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Abstract: In order to meet the growing demand for food and achieve food security development goals,
contemporary agriculture increasingly depends on plastic coverings such as agricultural plastic films.
The remote sensing-based identification of these plastic films has gradually become a necessary tool
for agricultural production management and soil pollution prevention. Addressing the challenges
posed by the complex terrain and fragmented land parcels in karst mountainous regions, as well as
the frequent presence of cloudy and foggy weather conditions, the extraction efficacy of mulching
films is compromised. This study utilized a DJI Mavic 2 Pro UAV to capture visible light images
in an area with complex terrain features such as peaks and valleys. A plastic film sample dataset
was constructed, and the U-Net deep learning model parameters integrated into ArcGIS Pro were
continuously modified and optimized to achieve precise plastic film identification. The results are as
follows: (1) Sample quantity significantly affects recognition performance. When the sample size is
800, the accuracy of plastic film extraction notably improves, with area accuracy reaching 91%, a patch
quantity accuracy of 96.38%, and an IOU and F1-score of 85.89% and 94.20%, respectively, compared
to the precision achieved with a sample size of 300; (2) Different learning rates, batch sizes, and
iteration numbers have a certain impact on the training effectiveness of the U-Net model. The most
suitable model parameters improved the training effectiveness, with the highest training accuracy
achieved at a learning rate of 0.001, a batch size of 10, and 25 iterations; (3) Comparative experiments
with the Support Vector Machine (SVM) model validate the suitability of U-Net model parameters
and sample datasets for precise identification in rugged terrains with fragmented spatial distribution,
particularly in karst mountainous regions. This underscores the applicability of the U-Net model
in recognizing plastic film coverings in karst mountainous regions, offering valuable insights for
agricultural environmental health assessment and green planting management in farmlands.

Keywords: karst mountainous terrain; UAV; U-Net modeling; ground cover recognition

1. Introduction

China, as a populous nation, considers food security a paramount strategic resource.
Agricultural plastic films, utilized for ground cover, play a crucial role in increasing crop
yields, enhancing soil temperature, reducing water evaporation, preventing pest attacks,
and mitigating diseases caused by certain microorganisms. Consequently, they are widely
applied in agricultural production [1]. However, with the increasing utilization of plastic
films, the problem of plastic film residues has become increasingly severe. Effectively
extracting plastic films has thus become a critical research problem. The dispersed nature,
regional complexity, and diverse management of plastic film coverings make remote sensing
technologies advantageous in plastic film identification. This is particularly essential
for obtaining accurate spatiotemporal distribution information in China, aiding in farm
environmental health assessment, plastic film recycling management, and supporting the
implementation of low-carbon agriculture [2].
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Currently, traditional methods for acquiring plastic film cover information primarily
rely on labor-intensive and time-consuming manual field measurements, with challenges
in ensuring data accuracy. As remote sensing data and information extraction technologies
mature, the automated extraction of plastic film cover information has become more
convenient. In recent years, the methods for identifying plastic films have gradually
shifted from traditional manual field surveys to segmentation extraction based on remote
sensing images. The detection of agricultural plastic film coverage using satellite remote
sensing imagery has emerged as a research hotspot. Lu [3] proposed a threshold model
based on moderate-resolution MODIS-NDVI time-series data, determining the threshold
for detecting plastic film by analyzing data related to plastic film features. Xiong [4]
presented a method for agricultural plastic film monitoring based on multisource remote
sensing data, including steps such as plastic film information extraction, classification,
and area estimation. Using high-spatial-resolution satellite imagery and spectral and
texture features, they achieved the rapid detection and monitoring of plastic film cover
over large areas. Chen [5] utilized high-spatial-resolution satellite imagery to develop a
remote sensing index model for plastic greenhouses. By extensively exploring spectral
and textural features and employing logistic regression analysis, they achieved the precise
extraction of plastic film coverage in greenhouses. Picuno [6] analyzed the spatiotemporal
distribution characteristics and extraction methods of plastic film cover in the landscape
of southern Italy using remote sensing and object modeling techniques based on Landsat
TM imagery. The results indicated widespread plastic film cover in southern Italy, and the
plastic film extraction method significantly impacted landscape feature extraction.

Although satellite remote sensing has advantages such as wide coverage, abundant
information, and freedom from ground restrictions, its limitations, such as long image
acquisition cycles and susceptibility to cloudy and foggy weather in Guizhou, hinder plastic
film identification accuracy, making it challenging to meet the identification needs of small
cultivated areas and fragmented crop planting in karst mountainous regions.

With the continuous development of drone technology, utilizing drone imagery for
information extraction has become a rather popular research direction. Drones offer ad-
vantages such as high maneuverability, high spatial resolution, and timeliness, adapting
well to complex environments and exhibiting low costs. Currently, an increasing number
of scholars are utilizing drones for detection purposes [7,8]. However, most identification
methods based on drone imagery still rely on traditional satellite remote sensing interpre-
tation methods, involving the manual selection of spectral, texture, and shape features
for classification. This not only requires specialized domain knowledge but also entails
significant computational efforts. Since Krizhevsky et al. [9] used deep learning technology
to beat the world record in the ImageNet large-scale visual recognition competition, deep
learning has opened up new prospects for applications in image classification, semantic
segmentation, and other fields. Yang [10] extracted plastic film from high-resolution drone
imagery using deep semantic segmentation technology. They established a convolutional
neural network model to achieve the precise identification and classification of plastic
film-covered areas. The results indicated that plastic film extraction based on deep semantic
segmentation technology exhibited high accuracy and reliability, providing a new solution
for monitoring and managing plastic film-covered areas. Sun [11] proposed a drone aerial
monitoring method for greenhouses and plastic-covered farmland based on the SegNet
deep semantic segmentation method, combining texture and spectral features. They used a
convolutional neural network to extract plastic film and achieve the precise identification
and classification of greenhouse and plastic film-covered areas. Zheng [12], comparing
the effects of deep learning methods, U-Net methods, and Support Vector Machine (SVM)
algorithms in extracting plastic film from greenhouses, constructed the ENVINet5 deep
learning model to extract plastic film through semantic learning. Song [13] proposed using
a pooling module to extract target features with a large receptive field based on a deep
learning model and optimized the model by integrating high-level and low-level features.



