduction

Technological advancements have significantly improved the quality and quantity of
agricultural products while optimizing costs and minimizing waste and environmental
impact. This transformation is crucial due to the increasing global food demand [1].
Precision agriculture leverages sensor data, satellite imagery, and automated systems to
monitor critical factors, such as soil health, crop growth, yield parameters, and other related
factors, to improve management decisions [2]. However, since factors like soil properties
and land topography change from acre to acre, the practice of Delineating Management
Zones, or simply zoning, is essential. Zoning divides the field into smaller units for uniform
management, allowing for precise farm inputs tailored to each zone [3]. This approach
aims to boost profitability while reducing environmental pollution [4,5].

Various methods, including historical soil analysis, yield data, expected yield, and
crop coverage, are used to divide farm fields into distinct zones [6], resulting in a zonemap
(see Figure 1). Irrespective of the method or data used for zoning, they subdivide a field
into units that exhibit varying degrees of performance [7]. A higher level of performance is
indicative of increased productivity and crop yield. For example, the field is divided into
six management zones in Figure 1. Zone 1 is associated with less performance, and Zone 6
shows the field parts with the best performance.

Due to the non-stationary nature growth conditions, one approach is to average the
performance data over multiple years to create a detailed performance map that accurately
reflects the varying capabilities of different areas [6]. The challenge with using historical
performance data is that certain parts of the field or the whole region may sometimes
experience subpar performance due to abnormal natural events, such as severe weather
conditions, hail, drought, pests, and other similar factors. These anomalous occurrences
can significantly affect the land’s overall performance. Hence, the corresponding data for
that specific time may not reflect the normal farming conditions and land potential. Conse-
quently, incorporating such data into the zoning process will result in misleading outcomes
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and inadequate management zone delineations. In summary, to delineate management
zones precisely, evaluating data in advance and excluding those different from normal
performance are necessary. This refined approach ensures that the resulting delineated
zones better align with the actual capabilities and potentials of the field, offering a more
accurate basis for decision-making. This study introduces a framework and a new metric
for identifying the abnormal year(s) in the zone delineation process using satellite images.

Figure 1. A sample zonemap after zoning. This field is classified by six labels from zone 1 to 6.

Historical data from satellite imagery and Normalized Difference Vegetation Index
(NDVI) aggregation have been studied to estimate the performance of farm fields [7–9],
and they have been used in many zoning studies [6]. In our experiments, we generated
the performance indicator using historical NDVI data captured on the greenest day of
each growing season and named them Peak Green. With one growing season annually, we
obtained one peak green image yearly that was used as the growth indicator and included
NDVI values at the peak day of each year [10]. To capture abnormal years, we introduced
the Zoning Dissimilarity Metric (ZDM), which can capture the dissimilarity among peak
greens. Using this metric, we could determine the abnormal years in terms of irregular
changes in the zonemap.

A depiction of the Abnormal Zoning Year(s) Detection Algorithmic Framework is
outlined in Figure 2. A set of satellite image data of a field is taken as input for every
individual year. In the initial stage of our framework, the zone delineation technique is
applied to the input data for all years to obtain the original zonemap. Then, we exclude
a test year and re-evaluate the modified or perturbed zonemap. Finally, we measure the
change in the resulting zonemaps in two cases by calculating the Zoning Dissimilarity
Metric (ZDM). Each year’s metric measures how much the zonemap changes by including
that specific year’s data in the zoning process. The idea is that the data that abnormally
perturb the zonemap correspond to non-normal years. To infer which year is abnormal,
we assess the ZDM values, and if the relative dispersion of ZDM values is higher than a
threshold, then the value(s) far away from other ZDM values is considered abnormal.

We assessed our methodology in 39 fields and found abnormal years based on their
annual data, as discussed in Section 5.1. Furthermore, we evaluated our method by creating
synthetically perturbed performance data and precisely identifying anomalous zoning
data (Section 5.3). This paper’s main contribution is introducing a new framework and
a novel metric for detecting abnormal zoning data using satellite imagery. Identifying
and excluding abnormal data enhance the precision of zone labels assigned to each pixel,
improving fertility and resource management.
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Figure 2. Abnormal zoning year(s) detection framework.

2. Related Works and Background

In this section, we start by discussing variable rate technology usage in precision
agriculture. Then, we review studies that use satellite imagery in zone delineation. Finally,
anomaly detection in precision agriculture is discussed.

2.1. Variable Rate Technology in Precision Agriculture

A field’s performance varies from acre to acre due to land topography, soil nutrient
availability, weather conditions, farm management, and many other factors. While proper
nutrition is crucial for optimal plant growth, excessive fertilizer use can lead to environmen-
tal pollution and economic losses [11]. Variable rate technology (VRT), or Site-Specific Crop
Management (SSCM), is a prominent strategy within precision agriculture that involves
adapting resource allocation to account for the variations in soil and crop requirements
within the farm field [12]. The management zone delineation technique (zoning) categorizes
fields into homogeneous units where each unit is uniformly managed [3].

Zoning enhances decision-making processes regarding efficiently utilizing inputs like
fertilizers, agrochemicals, soil ameliorates, pesticides, antiseptics, water, and energy in
farm fields [12]. For instance, Khosla and Alley [4] demonstrated how variable rate fertility
application reduced fertilizer use in a field with five different zones. They used soil maps
from the National Resources Conservation Service for a 36-acre corn field as their input
data and showed that fertilizer usage is reduced by about 15% after using this technique.