Agriculture 2024, 14, 736 3 of 18

In the aforementioned studies, the basic extraction of information regarding plas-
tic film coverings in farmlands, including plastic film greenhouses, has been achieved.
However, most of these studies focus on the remote sensing monitoring of large flat areas.
Karst areas account for approximately 15% of the world’s land area [14]. China has the
largest and most widely distributed karst area [15], with the southwest bare karst region,
centered in Guizhou, being the largest and most densely distributed area globally [16]. The
rugged surface and extremely poor soil of karst terrain are unfavorable for agricultural
development [17], leading to the popular saying in the Yun-Gui Plateau region: “No three
flat miles, no three sunny days, no three taels of silver.” Crop growth in karst mountainous
regions is complex, with scattered planting distributions. Therefore, there is a need for more
flexible, efficient, rapid, and accurate methods for plastic film recognition and monitoring
in complex terrain areas.

With the continuous development of deep learning technology, its widespread ap-
plication in automatic feature extraction and image fitting in the field of computer vision
has provided new avenues for addressing target recognition issues in medium and high-
resolution remote sensing images. In 2015, Ronneberger [18] proposed the U-Net model to
tackle challenges in image segmentation. This model has shown outstanding performance
in medical image segmentation, demonstrating strong generalization capability and excel-
lent segmentation performance. As a result, it has become one of the most highly acclaimed
classic models and has been widely applied in various fields. In land use classification of
satellite remote sensing images, some scholars, such as Ulmas P. [19], utilized the U-Net
model for land cover classification of high-resolution satellite images. Additionally, the
U-Net method has been applied in building detection and road extraction in aerial images.
For instance, Irwansyah E. [20] employed an improved U-Net model for building detection
in urban aerial images, achieving an average training accuracy of 0.83. In the field of
intelligent transportation, the U-Net model has been used for the real-time detection and
tracking of vehicles and pedestrians as well as for road segmentation. Yang X. [21] utilized
the U-Net model for vehicle detection and recognition in urban road images. Furthermore,
the application of the U-Net model in agriculture is growing and includes crop growth
monitoring and pest detection. Su Z. et al. [22] proposed an end-to-end, pixel-to-pixel rice
lodging identification semantic segmentation method using an improved U-Net network
model for unmanned aerial vehicle remote sensing images which achieved an accuracy
of 97.30% and proved suitable for small sample datasets. In plastic film extraction, Zhai
Z. et al. [23] combined unmanned aerial vehicle-acquired images of cotton fields with
the U-Net model for image segmentation, achieving an average Mean Intersection over
Union (MIOU) of 87.53%. Overall, as a deep learning method, the U-Net model has demon-
strated significant potential and numerous application prospects in the fields of image
segmentation and target recognition.

In this context, this study focuses on the Fengcong Dam area in Anlong County,
Guizhou Province, China. Utilizing a DJI Mavic 2 Pro drone, a large number of visible
light images covering farmland with plastic film were obtained. A plastic film sample
dataset was constructed, and the U-Net deep learning model was trained to identify plastic
film with the aim of extracting information on plastic film cover in fragmented terrain
areas. This study aims to provide decision-making support for plastic film surveys, farm
environmental health assessments, and green planting management in farmland, and to
serve as a reference for the recognition and detection of agricultural plastic film under
complex geographical conditions.

2. Materials and Methods
2.1. Study Area

The study area as shown in Figure 1 is located in Anlong County, Guizhou Province,
which is situated in a transitional slope zone from the Yunnan–Guizhou Plateau to the hills
of Guangxi. It is positioned at 105◦20′ E and 25◦14′ N. The area within the study site covers
0.196 km2 and features significant terrain undulations, forming a well-developed karst
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landscape, characteristic of a typical Fengcong Dam area. Anlong County experiences a
subtropical monsoon humid climate with an average annual temperature of 15.3 ◦C and an
average precipitation of 1256 mm. It is designated as a key grain production functional zone
and an important agricultural product protection zone by the State Council. The cultivated
land in the area is approximately 2 km2 and is predominantly used for the cultivation
of rice and vegetables. Additionally, there is a modern agricultural demonstration base
covering approximately 1 km2, featuring crops such as strawberries, cantaloupes, water-
melons, asparagus, lotus roots, grapes, and prickly pear seedlings. Due to the influence
of topography and weather systems, the research area is prone to regional meteorological
disasters such as droughts and low-temperature frost. Plastic thin films are widely used
here in response to these conditions.
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2.2. Data Acquisition and Preprocessing

Clear or partly cloudy weather conditions were selected for data collection, taking into
account variations in the solar incidence angle, which lead to the appearance of shadow
areas in the fields. There are distinct differences in the color characteristics of plastic film
and soil between shadow areas and areas directly illuminated by sunlight. Under ideal
flight conditions, data collection was conducted during stable solar radiation intensity
and clear, cloud-free sky conditions. This helped to avoid the loss of texture features in
images due to cloud cover. Considering the often cloudy and foggy weather in the study
area and the practical applicability of the method, image collection was performed on
21 February 2020, from 12:00 to 15:00, under overcast weather conditions with a wind
speed of 2 m/s, meeting the safety conditions for drone operation. The drone used for the
aerial survey was the DJI Mavic Pro v2.0 Professional Edition, and flight mission planning
was executed using DJI GS Pro (Ground Station Pro) Professional edition with a fully
automatic waypoint flight operation.