In conclusion, variable rate technology has been shown to be a promising approach for
precision agriculture, where the entire field is divided into manageable homogeneous units,
each with specific requirements, allowing for precise resource allocation. Efficient nutrient
management enhances crop productivity and promotes environmental sustainability by
minimizing excess input use.

2.2. Satellite Imagery in Zoning

Delineating zones is challenging, and many studies have tried to find a reasonable
approach to estimate zones [6,13–15]. Specifying zones needs detailed datasets for dividing
the farm field into distinct regions [7]. Traditionally, soil analysis through physical sampling
has been employed to determine the soil class label based on its nutrient composition [16],
but it is expensive and time-consuming [12]. In the wake of technological advancements, the
utilization of the Internet of Things (IoT), Unmanned Aerial Vehicles (UAVs), and satellite
imagery has been increasingly integrated into zone delineation studies [17–19]. Notably,
remote sensing data, a cost-effective alternative, is increasingly paired with traditional
physical soil sampling methods.
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In [14], Li et al. used SPOT5 satellite imagery along with Soil Electrical Conductivity
(SEC) data as input variables and applied a fuzzy clustering analysis to two principal
components. Then, they could group the farm field into three management zones based
on the similarity of the soil properties. The study demonstrated that the combination of
satellite imagery and soil attributes facilitated the creation of meaningful management
zones. Wadoux and Molnar [20] discussed methods for interpreting complex models to
classify and predict soil variation. The study revealed that three MODIS satellite imagery
covariates, namely MODIS red, green, and SWIR 2 bands, exhibited high importance
regarding Soil Organic Carbon (SOC) variation, as indicated by the Random Forest (RF)
model analysis.

Researchers have explored the potential of estimating soil organic content solely
through remote sensing data. One of the promising approaches is the utilization of veg-
etation indices that are highly correlated with the health, vigour, and quantity of vegeta-
tion [21]. Jin et al. introduced two different methods for estimating Soil Organic Matter
Content (SOMC) using spectral bands and showed that some vegetation indices, like
the Optimal Difference Index (ODI), the Optimal Ratio Vegetation Index (ORVI), and the
Optimal Normalized Difference Vegetation Index (ONDVI), strongly correlate with soil
content [22]. Srisomkiew et al. utilized a Data-Driven Soil Assessment (DSA) framework
to evaluate soil fertility. They applied a Multiple Linear Regression (MLR) model for soil
fertility prediction and showed that soil fertility is correlated with vegetation indices, like
the Normalized Difference Water Index (NDWI), the Coloration Index (CL), the Moisture
Stress Index (MSI), the and Brightness Index (BI), obtained from the Landsat 8 satellite [23].

Historical satellite images and remote sensing data offer a promising approach to zon-
ing in agriculture. Cammarano et al. [19] leveraged a decade of Landsat data to establish
management zones for 540 agricultural fields, concluding that the historical Green Nor-
malized Vegetation Index (GNDVI) serves as a reliable predictor for nitrogen and organic
carbon. The NDVI, a widely utilized metric among vegetation indices, has been employed
to establish correlations with Soil Organic Matter levels and overall field performance [7,24].
As highlighted in Nawar et al.’s review [6], innovative zoning methods based on satellite
imagery data often incorporate the NDVI. Additionally, they demonstrated that the NDVI
becomes particularly valuable in cases where yield is not a clear discriminator, aiding in
the determination of zone labels. In a complementary approach, Kazemi and Samavati [10]
utilized historically normalized NDVI values to generate a fertility map for a field, sub-
sequently using this map to partition the soil into distinct zones. However, challenges
such as obtaining cloud-free images persist [25], leading to the exploration of methods like
approximating the cloud-covered areas in the images [26] or data averaging [15] to mitigate
these limitations.

In conclusion, satellite imagery offers valuable insights into soil fertility and crop
coverage, which can be considered field performance data in zoning strategies. Therefore,
earth observation satellites are consistent and cost-effective data sources in management
zone delineation.

2.3. Anomaly Detection in Zoning

Historical data are not always good representatives of a farm field’s performance.
Including abnormal data in decision-making will lead to suboptimal management, in-
creased waste and environmental contamination, and reduced profit. For example, using
non-representative performance data in zoning will lead to a suboptimal zonemap.

Efforts to address data quality issues in precision agriculture have led to numerous
studies, all with the shared objective of identifying and rectifying data anomalies. For
instance, Efrat et al. [27] propose a pipeline to monitor and detect anomalies in dendrometer
sensor data. An ensemble of scoring algorithms measure dissimilarity among sensors in
an IoT-based system. Moso et al. [28] identify anomalies in crop growth at the harvesting
stage based on the dissimilarity of the majority of data points using the Local Outlier Factor
(LOF) method. They use GPS datasets from combine machines to detect damaged crops.
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Catalano et al. [29] introduce a novel machine learning-based approach for anomaly detec-
tion in smart agriculture systems, with a primary focus on leveraging multi-sensor systems
to monitor sensor health and accurately identify abnormal data patterns. Nevertheless, as
highlighted by Schroth et al. [30], identifying non-technical anomalies poses a challenging
and unexplored aspect in the realm of data cleansing for precision agriculture. External
factors, including natural phenomena such as droughts [31], floods [32], soil erosion [33],
pest outbreaks [13], and farmers’ practices [34], can significantly impact crop growth, which
can be traced through satellite images.

Abnormal natural event detection has been studied in the literature. For example,
using NDVI historical analysis, Rembold et al. [24] indicate drought years. They show
that the NDVI is correlated with growing conditions. In drought years, the NDVI value
suddenly drops, enabling abnormal growing conditions to be detected. In [32], the NDVI is
used to detect floods and the amount of destroyed crops. These events can disrupt zoning
data, which are often presumed to represent the field’s actual performance.

While the aforementioned studies contribute to improving data quality in precision
agriculture, many approaches lack generalizability in identifying anomalies, making them
inapplicable in zoning. Several studies on management zone delineation overlook collective
abnormal data detection and elimination before zoning. Instead, the focus is narrowed to
addressing noise or statistical outliers in performance data [35].

Most relevant to abnormalities in the zoning process, Ryu et al. [36] studied processes for
detecting anomalies in growth conditions in paddy rice fields using vegetation indices. They
relied on the phenological characteristics of a specific crop that has a particular sensitivity to
stress conditions to distinguish anomalies. While this approach allows for identifying notable
deviations from normal growth, it lacks applicability to diverse crop types.

Therefore, adopting a more generalized approach that captures diverse anomalies and
operates at the field level using satellite images is essential to recognizing abnormal zoning
data. In response to these limitations, our study introduces a method that explicitly targets
abnormal data affecting the zoning process after the completion of the growing period.
Utilizing satellite-based historical peak green NDVI data as annual performance indicators,
our framework employs the Zoning Dissimilarity Metric (ZDM) to measure abnormality,
providing a more generalized and field-specific approach to zoning anomaly detection.

3. Zoning Using Satellite Imagery

In this section, we describe the overview of the chosen zoning technique. Our approach
is akin to that in [10] and involved identifying zones based on historical performance. We
constructed the performance indicator based on satellite imagery using an algorithm similar
to that in [37]. In a high-level overview, our method used Sentinel-2, which has the utmost
five-day revisit time, as our satellite imagery resource [38]. We accumulated around 400 to
700 images for each field from 2017 to 2022. The ten-meter-resolution Red and near-infrared
(NIR) bands were captured for all available days to calculate the NDVI. Then, peak green
was determined independently for each growing season from the cloud-free NDVI images.
The resulting peak green images served as the performance indicators and the input data
for the zoning process. Other indicators, such as the average of NDVI images, can be used
in this approach. The zoning objective is to partition the average of the performance values
(i.e., peak green) across all years into k bins, where k represents the number of zones. Using
this zoning algorithm, the peak green image is processed and results in the zonemap. All
these steps are performed automatically using algorithmic methods. The zoning method is
summarized in the following two steps:

1. Peak green selection: All cloud-free images R1, R2, . . . , Rn are compared with RIP, the
maximum pixel-wise peak green for that growing season:

RIP(x, y) = max
j=1,...,n

{
NDVI(Rj(x, y))

}
, (1)
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where the NDVI is calculated using

NDVI(x, y) =
NIR(x, y)− Red(x, y)
NIR(x, y) + Red(x, y)

. (2)

RIP represents an ideal peak green, which is not necessarily achievable by any Rj.
However, it helps us to find the peak green image Rp to be selected among Rj images,
and it is the one which is the closest to RIP. Therefore, the index p is identified by

p = arg min
i=1,...,n

∥Ri − RIP∥2, (3)

where ∥Ri − RIP∥2 is the Euclidean distance between Ri and RIP. This Rp estimates
the performance of the field.

2. Zoning: Selected peak green images are normalized, and their scaled average serves
as the input for delineating zones. We expected that the majority of points in the
field would exhibit an average performance, and as they deviated from the mean
performance value, the number of points was expected to decrease symmetrically.
This pattern aligns with the characteristics of a normal distribution. Therefore, we
established binning thresholds such that the zones’ areas conformed to a normal
distribution. The zoning result is a zonemap assigning labels, from one to k, to
each point in the field. The optimum number of zones is studied in [6,39]. Our
method is flexible enough to use any zone number (i.e., any k). Figure 3 illustrates
two zonemaps automatically created with our method for different zone numbers.
Zonemap (a) results from the zoning function when k = 7, while zonemap (b) is the
output when the zone number is decreased to k = 5.

Figure 3. Results of zoning with different zone numbers. (a) Zonemap for k = 7. (b) Zonemap for
k = 5.

4. Abnormal Zoning Data Detection Method

To ensure the precision of categorizing fields into distinct management zones, it
is beneficial to exclude abnormal data. In the following subsections, first, we describe
our approach’s principles in Section 4.1 to identify abnormal zoning data. After that, in
Section 4.2, the definition of the Zoning Dissimilarity Metric (ZDM) is explained. Finally,
the framework for identifying abnormal zoning data is discussed in Section 4.3.

4.1. An Overview of Our Approach

Our approach’s core principle is to determine abnormal data when that data can
largely disturb the zoning result. In our method, we can verify whether including a specific
year (or years) can remarkably change the zonemap. The size of the change in the zonemap
is the main factor for detecting the abnormality.

To elaborate, we initially set the number of zones, for example, k = 6. We let I =
{I1, I2, . . . , Im} represent the collection of all peak green images we intended to use for zoning.
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For instance, we could consider I1 as Rp for the first year, I2 as Rp for the second year, and so
on. Then, the zoning process was applied on I. This process outputs a zonemap, referred to
as Z = F(I), as illustrated in Figure 4, left. Modifying I by adding or removing some of the
images and applying the zoning function to the modified dataset results in Z̃ = F(Ĩ), where
Ĩ is the modified dataset (see Figure 4, right). As visualized in the figure, alterations in the
input to the zoning process cause shifts in some of the zone labels of pixels.