Upon surveying the flight task area, it was observed that high-voltage transmission
lines crossed the dam area in a northeast–southwest direction. Additionally, there were
high-power wireless signal stations for mobile operators such as China Telecom, China
Mobile, and China Unicom on the mountain top, which could potentially impact the normal
flight of the drone. To ensure flight safety, a flight altitude of 450 m was set. To guarantee
image quality, a hover-and-capture method was employed with a heading overlap of 80%
and a side overlap of 70%. The exposure mode was set to automatic exposure with ISO-100,
a focal length of 10 mm, a maximum aperture of 2.97, an exposure time of 1/40 s, and a
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flight speed of 9.5 m/s. The flight area covered 2.7 km2. The images captured by the DJI
Mavic 2 Pro were RGB true-color images. Ground control points were collected using RTK
technology. The images were processed and stitched using Pix4Dmapper 4.4.12, including
calibration processing (incorporating control points and control point encryption) followed
by automated processing. This included initialization processing (setting the feature point
image ratio to full high accuracy), point cloud encryption (image ratio of 2/1), and digital
orthomosaic image (DOM) and digital surface model (DSM) generation (with a resolution
of 1 times ground resolution). Finally, quality evaluation of the images was conducted
through bundle block adjustment of details, internal camera parameters, ground control
points, etc. The images were then enhanced, color-balanced, cropped, and reconstructed to
obtain unmanned aerial vehicle (UAV) RGB remote sensing images with a spatial resolution
of 0.1 m for the study area. As shown in Figure 2, area A represents the test zone images,
while B represents the validation zone images.
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Figure 2. In the study area, section A is designated as the test area image, while section B serves
as the validation area image. Images (a,b) represent enlarged views of the mulch in the test area,
while images (c,d) depict corresponding enlarged views of the mulch in the validation area. Image
(e) shows an oblique view of the study area.

2.3. Research Methods
2.3.1. Technical Route

The workflow of the data processing, as illustrated in Figure 3, involved the following
steps: firstly, we utilized an unmanned multi-rotor aircraft as a platform carrying a visible
light sensor to collect images of land features. Subsequently, the images underwent pro-
cessing steps such as calibration, stitching, and image enhancement. Secondly, employing
ArcGIS Pro 3.0.1 in conjunction with field survey data, plastic film samples were selected
through visual interpretation and field sampling. This process involved constructing a
dataset of plastic film samples and analyzing the recognition performance concerning
different sample quantities and background colors. Following this, parameter optimization
for the U-Net model was performed, and the model’s accuracy was evaluated to select
the optimal configuration. Ultimately, the automated extraction of agricultural mulching
information was achieved based on the recognized plastic film data.
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2.3.2. The U-Net Model

The U-Net model is an improved and extended version of Fully Convolutional Net-
works (FCNs), designed as a semantic method. Its name originates from the “U” shape
formed by its structure, and it was initially widely applied in the semantic segmentation
of medical images [24,25]. As shown in Figure 4, the model consists of a contracting path
on the left and an expansive path on the right. The contracting path follows a typical
convolutional neural network structure, extracting features from input images and progres-
sively down-sampling the resolution while increasing the number of features. This process
captures features at different scales and abstraction levels, enabling the model to capture
more semantic information. The expansive path, in contrast, involves an up-sampling
process that restores the low-resolution feature maps to the original image resolution. Si-
multaneously, it extracts information from the feature maps to aid in the recovery of details
and edges, thereby guaranteeing precise localization of segmentation positions for the
target [26]. U-Net is a commonly used and relatively simple segmentation model in deep
learning. It is easy to construct, efficient, and can be trained on small datasets. It exhibits
significant advantages in image semantic segmentation, allowing for precise segmentation
of images. It is particularly suitable for image segmentation in scenarios with complex
backgrounds and fragmented targets [27,28]. In recent years, the U-Net model has found
extensive applications in the field of agriculture, demonstrating significant potential in
areas such as land feature recognition and detection.
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2.3.3. Training Environment

The software selected for image processing and analysis in this study was ArcGIS Pro.
Additionally, the Tensorflow 2.7.0 framework, along with relevant deep learning libraries
and tools, was installed to facilitate the construction and training of the U-Net model
for the extraction of plastic film areas. During the training process of the U-Net neural
network model, there are significant requirements for computational power, memory, and
GPU memory. Therefore, the experimental setup carefully considered the demands of
both software and hardware environments. High-performance hardware and professional
software tools were chosen to ensure the efficiency of model training and the accuracy of
results. The software and hardware environment used in the study is detailed in Table 1.

Table 1. Hardware and software environment.

Baseline Configuration Hardware Configuration Software Configuration Software Version

System (Microsoft Corporation,
Washington, DC, USA) Windows 10 Home Edition CUDA 10.1

CPU (Microsoft Corporation,
Washington, DC, USA) Inter® Core (TM) i5-8265U Python 3.7

Hard Disk (Seagate, Fremont, CA, USA) 500 GB Tensorflow 2.7.0
Graphics Card (NVIDIA Corporation,

Santa Clara, CA, USA) NVDIA GeForce MX250 Keras 2.7.0

2.3.4. Building the Dataset

Due to the rugged terrain of karst mountainous areas, the crop planting areas are
relatively small, resulting in a fragmented spatial distribution of plastic film. The length
and shape of the plastic film may vary due to factors such as terrain, vegetation cover,
and land use. These inconsistencies may result in various sizes and shapes of plastic
film fragments in the images, thereby increasing the complexity of extraction algorithms.
Additionally, the shape of the plastic film may vary due to factors such as crop type
and agricultural practices and may include straight, curved, and meandering shapes.
This diversity of shapes may pose challenges for extraction algorithms in identifying and
segmenting plastic film, especially for meandering or curved shapes, which may lead
to instances of omission or misidentification by the extraction algorithm. Therefore, the
area and shape of the plastic film vary due to geographical conditions and geological
processes, exhibiting diversity and complexity. Based on the background characteristics
and distribution of plastic film in the study area, we selected four representative sample
images, as shown in Table 2, including the first image (I) and the second, third, and
fourth images (II, III, IV). These sample images exhibit diverse patterns of plastic film
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distribution and backgrounds, representing the variability in the research area. In the
first image (I), plastic film is mainly concentrated in farmland and is surrounded by
buildings, roads, and other vegetation. Plastic film distribution is uniform in images II,
III, and IV, but image II has a more complex background with a higher presence of weeds.
Images III and IV serve as validation images. Using manual annotation in ArcGIS pro,
the plastic film areas were delineated to create plastic film labels. Finally, the annotated
plastic film regions were segmented into 224 × 224-pixel patches for subsequent training
and model validation. This process resulted in a dataset comprising 800 samples. To
enhance the model’s generalization capability and accuracy, we divided the dataset into
three sets of samples for training, comprising 300, 500, and 800 samples, respectively. This
approach allowed for a gradual increase in the amount of data during the training process,
thereby improving the performance and accuracy of the model. We evaluated the model’s
performance and accuracy by comparing it with manually delineated patches (equivalent
to real patches) using a validation method.

Table 2. True-color images and manually annotated maps.

Serial Number True-Color Image Manual Labeling

I
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Learning rate [29] is a critical parameter adjustment in neural network training as
it controls the step size during each iteration. It determines the extent of parameter
adjustment with each gradient update, indicating the rate at which existing information
is overwritten by new information. The choice of learning rate directly influences the
model’s convergence speed and training effectiveness. An excessively large learning rate
may lead to increased oscillation during training, preventing convergence to an optimal
state. Conversely, a too-small learning rate may slow down training speed or even result in
stagnation. Therefore, selecting an appropriate learning rate is crucial. In this study, under
fixed batch size and other parameters, learning rates of 0.05, 0.01, 0.005, and 0.001 were
employed for model training to identify the optimal learning rate.

Batch size [30] refers to the number of training samples processed in a single iteration
of U-Net model training. It determines the amount of data the model processes in each
iteration, significantly impacting training and performance. Increasing batch size generally
allows the model to better utilize training data, enhancing performance and accuracy.
When the batch size becomes too large, memory usage significantly increases. Therefore,
selecting an appropriate batch size requires balancing performance and memory usage. In
this experiment, with a fixed learning rate and other parameters, batch sizes of 8, 10, and 12
were used for model training. By comparing the performance of the model under different
batch sizes, the most suitable batch size for the current model could be determined to
achieve better training results and higher prediction accuracy.

Max epochs [31] represent the maximum number of iterations for U-Net model train-
ing. One epoch refers to one pass of the dataset through the neural network, involving both
forward and backward passes. As the number of epochs increases, the model gradually
learns more data features, improving prediction accuracy. However, more epochs do not
necessarily lead to better outcomes, as an excessive number of iterations can significantly
increase the model’s runtime and pose a risk of overfitting. In this experiment, with a fixed
learning rate and batch size, different max epochs numbers of 15, 20, 25, and 30 were used
for model training. By comparing the model’s performance under different max epochs, the
most suitable max epochs for the current model could be determined, balancing efficiency
and effectiveness.

2.3.6. Accuracy Evaluation

To quantitatively evaluate the performance of the model, we employed four accuracy
evaluation metrics: area extraction accuracy, object count accuracy [32], Intersection over
Union (IOU), and F1-score [33]. The actual area of the plastic film was obtained through
field measurements and manual delineation on visible light images captured by the un-
manned aerial vehicle (UAV). Subsequently, we calculated the area extraction accuracy
and patch count error of the model. IOU is used to evaluate the accuracy of plastic film
segmentation, calculated as the ratio of the intersection area between the predicted seg-



Agriculture 2024, 14, 736 10 of 18

mentation result and the ground truth segmentation result to the union area. A higher
IOU value indicates greater consistency between the predicted and ground truth results,
reflecting the accuracy of segmentation [34]. On the other hand, F1-score comprehensively
considers both precision and recall, providing a comprehensive assessment of the overall
performance of the model [35]. By comparing these metrics with the actual plastic film area,
we could assess the model’s performance. The calculation formulas are as follows:

S = (1−|(S1 − S0)/S0|)× 100 (1)

Q = (1 − (Q1 − Q0)/Q0)× 100 (2)

IOU =
TP

TP + FN + FP
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score =
2 × Precision × Recall

Precision + Recall
(6)

In these equations, S represents the accuracy of area extraction, where S1 is the ex-
tracted area of the plastic film, and S0 is the reference area. Q denotes the accuracy of patch
count, with Q1 being the extracted number of patches and Q0 being the actual number
of plastic film patches. TP represents correctly identified plastic film areas, FP represents
erroneously identified plastic film areas, and FN represents missed plastic film areas.

3. Result Analysis
3.1. Analysis of Optimal Parameters

This study employed ArcGIS Pro software as the experimental platform and utilized
the Keras deep learning framework to construct the experimental environment for model
training and parameter optimization. As the backbone model, we selected NesNet-34,
which has demonstrated outstanding performance and stability in image classification and
feature extraction. During the experiments, the initial learning rate was set to 0.01, batch size
was set to 10, and the maximum number of iterations was limited to 25. In the experimental
process, we attempted different learning rate settings, including 0.01, 0.05, 0.001, and 0.005.
We found that different learning rates had varying effects on the accuracy of area prediction
and patch number prediction for the sample dataset. The variation curves are illustrated
in Figure 5. Through analysis and comparison, we determined that the model achieved
optimal classification performance when the learning rate was set to 0.001. Therefore, we
uniformly set the learning rate parameter to 0.001 in subsequent experiments.