Figure 4. Altering input images changes the zonemap.

Zone change arises as the ranking of pixels is altered in the performance data. This
means that in scenarios where the entire dataset is uniformly and globally impacted by a
factor that does not alter the relative relationships (ranks) between values, the zonemap
remains unchanged (see Section 5.4). While techniques such as Spearman Correlation [40,41]
can be used to quantify the degree of changes in the ranked datasets, they cannot differentiate
between these kinds of global changes (no change in zoning results) versus those changes
that disturb the zones. Therefore, another metric that directly measures the zone change
is required.

4.2. Dissimilarity Measure Definition

We introduce a new metric for measuring zone changes. This metric aims to capture
the change amount in the disturbed zonemap when altering the input dataset. Considering
I = {I1, I2, . . . , Im}, the created Z0 map is chosen as the baseline zonemap. Then, by
modifying the performance dataset by adding or removing some images and feeding the
new dataset Ĩ to the zoning process, a new zonemap called Z̃ is created. Knowing that each
zonemap is a matrix of zone labels for the field’s points, and each element in the matrix can
be in the range of {1, 2, . . . , k}, the distance of two zonemaps (Z̃ − Z0) can be created as a
new matrix where each element has a value in the range of [(1 − k), (k − 1)]. We need to
aggregate this distance matrix to one dissimilarity value to enable comparison.

The extent of change is one important factor in computing the dissimilarity value
between two zonemaps (i.e., what percentage of the field has a non-zero alternation in the
zone label). For instance, in the first row of Table 1, column c depicts a scenario where
the change extent is low. Conversely, the row below represents a situation with a change
happening in a larger area. However, the extent of change is not enough to measure the
difference between two zonemaps; the amount of change per point (pixel) is also important.
As illustrated in the Ĩ1 row, column d, most pixels changed by one level (green and orange
points) and a few pixels changed by two levels (darker orange pixels at the top). However,
the changed pixels in column d of the Ĩ2 row increased or decreased by just one level.
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Table 1. Zonemap changes. (Z̃) Zonemap after altering the input dataset. (Z0) The baseline zonemap.
(c) Zone change extent. (d) Change intensity. The green pixels signify an increase in the zone label
(e.g., from zone 4 to 5), while reddish pixels indicate a decrease in the zone label (e.g., from zone 5 to
4 or, in darker orange pixels, to 3). Yellow pixels denote unchanged labels.

I Z̃ Z0 c d

Ĩ1

Ĩ2

Another consideration for defining the dissimilarity metric is its independence from
the field’s size. It is imperative that we can make comparisons between the zoning effects of
one year’s data on two different fields or subfields without the influence of their respective
areas. To achieve this, we introduce an area normalization factor in our metric definition,
ensuring a fair and unbiased evaluation. Based on these criteria, we define the Zoning
Dissimilarity Metric (ZDM) by

ZDM(Ĩ) =
∑p∈D |Z̃(p)− Z0(p)|

(k − 1) · A
, (4)

where D denotes all pixels inside of the field and A is the area of D. Notice that when
considering the disparity between two matrices comprising integer values (Z̃(p)− Z0(p)),
the negative and positive differences can cancel each other out, which causes a lower ZDM
that does not properly reflect the changes. Hence, in Equation (4), we calculate the absolute
difference. This approach allows us to quantify the amount of change. The denominator is
the maximum possible change over all pixels in the field. With this division, we ensure that
the field size normalizes the metric. It is worth noting that all out-of-field-boundary pixels
are excluded from this calculation (see Figure 5).

Figure 5. A field’s boundary: The area denoted by D shows the field. The square around the shape
of the field is the bounding box. Point p is a pixel in the field’s boundary, and p′ is a pixel out of the
boundary. All out-of-boundary pixels are excluded in the ZDM calculations, i.e., Equation (4).

ZDM values are in [0, 1], representing the degree of change in zone labels between
two zonemaps. A ZDM value of zero indicates no change in zone labels, while a value of
one signifies that all pixels’ zone labels have changed by the maximum possible amount.
For example, in Table 1, one field’s zonemap is created in two cases using its annual
performance data from 2017 to 2023. In the first row, column (c), 12% of pixels changed
by one level and around 0.2% of pixels changed by two levels. The corresponding ZDM is
0.0256 in this case. In the second scenario, the labels of 20% of pixels are all changed by one
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level, resulting in a ZDM of 0.0396. As expected, the second row shows a larger change in
that is properly zoning captured with the ZDM.

4.3. Abnormal Zoning Year Detection Framework

Based on the defined metric (ZDM), we introduce a framework for abnormal zoning
year(s) detection, which is depicted in Figure 2. The input data consist of annual perfor-
mance data. Initially, the ZDM is calculated for each year by excluding the data of that
specific year. To compute the ZDM for the year d (ZDMd) using Equation (4), we use the
notation Zd = F (Ĩ), where Ĩ = I − {Id}. Then, the year(s) with higher ZDM values is
considered abnormal based on some conditions we will discuss in the following.

We need to establish a threshold for anomaly detection in all fields. Establishing a
universal threshold for detecting abnormal zoning data can be challenging and requires
careful consideration and analysis. The ZDM values for normal years are close to each
other and are smaller than 0.02. We did not have enough data for each field. Therefore, we
calculated ZDM values for all 39 fields in different cases and accumulated approximately
750 measured data points of ZDM values. The distribution of these values was revealed
to follow a log-normal pattern, as illustrated in Figure 6a. The log-normal distribution is
characterized by its right-skewed nature [42], wherein the transformation of values through
the natural logarithm yields a normal distribution, ln(ZDM), resulting in a dataset with a
normal distribution N(µ ≃ −3.79, σ ≃ 0.59) (see Figure 6b).