In this experiment, we investigated the impact of different batch sizes (8, 10, 12) on the
accuracy of plastic film recognition. Considering the limitations of GPU memory, dataset
capacity, and input image size in the experimental environment, the maximum batch size
supported by this study was set to 12. The evaluation metrics for plastic film recognition
accuracy with different batch sizes are presented in Figure 6. The experimental results
indicate that when the batch size is set to 10 and 12, there is minimal variation in the
evaluation metrics. Moreover, as the batch size increases, the oscillation during the training
process gradually decreases, and memory utilization also improves. Therefore, for this
experiment, a batch size of 10 was ultimately selected.

To determine the appropriate number of iterations, this experiment, under the premise
of fixed learning rate, batch size, and other parameters, trained the model with different
numbers of iterations (15, 20, 25, 30). The maximum number of iterations needs to be
adjusted based on the resources and time available for machine learning. The impact of
different numbers of iterations on accuracy is shown in the Figure 7. The segmentation
performance of the model was optimal when the number of iterations was 25.
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3.2. Analysis of Recognition Results
3.2.1. Accuracy Evaluation

According to the U-Net Model’s results for UAV remote sensing image recognition, as
shown in Table 3, the model achieved the best training results when the learning rate was
0.001, the batch size was 10, and the number of iterations was 25. Segmentation accuracy
is detailed in the table below. The results indicate that as the number of samples in the
dataset changes, the accuracy of the recognition results also varies accordingly. With a
larger number of samples, recognition performance improves. Notably, with 800 samples,
area accuracy is 91%, object count accuracy is 96.38%, and the IOU and F1-score are 85.89%
and 94.20%, respectively, representing the highest performance. Next are 500 samples,
with an area accuracy of 79.93%, a patch quantity accuracy of 89.61%, and an IOU and
F1-score of 83.18% and 90.81%, respectively. The least effective are 300 samples, with an
area accuracy of 66.9%, a patch quantity accuracy of 78.78%, and an IOU and F1-score of
89.04% and 94.20%, respectively. With the increase in sample size, area accuracy improved
by 24.1%, patch quantity accuracy by 17.6%, and IOU and F1-score by 13.76% and 8.31%,
respectively. As shown in the table, increasing the sample dataset helps improve the overall
performance and extraction accuracy of the U-Net model.

Table 3. Accuracy of image classification results.

Sample Size 300 500 800

Area Accuracy (S) 66.90 79.93 91.00
Object Count Accuracy (Q) 78.78 89.61 96.38

IOU 75.28 83.18 89.04
F1-score 85.89 90.81 94.20

3.2.2. Visual Analysis

Table 4 presents the identification results under fixed learning rate, batch size, iteration
times, and sample size conditions. Red contours represent identified plastic film patches.
Observing the identification results for different sample sizes reveals that with an increase
in sample size, the completeness of plastic film extraction improves, corresponding to
enhanced identification accuracy and improved fragmentation of patches. Influenced by
factors such as surrounding vegetation, segmentation becomes more challenging. However,
by increasing the sample size, we can effectively address this issue, bringing the number of
patches closer to the sample size, thereby enhancing patch quantity accuracy and improving
the accuracy of plastic film identification. Therefore, from the identification results, we
conclude that in dealing with complex situations, a greater number and greater diversity of
samples lead to better identification results and higher accuracy.

Table 4. Recognition results of U-Net model trained with different samples.

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4

300
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ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

identification results, we conclude that in dealing with complex situations, a greater num-
ber and greater diversity of samples lead to better identification results and higher accu-
racy. 

Table 4. Recognition results of U-Net model trained with different samples. 

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 

300 

    

500 

    

800 

    

3.3. Comparative Analysis of Methods 
To highlight the effectiveness of the U-Net model employed in plastic film recogni-

tion in this study, we conducted comparative experiments with the traditional Support 
Vector Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the 
SVM recognition results, we conducted the same accuracy evaluations. As indicated by 
the data in Table 5, compared to the SVM model, the U-Net model demonstrated improve-
ments of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 
5.87% in F1-score, respectively. Through comparative analysis, we showcased the superi-
ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

identification results, we conclude that in dealing with complex situations, a greater num-
ber and greater diversity of samples lead to better identification results and higher accu-
racy. 

Table 4. Recognition results of U-Net model trained with different samples. 

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 

300 

    

500 

    

800 

    

3.3. Comparative Analysis of Methods 
To highlight the effectiveness of the U-Net model employed in plastic film recogni-

tion in this study, we conducted comparative experiments with the traditional Support 
Vector Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the 
SVM recognition results, we conducted the same accuracy evaluations. As indicated by 
the data in Table 5, compared to the SVM model, the U-Net model demonstrated improve-
ments of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 
5.87% in F1-score, respectively. Through comparative analysis, we showcased the superi-
ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 



Agriculture 2024, 14, 736 13 of 18

Table 4. Cont.

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4

500

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

identification results, we conclude that in dealing with complex situations, a greater num-
ber and greater diversity of samples lead to better identification results and higher accu-
racy. 

Table 4. Recognition results of U-Net model trained with different samples. 

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 

300 

    

500 

    

800 

    

3.3. Comparative Analysis of Methods 
To highlight the effectiveness of the U-Net model employed in plastic film recogni-

tion in this study, we conducted comparative experiments with the traditional Support 
Vector Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the 
SVM recognition results, we conducted the same accuracy evaluations. As indicated by 
the data in Table 5, compared to the SVM model, the U-Net model demonstrated improve-
ments of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 
5.87% in F1-score, respectively. Through comparative analysis, we showcased the superi-
ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

identification results, we conclude that in dealing with complex situations, a greater num-
ber and greater diversity of samples lead to better identification results and higher accu-
racy. 

Table 4. Recognition results of U-Net model trained with different samples. 

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 

300 

    

500 

    

800 

    

3.3. Comparative Analysis of Methods 
To highlight the effectiveness of the U-Net model employed in plastic film recogni-

tion in this study, we conducted comparative experiments with the traditional Support 
Vector Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the 
SVM recognition results, we conducted the same accuracy evaluations. As indicated by 
the data in Table 5, compared to the SVM model, the U-Net model demonstrated improve-
ments of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 
5.87% in F1-score, respectively. Through comparative analysis, we showcased the superi-
ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

identification results, we conclude that in dealing with complex situations, a greater num-
ber and greater diversity of samples lead to better identification results and higher accu-
racy. 

Table 4. Recognition results of U-Net model trained with different samples. 

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 

300 

    

500 

    

800 

    

3.3. Comparative Analysis of Methods 
To highlight the effectiveness of the U-Net model employed in plastic film recogni-

tion in this study, we conducted comparative experiments with the traditional Support 
Vector Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the 
SVM recognition results, we conducted the same accuracy evaluations. As indicated by 
the data in Table 5, compared to the SVM model, the U-Net model demonstrated improve-
ments of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 
5.87% in F1-score, respectively. Through comparative analysis, we showcased the superi-
ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

identification results, we conclude that in dealing with complex situations, a greater num-
ber and greater diversity of samples lead to better identification results and higher accu-
racy. 

Table 4. Recognition results of U-Net model trained with different samples. 

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 

300 

    

500 

    

800 

    

3.3. Comparative Analysis of Methods 
To highlight the effectiveness of the U-Net model employed in plastic film recogni-

tion in this study, we conducted comparative experiments with the traditional Support 
Vector Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the 
SVM recognition results, we conducted the same accuracy evaluations. As indicated by 
the data in Table 5, compared to the SVM model, the U-Net model demonstrated improve-
ments of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 
5.87% in F1-score, respectively. Through comparative analysis, we showcased the superi-
ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 

800

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

identification results, we conclude that in dealing with complex situations, a greater num-
ber and greater diversity of samples lead to better identification results and higher accu-
racy. 

Table 4. Recognition results of U-Net model trained with different samples. 

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 

300 

    

500 

    

800 

    

3.3. Comparative Analysis of Methods 
To highlight the effectiveness of the U-Net model employed in plastic film recogni-

tion in this study, we conducted comparative experiments with the traditional Support 
Vector Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the 
SVM recognition results, we conducted the same accuracy evaluations. As indicated by 
the data in Table 5, compared to the SVM model, the U-Net model demonstrated improve-
ments of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 
5.87% in F1-score, respectively. Through comparative analysis, we showcased the superi-
ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

identification results, we conclude that in dealing with complex situations, a greater num-
ber and greater diversity of samples lead to better identification results and higher accu-
racy. 

Table 4. Recognition results of U-Net model trained with different samples. 

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 

300 

    

500 

    

800 

    

3.3. Comparative Analysis of Methods 
To highlight the effectiveness of the U-Net model employed in plastic film recogni-

tion in this study, we conducted comparative experiments with the traditional Support 
Vector Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the 
SVM recognition results, we conducted the same accuracy evaluations. As indicated by 
the data in Table 5, compared to the SVM model, the U-Net model demonstrated improve-
ments of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 
5.87% in F1-score, respectively. Through comparative analysis, we showcased the superi-
ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

identification results, we conclude that in dealing with complex situations, a greater num-
ber and greater diversity of samples lead to better identification results and higher accu-
racy. 

Table 4. Recognition results of U-Net model trained with different samples. 

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 

300 

    

500 

    

800 

    

3.3. Comparative Analysis of Methods 
To highlight the effectiveness of the U-Net model employed in plastic film recogni-

tion in this study, we conducted comparative experiments with the traditional Support 
Vector Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the 
SVM recognition results, we conducted the same accuracy evaluations. As indicated by 
the data in Table 5, compared to the SVM model, the U-Net model demonstrated improve-
ments of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 
5.87% in F1-score, respectively. Through comparative analysis, we showcased the superi-
ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 18 
 

 

identification results, we conclude that in dealing with complex situations, a greater num-
ber and greater diversity of samples lead to better identification results and higher accu-
racy. 

Table 4. Recognition results of U-Net model trained with different samples. 

Sample Size Scenario 1 Scenario 2 Scenario 3 Scenario 4 

300 

    

500 

    

800 

    

3.3. Comparative Analysis of Methods 
To highlight the effectiveness of the U-Net model employed in plastic film recogni-

tion in this study, we conducted comparative experiments with the traditional Support 
Vector Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the 
SVM recognition results, we conducted the same accuracy evaluations. As indicated by 
the data in Table 5, compared to the SVM model, the U-Net model demonstrated improve-
ments of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 
5.87% in F1-score, respectively. Through comparative analysis, we showcased the superi-
ority of the U-Net model over the SVM method in plastic film recognition accuracy, with 
the U-Net model being able to identify plastic film regions more accurately and efficiently. 
This further validates the application potential of the U-Net model in plastic film recogni-
tion and underscores its superiority in addressing complex terrain and land cover condi-
tions. 

Table 5. Precision comparison of different models. 

Models U-Net SVM 
Area Accuracy (S) 91.00 89.90 

Object Count Accuracy (Q) 96.38 75.96 
IOU 89.04 79.10 

F1-score 94.20 88.33 

3.3. Comparative Analysis of Methods

To highlight the effectiveness of the U-Net model employed in plastic film recognition
in this study, we conducted comparative experiments with the traditional Support Vector
Machine (SVM) method [36], using an analysis of 800 plastic film samples. For the SVM
recognition results, we conducted the same accuracy evaluations. As indicated by the data
in Table 5, compared to the SVM model, the U-Net model demonstrated improvements
of 1.10% in area accuracy, 20.42% in patch quantity accuracy, 9.94% in IOU, and 5.87%
in F1-score, respectively. Through comparative analysis, we showcased the superiority
of the U-Net model over the SVM method in plastic film recognition accuracy, with the
U-Net model being able to identify plastic film regions more accurately and efficiently. This
further validates the application potential of the U-Net model in plastic film recognition
and underscores its superiority in addressing complex terrain and land cover conditions.