Figure 6. The distribution of ZDM values. (a) The histogram of raw ZDM values shows a log-normal
distribution shape. (b) The histogram plot of transformed ZDM values using a natural logarithm.
The plot shows that the transformed data are normally distributed.

We employed the one-sigma rule for ln(ZDM) values to determine an anomaly thresh-
old. Based on the one-sigma rule, approximately 68% of data in a normal distribution fall
within one standard deviation from the mean. Because we are not interested in small ZDM
values that show small change, approximately 16% of the values in a normally distributed
dataset may exceed one standard deviation (σ) from the mean. Therefore, based on µ and σ
we set the threshold at e−3.79+0.59 or, simply, 0.040. Consequently, ZDM values larger than
this threshold can be considered abnormal.

Based on our experiments, only relying on the one-sigma rule may result in false-
positive anomaly detection, and it may not always be a reliable threshold, as highlighted
in previous research [43]. In cases where all values are closely clustered and near the
established threshold, there is a risk of misidentifying certain data as abnormal when they
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are, in fact, too close to each other. Therefore, not all cases that exceed the threshold should
be considered abnormal.

The coefficient of variation (CV) is basically σ normalized to the mean of the data.
Higher CV values signify increased data scattering around the mean, implying a higher
probability of outliers [44]. We leveraged the CV to add a condition to only investigate
anomalies among cases where the standard deviation of ZDM values in that field is large
relative to the mean.

After calculating the ZDM for all years, we obtained an array of values, {ZDM1, ZDM2,
. . . , ZDMm}, where m is the size of the input dataset. Subsequently, the statistical measures,
including the mean,

ZDM =
1
m

m

∑
i=1

ZDMi, (5)

the standard deviation,

σ =

√
1

m − 1

m

∑
i=1

(ZDMi − ZDM)2, (6)

and the coefficient of variation
CV =

σ

ZDM
× 100 (7)

of ZDM values are calculated [45]. In instances with very small CV values, the likelihood
of all years’ data being within the normal range is high. Based on the measurement in our
dataset, we selected the threshold of 42 for the CV to filter out data with a small standard
deviation relative to the mean.

In summary, abnormality is triggered for year d when the coefficient of variation
of the ZDM and the ZDMd value are higher than their thresholds (see Figure 7). This
approach allows us to obtain a more farm-adaptive and contextually relevant mechanism
for identifying abnormal zoning data.

Figure 7. Abnormality conditions based on the measured ZDM values. A list named AnomalZoneYears
is the output of the algorithm.

5. Experiments and Discussion

We first outlined our approach to identifying abnormal years in the experimental fields
that experienced drought conditions. Subsequently, we assessed the effectiveness of our
method by defining a synthetic year with disturbed performance data and demonstrated
how our approach successfully detects this synthetic abnormal data.

The Abnormal Zoning Year Detection Framework is implemented using C++ program-
ming language, and OpenGL is used for visualization purposes. The application (version
1.0) can open the field’s shapefile. Then, the satellite data are downloaded from Sentinel-2.
We used Sentinel-Hub API in this regard [10]. After that, the annual performance data are
calculated, and zones are delineated automatically based on our zoning algorithm. Finally,
the abnormal zoning data are identified. The user can exclude the abnormal zoning data
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from the dataset (with a simple click on the application), calculate the ZDM, and monitor
the changes in the new zonemap.

5.1. Experiment on Real Data

Our study areas were 39 selected fields from Canada, mainly in Alberta and
Saskatchewan, and encompassed over 9000 acres. They experience a single growing
season annually, resulting in only one peak green each year. In this study, we focused
on six fields from the larger selection to provide detailed specifications. These fields are
provided in Table 2. The table contains the fields’ ID, their boundary shape, the longitude
and latitude of two points forming the bounding box of each field, the province where the
fields are situated, and the area. The map in Figure 8 displays the spatial distribution of all
39 selected fields.

Table 2. Six of our study fields’ locations (sampled from thirty-nine total fields).

Field Shape BBox BBox Province Area
ID Bottom Left Top Right (Acres)

1 (−113.497°,
51.343°)

(−113.474°,
51.357°) Alberta 491

2 (−105.921°,
52.710°)

(−105.909°,
52.718°) Saskatchewan 155

3 (−107.905°,
51.685°)

(−107.894°,
51.692°) Saskatchewan 159

4 (−111.949°,
50.096°)

(−111.934°,
50.106°) Alberta 216

5 (−109.037°,
52.318°)

(−109.025°,
52.325°) Saskatchewan 166

6 (−108.859°,
52.143°)

(−108.847°,
52.150°) Saskatchewan 156

Figure 8. Studied fields: Each flagged point shows one field. Some fields are overlapped. Map data:
©2024 Google.

The results of the ZDM for the specified fields are presented in Table 3, and the same
results for other fields are presented in Appendix A. The table shows the field ID in the first
column and the ZDM for each field from 2017 to 2022 in subsequent columns. The mean,
standard deviation, and coefficient of variation are presented in the next columns (ZDM, σ,
and CV). The last column (AZY) indicates the Abnormal Zoning Year for each farm field.
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Table 3. ZDM measurements and abnormal zoning years.