Table 5. Precision comparison of different models.

Models U-Net SVM

Area Accuracy (S) 91.00 89.90
Object Count Accuracy (Q) 96.38 75.96

IOU 89.04 79.10
F1-score 94.20 88.33

In visual analysis, we further observed that the patches generated by the U-Net model
for plastic film recognition are more complete and coherent. As shown in Table 6, compared
to the traditional SVM method, the plastic film patches generated by the U-Net model
exhibit greater spatial consistency and morphological continuity, enabling a more accurate
reflection of the actual plastic film coverage. In comparative experiments, we found that
the SVM method tends to produce broken, fragmented, or omitted plastic film patches,
while the U-Net model better preserves the continuity and integrity of the plastic film.
These visual analysis results further validate the superiority of the U-Net model in plastic
film recognition.
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4. Discussion 
4.1. Applicability of the Method 

This study utilized unmanned aerial vehicle (UAV)-based visible light imagery to ex-
plore the application of the U-Net model in monitoring plastic film coverage in high-alti-
tude mountainous farmland and investigated its suitability for such tasks. The rapid de-
velopment of UAV technology, characterized by high mobility, low cost, and enhanced 
safety, provides a new avenue for geographical information acquisition. Traditional mon-
itoring methods face limitations due to the diverse land cover types and complex terrain 
of karst mountainous farmlands. Therefore, this research introduces multi-rotor UAVs to 
monitor plastic film coverings in high-altitude mountainous areas, investigating their ad-
vantages and effectiveness in practical applications. Our results indicate that multi-rotor 
UAVs exhibit high cost-effectiveness and safety, coupled with unique advantages in land 
cover monitoring. They can swiftly acquire high-resolution visible light images, effec-
tively monitoring features in fragmented planting areas. Moreover, visible light images 
captured by drones can also reflect plastic film coverage under different backgrounds, 
providing decision-making support for plastic film surveys, farmland health assessments, 
and modern agricultural park management. Additionally, determining the optimal sam-
ple size is a complex issue involving multiple factors, including processing time, machine 
resources, data quality, and model complexity. Through experimentation and comparison 
with different sample sizes, we found that with a sample size of 800, the accuracy of plastic 
film recognition can be effectively improved, demonstrating good performance during the 
training process. This result also provides an effective method for determining the optimal 
sample size for subsequent research. Furthermore, by using cross-validation techniques, 
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4. Discussion
4.1. Applicability of the Method

This study utilized unmanned aerial vehicle (UAV)-based visible light imagery to
explore the application of the U-Net model in monitoring plastic film coverage in high-
altitude mountainous farmland and investigated its suitability for such tasks. The rapid
development of UAV technology, characterized by high mobility, low cost, and enhanced
safety, provides a new avenue for geographical information acquisition. Traditional moni-
toring methods face limitations due to the diverse land cover types and complex terrain
of karst mountainous farmlands. Therefore, this research introduces multi-rotor UAVs
to monitor plastic film coverings in high-altitude mountainous areas, investigating their
advantages and effectiveness in practical applications. Our results indicate that multi-rotor
UAVs exhibit high cost-effectiveness and safety, coupled with unique advantages in land
cover monitoring. They can swiftly acquire high-resolution visible light images, effec-
tively monitoring features in fragmented planting areas. Moreover, visible light images
captured by drones can also reflect plastic film coverage under different backgrounds,
providing decision-making support for plastic film surveys, farmland health assessments,
and modern agricultural park management. Additionally, determining the optimal sample
size is a complex issue involving multiple factors, including processing time, machine
resources, data quality, and model complexity. Through experimentation and comparison
with different sample sizes, we found that with a sample size of 800, the accuracy of plastic
film recognition can be effectively improved, demonstrating good performance during
the training process. This result also provides an effective method for determining the
optimal sample size for subsequent research. Furthermore, by using cross-validation tech-
niques, we comprehensively evaluated the model’s performance under different sample
sizes, thereby providing reliable evidence for selecting the optimal sample size. These
methods not only enhance the training efficiency and performance of the model but also
effectively save time and resource costs, providing strong support for subsequent research
and practical applications.

4.2. Differences from Existing Research

This study, conducted in a karst mountainous region of southern China, utilized a
UAV remote sensing platform, specifically the DJI Mavic 2 Pro, to extract information about
plastic film coverings in complex habitats. This approach effectively addresses challenges
in obtaining high-quality remote sensing image data for crop information extraction in
the fragmented and environmentally fragile karst mountainous terrain with frequent
cloudy and foggy weather conditions. In contrast, previous research employing medium-
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and low-resolution satellite remote sensing images, such as Landsat TM and Landsat 8,
combined spectral and texture features to improve classification accuracy. For instance,
Lu [37] achieved overall accuracy rates of 85.27% and 95% using Landsat-5 TM images, and
Hasituya [38] achieved an overall classification accuracy of up to 94% by combining spectral
and texture features based on Landsat-8 remote sensing data. In this study, the U-Net model
was employed for the semantic segmentation of drone images, achieving a patch count of
96.38%, an area accuracy of 91%, and an IOU and F1-score of 85.89% and 94.20% respectively.
In comparison with the studies conducted by Lu and Hasituya, our research may exhibit
differences, which could stem from variations in data sources, study areas, methodologies,
algorithms, and parameter settings. However, our study, tailored to specific geographical
conditions and application needs, has devised methods and algorithms better suited for
monitoring agricultural mulching in karst mountain areas. Consequently, our research
findings remain somewhat comparable, potentially demonstrating superior applicability
and efficacy in particular application scenarios.