ID 2017 2018 2019 2020 2021 2022 ZDM σ CV AZY

1 0.0095 0.0278 0.0115 0.0424 0.0534 0.018 0.0271 0.0177 65.3 2020, 2021

2 0.0181 0.0294 0.0188 0.0257 0.0503 0.0235 0.0276 0.0119 43.1 2021

3 0.0218 0.0325 0.0121 0.0142 0.0672 0.0457 0.0322 0.0212 65.7 2021, 2022

4 0.0294 0.0500 0.0125 0.0125 0.0297 0.0225 0.0261 0.0140 53.5 2018

5 0.0294 0.0336 0.0240 0.0108 0.0352 0.0407 0.0290 0.0105 36.3 —

6 0.0184 0.0306 0.0170 0.0137 0.1143 0.0152 0.0349 0.0394 112.9 2021

Our method for identifying abnormal zoning data was applied to 39 fields, revealing
that in 22 of these fields, the performance data for 2021 were identified as abnormal zoning
data that should be excluded from the zoning process. The year 2021 was characterized by
widespread drought conditions across many farm fields in Canada, as illustrated in data
from [46], shown in Figure 9, where a comparison with a non-drought year is depicted
for July. The visual representation clearly shows that many fields experienced severe and
extreme drought conditions. Consequently, a strong argument is made for excluding this
year’s data in the zoning process for many fields.

Figure 9. Canada Drought Monitoring [46]. (a) Drought conditions in July 2021, which was a drought
year. (b) Drought conditions in July 2020, which was a normal year.
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Figure 10 visually represents the ZDM values for all fields under experimentation for
two consecutive years. As depicted on the left side of the figure, during the drought year of
2021, ZDM values for 87% of the fields surpass the mean. Conversely, on the right side of
the figure, illustrating a normal year, 75% of the fields exhibit ZDM values below the mean.

Figure 10. ZDM values for the experimental fields over two years. The X-axis has each field’s ID.
The orange line is the mean of the ZDM values for all years. (Left) ZDM values for the drought year.
(Right) ZDM values for a normal year.

5.2. Discussion

Our experiment demonstrated the effectiveness of the ZDM in detecting data that
significantly alter the zoning process. For instance, in Table 3, while a substantial ZDM value
is observed for field number six in the year 2021 (0.1143), other fields exhibit comparatively
smaller ZDM values for the same year. This suggests that the year 2021 was potentially
an abnormal zoning year for field six. However, for field one, the year 2020 had a ZDM
value that is near the abnormality threshold; the likelihood of abnormality for this year
is lower. Furthermore, the CV for field number five falls below the threshold, indicating
that no abnormal years were detected in this field due to the proximity of the ZDM values.
These findings underscore the heterogeneity of field conditions and the importance of
field-specific analyses. By systematically identifying and excluding abnormal years from
the zoning process, our method enables a refined analysis of new, smaller datasets.

In our experiments, despite nearly all fields belonging to the drought map in 2021,
we found that this year was not identified as abnormal zoning in 17 fields. The scale of
the drought map is large and not accurate enough at the level of farm fields. Furthermore,
proactive farm management measures can effectively mitigate the impact of abnormal
events on a field’s performance. This aligns with the findings from Solh et al. [47], empha-
sizing the importance of precise management practices like irrigation in reducing drought
impacts. Our observations further support this notion, as certain fields facing drought
conditions managed to alleviate stress through adept farm management, thus preventing
their corresponding performance data from being flagged as abnormal in zoning. This
highlights the adaptability of our method to small-scale fields, enabling tailored, field-
specific analyses. As a result, the application of large-scale drought maps [46], which are
typically used to exclude all corresponding data in the drought region from the zoning
process, could benefit from the refinement offered by our method.

Moreover, our framework demonstrates versatility in its compatibility with various
performance functions. While studies such as [10,37] utilized performance metrics like peak
green or maximum pixel-wise NDVI to capture maximum productivity potential, these
metrics may not fully encompass vegetation dynamics throughout the growing season.
Additionally, relying solely on one satellite image exposes the analysis to vulnerability from
environmental factors such as precipitation and cloud cover during peak growth times. In
contrast, alternative metrics, such as the average NDVI throughout the growing season,
as explored in [15,48], offer a more comprehensive view and are less susceptible to the
influence of specific weather events or short-term environmental variability but may lack
sensitivity to peak performance. Notably, our framework offers the flexibility to seamlessly
substitute any of these performance functions with the peak green method.
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In one of our experimental fields, we explored the use of both average NDVI and
maximum pixel-wise NDVI as alternatives for peak green in our defined zoning function
(Section 3). We utilized NDVI images captured from June to the end of October, filtering
the data to include only values where NDVI > 0.3. This selection criteria ensured that only
meaningful vegetation data during the growing season were considered. Subsequently, the
calculated average or maximum pixel-wise NDVI values were integrated into our zoning
function. The resulting ZDM values for this field are illustrated in Figure 11.

Figure 11. Three different performance function visualizations for each year in one field. ZDM values
are calculated for each case.

The average NDVI image exhibits lower values compared to the peak green, as
depicted in Figure 11. Interestingly, for the years 2019 and 2022, the ZDM values show
greater similarity, and the years 2020 and 2021 display higher ZDM values across the
three methods. Although there exists overall consistency among the approaches, these
findings suggest that the distribution of ZDM values may vary depending on the applied
performance function. Consequently, the thresholds should be refined using a similar
method as described.