4.3. Limitations

In future research, it is imperative to critically reflect on and address the limitations of
the current study to further enhance the quality and reliability of our research outcomes.
Throughout our investigation, the restricted endurance of the unmanned aerial vehicle
(UAV) constrained our research to relatively small areas, thereby limiting our capacity
for extensive data collection over larger regions. In subsequent studies, employing UAVs
with higher endurance capabilities or optimizing flight path planning algorithms may
enable coverage and data collection over larger areas. Additionally, despite augmenting
sample sizes and incorporating samples with diverse backgrounds, the issue of plastic
film misidentification between roads still remains unresolved. Future endeavors will
delve deeper into understanding the impact of various scenarios on plastic film extraction
and endeavor to refine training strategies and parameter settings to bolster the model’s
recognition capabilities and accuracy in complex scenarios. Furthermore, while our study
explored the influence of sample size on plastic film extraction, samples may still be
susceptible to environmental factors such as illumination, weather, and ground reflectance.
To comprehensively assess model performance, further investigation into the effects of
these environmental factors on plastic film extraction is warranted. Efforts will be made to
incorporate these factors into model training and optimization processes to enhance the
model’s robustness and reliability across diverse environmental conditions.

Future endeavors may continue to refine and advance plastic film recognition tech-
nology based on UAV visible light imagery. The exploration of high-resolution remote
sensing data and the utilization of high-resolution orbital images for plastic film recognition
and monitoring can enhance recognition accuracy and spatial resolution. Improvements
in and optimizations of plastic film recognition algorithms and models aim to enhance
recognition efficiency. Additionally, leveraging multi-temporal remote sensing image data
for the temporal monitoring and change analysis of plastic film will facilitate a better un-
derstanding of the growth evolution patterns of plastic film and the impacts of agricultural
management practices.

5. Conclusions

Considering the varied backgrounds of plastic film environments, we employed
drones to swiftly capture high-resolution visible light images in a karst mountainous area.
Simultaneously, the experimental zone was partitioned into four distinct areas. Utilizing
the U-Net model with different parameters, such as learning rates, batch sizes, and iteration
counts, we systematically compared the impact of these model parameters. After assessing
the effects, the optimal training parameters were identified. Furthermore, we compared the
recognition outcomes with varying sample quantities. Ultimately, the U-Net model was
used for image segmentation to extract plastic film, and the area method was employed for
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plastic film area calculation. This facilitated the swift identification and area calculation of
plastic film, leading to the following key conclusions:

5.1. Deep Learning Framework and Parameter Optimization

Leveraging the U-Net model within a deep learning framework, this study extracted
plastic film areas from UAV-based visible light images. Exploring various learning rates,
batch sizes, and iteration counts, this study identified optimal model parameters to enhance
training effectiveness and improve plastic film extraction accuracy. The best recognition
accuracy was achieved with a learning rate of 0.001 (91.37%), batch size of 10 (92.14%),
and iteration count of 25 (99.84%). Therefore, for UAV image-based plastic film extrac-
tion, the optimal parameter values for learning rate, batch size, and iteration count are
0.001, 10, and 25, respectively.

5.2. Validation of U-Net Model in Karst Highland Terrain

This study employed a U-Net model based on UAV visible light imagery for plastic
film extraction and conducted comparative experiments with the traditional Support
Vector Machine (SVM) method. By increasing the sample size, we effectively improved
the training performance of the U-Net model, consequently enhancing the accuracy of
plastic film identification. With a sample size of 800, the U-Net model demonstrated
an area accuracy of 91%, a patch quantity accuracy of 96.38%, an IOU of 85.89%, and
an F1-score of 94.20%. During training, there was a 24.1% increase in area accuracy, a
17.6% increase in patch quantity accuracy, and improvements of 13.76% and 8.31% in IOU
and F1-score, respectively. These results validate the superiority of the U-Net model in
plastic film identification. A comparative analysis of experimental results revealed that
compared to the SVM method, the U-Net model exhibited higher area accuracy (increased
by 1.10%), patch quantity accuracy (increased by 20.42%), IOU (increased by 9.94%), and
F1-score (increased by 5.87%) in plastic film identification. These data further confirm
the excellent performance of the U-Net model in plastic film identification and provide
important reference for future optimization of model training and enhancement of plastic
film identification effectiveness.

5.3. UAV Remote Sensing in Small-Scale Crop Recognition

In remote sensing identification studies in fragmented and small-scale agricultural
geospatial contexts, UAV remote sensing holds vast application prospects and is poised to
become an indispensable means of aerial remote sensing. This study explores the applicabil-
ity of UAV visible light images in detecting plastic film mulch (PFM) in a karst mountainous
area, considering the region’s characteristics of cloudy and misty weather, fragmented
crop planting areas, and strong PFM heterogeneity. The proposed method features ease of
operation, automation, and high accuracy, meeting the requirements for PFM detection in
fragmented terrains, thus boasting broad application prospects. Moreover, by extracting
and identifying agricultural PFM, accurate calculations of the covered area and distribu-
tion of PFM can be obtained, providing methodological references for PFM recycling and
management. Additionally, by identifying the areas covered by PFM, the crop planting
area in the region can be inferred, thereby offering data support for agricultural production.
The selected parameters of the U-Net model and the sample dataset in this research meet
the requirements for precise PFM identification in karst mountainous areas characterized
by significant terrain undulations and fragmented spatial distribution of cultivation. This
validates the applicability of the U-Net model in PFM identification in karst mountainous
areas. Furthermore, this method can assist in monitoring land use and understanding
specific land utilization patterns and occupancy situations, thereby providing a scientific
basis for land resource management and planning and offering research methods and a
decision-making basis for agricultural environmental health assessment and green planting
management in agricultural fields.
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