Zoning aims to capture productivity and a field’s performance, making the peak green
function particularly pertinent, especially for crops with shorter peak durations. However,
the effectiveness of this function may be compromised if cloud-free images during the
peak growth period are unavailable. This underscores the importance of carefully selecting
performance indicators based on factors such as the crop’s phenology, image temporal
resolution, and environmental conditions.

5.3. Experiment on Synthesized Data

We lacked access to the actual performance data for the fields across various years. To
validate the accuracy of our identification of abnormal zoning years, we opted to assess the
framework using synthetic data. This technique generates a synthetic abnormal year by
perturbing the zoning invariant data, I∗ (i.e., synthetic data in which the zone labels remain
unchanged by including those data). Creating the zoning invariant data is an intermediate
state because the ZDM value for the unperturbed invariant data is zero. As a result, any
impact on the ZDM score of perturbed invariant data comes purely from our synthetic
perturbation. To create zoning invariant data using I, the relative rank of pixels in the field
should be the same as averaged performance data over the years. In this way, the resulting
zonemap remains unchanged. Therefore, using the averaged performance, we can create
I∗. By deliberately perturbing I∗, we create abnormal synthetic data. Then, we can verify
our abnormal detection framework.

The inspiration for this evaluation type stems from the possibility of partial damage
occurring in the field due to severe weather conditions, such as hail damage, affecting only a
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portion of the area. To explore this concept, in the first scenario, we intentionally perturbed
1
9 of the area at the bottom-right corner of the bounding box of the zoning invariant data by
dividing the values by four (damage coefficient), creating synthetic partially damaged data.
Figure 12 presents the performance data for all years from 2017 to 2022 plus the synthetic
year for two fields. Greener colors show higher performance values, while red shows the
worst performance. The last column of this table shows the synthetic year’s data, which
illustrates a partially damaged field.

Figure 12. Peak green for all years from 2017 to 2022 plus synthetic year. ZDM values for each data
are calculated.

Our main objective was to assess whether our abnormal zoning data detection method
can effectively identify this type of damaged data to be excluded from the zoning process.
We measured ZDM values for all years, including the synthetic year. Then, using the
conditions defined in our Abnormal Zoning Year Detection Framework, the synthetic year
was identified as abnormal. For instance, in Figure 13, (a) illustrates the synthetic perturbed
performance data. (b) represents the zonemap without incorporating the synthetic data in
our zoning process, while (c) shows the zonemap after including the synthetic data. The
difference is presented in (d), which is (b) subtracted from (c) and quantified by the ZDM
value. Notably, the damaged area exhibits a significant decrease in zone label values when
synthetic data are included, prompting the increase in zone labels in other areas.

Figure 13. The effect of data from synthetic years on the zoning. (a) The synthetic data. (b) The
zonemap without including the synthetic data. (c) The zonemap after including the synthetic data.
(d) The difference between zonemaps.

5.4. Discussion

Our experiment on synthesized data served as a valuable validation tool for our
framework and demonstrated that the abnormal zoning data detection method successfully
identified this type of damaged data. For instance, in Figure 12, the damaged data, which,
in this case, correspond to the synthetic data, are identified as abnormal zoning data in
both cases using the framework.

We explored various scenarios using synthetic data, altering the perturbed area and the
severity of damage to assess the robustness of our framework. For example, we changed
the damaged portion’s location or area within the field. Additionally, we conducted
experiments with completely random pixel perturbations. To ensure reliability, we averaged
the results of 10 experiments for each random scenario.
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Figure 14 shows the results of these experiments, the affected area, and the damage
coefficient (the coefficient multiplied by NDVI values). Our framework identified the
synthetic year as an abnormal zoning year in (a) and (d). Comparing (a) and (b), only
the damage severity was decreased, showing that the ZDM decreased accordingly. (c)
demonstrates the case when individual pixels are affected, but the severity of the damaged
area is not large enough to increase the ZDM value significantly. Conversely, in scenario
(d), where the severity of damage is higher than that in (c), the ZDM value in the synthetic
year dramatically increases.

Figure 14. Various scenarios of synthetic data. (a–d) The affected area and damage coefficient are
indicated, and ZDM values for each scenario are calculated.

When the synthesized data are the same as the zoning invariant data (I∗), the resulting
ZDM will be zero. Additionally, if the new data are I∗ plus a uniform and global change
(e.g., reducing all pixel values by a constant factor), the ZDM value will also be zero. Only
alternations to I∗ that change the relative performance of pixels can potentially change the
ZDM value.

To illustrate, we synthetically halved the zoning invariant data (I∗) for each pixel (see
Figure 15a), resulting in a zero ZDM value for the synthetic data. Consequently, including
these altered data in the zoning process had no impact on the resulting zonemap, as
depicted in (b).

Figure 15. (a) A uniform change in the performance data is created synthetically. The ZDM of the
synthetic data is zero. (b) The zonemap before and after including the synthetic data in the zoning.

6. Conclusions and Future Works

The Zoning Dissimilarity Metric (ZDM) and the defined framework are potent tools for
recognizing abnormal zoning data within historical field records, especially within smaller
areas, like fields or subfields. Our various experimental results with real and synthetic
data demonstrate the effectiveness of the ZDM in detecting changes in field performance
in terms of zone changes. Moreover, the ZDM is a valuable tool to compare the partial or
global relative performance of fields over time.

By harnessing the power of the ZDM, we can effectively detect and eliminate anoma-
lous zoning data before identifying management zones. This results in improved accuracy
in zone labelling, leading to enhanced precision in resource management across field op-
erations. However, there is room to improve the evaluation of our resulting zonemaps
and investigate how the enhanced accuracy in zone labelling and resource management
facilitated by the ZDM can translate into tangible benefits for farmers.
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Furthermore, there is an opportunity to leverage the capability of the ZDM to detect
the damaged area of the field more accurately in the future. Additionally, future research
should explore alternative performance indicators and adaptive thresholding techniques
for specific crops or weather conditions, including investigating the adaptability of our
framework to cases with more than one growing season. Machine learning techniques can
be employed in the ‘’long term” after collecting data over a longer time frame in this regard.
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Appendix A

Table A1. ZDM measurements and abnormal zoning years.

ID 2017 2018 2019 2020 2021 2022 ZDM σ CV AZY

1 0.0095 0.0278 0.0115 0.0424 0.0534 0.018 0.0271 0.0177 65.3 2020, 2021

2 0.0181 0.0294 0.0188 0.0257 0.0503 0.0235 0.0276 0.0119 43.1 2021

3 0.0218 0.0325 0.0121 0.0142 0.0672 0.0457 0.0322 0.0212 65.7 2021, 2022

4 0.0294 0.0500 0.0125 0.0125 0.0297 0.0225 0.0261 0.0140 53.5 2018

5 0.0294 0.0336 0.0240 0.0108 0.0352 0.0407 0.0290 0.0105 36.3 —

6 0.0184 0.0306 0.0170 0.0137 0.1143 0.0152 0.0349 0.0394 112.9 2021

7 0.0237 0.0430 0.0235 0.0286 0.0272 0.0383 0.0307 0.0081 26.2 —

8 0.0244 0.0185 0.0121 0.0146 0.0351 0.0189 0.0206 0.0082 40.0 —

9 0.0351 0.0399 0.0140 0.0200 0.0126 0.0550 0.0294 0.0168 57.0 2022

10 0.0228 0.0323 0.0210 0.0131 0.0297 0.0217 0.0234 0.0068 29.2 —

11 0.0215 0.0093 0.0240 0.0477 0.0450 0.0259 0.0289 0.0148 51.1 2020, 2021

12 0.0785 0.0314 0.1247 0.0296 0.0245 0.0202 0.0515 0.0417 80.9 2017, 2019

13 0.0332 0.0312 0.0236 0.0096 0.0368 0.0268 0.0269 0.0097 36.0 —

14 0.0177 0.0270 0.0181 0.0127 0.0599 0.0201 0.0259 0.0173 66.7 2021

15 0.0213 0.0558 0.0160 0.0238 0.0407 0.0116 0.0282 0.0168 59.5 2018, 2021

16 0.0850 0.0199 0.0164 0.0405 0.0500 0.0403 0.0420 0.0248 58.9 2017, 2021

17 0.0164 0.0201 0.0189 0.0198 0.0453 0.0147 0.0225 0.0113 50.3 2021

18 0.0129 0.0197 0.0155 0.0220 0.0294 0.0167 0.0194 0.0059 30.3 —

19 0.0084 0.0162 0.0188 0.0190 0.0304 0.0105 0.0172 0.0078 45.3 —

20 0.0063 0.0136 0.0159 0.0213 0.0373 0.0107 0.0175 0.0109 62.4 —

21 0.0083 0.0227 0.0134 0.0150 0.0200 0.0119 0.0152 0.0053 34.9 —

22 0.0060 0.0146 0.0115 0.0120 0.0267 0.0091 0.0133 0.0072 53.8 —

23 0.0182 0.0331 0.0136 0.0109 0.0880 0.0264 0.0317 0.0288 90.7 2021

24 0.0172 0.0300 0.0129 0.0094 0.0510 0.0314 0.0253 0.0154 61.0 2021

25 0.0209 0.0221 0.0275 0.0075 0.0939 0.0398 0.0353 0.0305 86.5 2021

26 0.0237 0.0211 0.0203 0.0079 0.0562 0.0309 0.0267 0.0163 61.0 2021

27 0.0120 0.0358 0.0146 0.0096 0.0907 0.0338 0.0327 0.0305 93.4 2021

28 0.0186 0.0143 0.0318 0.0195 0.0380 0.0185 0.0235 0.0093 39.5 —

29 0.0501 0.0252 0.0198 0.0239 0.0390 0.0091 0.0279 0.0146 52.2 2017

30 0.0215 0.0148 0.0191 0.0111 0.0502 0.0105 0.0212 0.0148 70.0 2021

31 0.1000 0.0241 0.0150 0.0132 0.0413 0.0361 0.0383 0.0322 84.3 2017, 2021

32 0.0512 0.0160 0.0197 0.0158 0.0576 0.0090 0.0282 0.0207 73.2 2017, 2021

33 0.0208 0.0242 0.0209 0.0686 0.0730 0.0300 0.0396 0.0245 61.8 2020, 2021

34 0.0576 0.0306 0.0201 0.0139 0.0859 0.0201 0.0380 0.0281 73.9 2017, 2021

35 0.0469 0.0221 0.0179 0.0349 0.0445 0.0082 0.0291 0.0155 53.3 2017, 2021

36 0.0506 0.0268 0.0128 0.0235 0.0541 0.0154 0.0305 0.0177 58.0 2017, 2021

37 0.0157 0.0067 0.0173 0.0955 0.0210 0.0133 0.0283 0.0333 117.9 2020

38 0.0223 0.0183 0.0183 0.0154 0.0420 0.0340 0.0251 0.0106 42.2 2021

39 0.0342 0.0158 0.0155 0.0152 0.0345 0.0160 0.0219 0.0097 44.3 —
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