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Abstract: Effective scheduling of multiple agricultural machines in emergencies can reduce crop
losses to a great extent. In this paper, cooperative scheduling based on deep reinforcement learn-
ing for multi-agricultural machines with deadlines is designed to minimize makespan. With the
asymmetric transfer paths among farmlands, the problem of agricultural machinery scheduling
under emergencies is modeled as an asymmetric multiple traveling salesman problem with time
windows (AMTSPTW). With the popular encoder-decoder structure, heterogeneous feature fusion
attention is designed in the encoder to integrate time windows and asymmetric transfer paths for
more comprehensive and better feature extraction. Meanwhile, a path segmentation mask mechanism
in the decoder is proposed to divide solutions efficiently by adding virtual depots to assign work
to each agricultural machinery. Experimental results show that our proposal outperforms existing
modified baselines for the studied problem. Especially, the measurements of computation ratio and
makespan are improved by 26.7% and 21.9% on average, respectively. The computation time of our
proposed strategy has a significant improvement over these comparisons. Meanwhile, our strategy
has a better generalization for larger problems.

Keywords: multi-agricultural machines scheduling; deep reinforcement learning; emergency
scheduling; deadline; asymmetric transfer path

1. Introduction

Agriculture is the foundation of our economy and material production, of which the
significant feature is crop production. Extreme weather (e.g., strong wind, sands, and dust
storms) often occurs in the northwest of China, which has a great and severe influence on
crops. Economic losses from meteorological disasters account for 70% of those from all
agricultural natural disasters. The scheduling of agricultural machinery in emergencies
can reduce the area affected by crop damage and then reduce economic losses. With the
advantages of extracting weather reports, governments and farmers always need to process
these emergencies as soon as possible.

Generally speaking, agricultural machinery managers provide service for farmers with
small-scale farms. Figure 1 shows an example of agricultural machinery scheduling; the
blue bars are the required time windows for different farmlands. Assume bi(i ∈ {1, . . . , 10})
and ei(i ∈ {1, . . . , 10}) represent the beginning and the ending of the time window. There
are three agricultural machines assigned to 10 farmlands. Each piece of agricultural
machinery departs from the depot, and after processing several farmlands, it is required
to return to the depot. For instance, agricultural machine 1 departs from the depot and
subsequently processes fields No. 10, No. 9, and No. 8 before returning to the depot. From
the perspective of farmers, time windows are best to satisfy while minimizing makespan
for machine managers. In general, the path among farmlands is always asymmetric with
different road conditions, such as uphill and fall pavement. Therefore, it is a valuable
study to investigate how to schedule agricultural machinery in extreme weather and other
emergencies to complete all farmlands on time.
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Figure 1. A case study in agricultural machinery scheduling.

In general, the transfer time of an agricultural machine depends on the speed and
path of the machine. With homogeneous machines, the speed of all machines is the same.
The transfer time between farmlands is asymmetric due to the complex road conditions
and traffic effects in the real scenario. Meanwhile, in emergencies, there is always a
certain time window required for each farmland. The asymmetric transfer time and the
time window make the agricultural machinery scheduling complex to solve. Generally
speaking, there are two steps in scheduling agricultural machinery. The first step involves
assigning each machine to the farmland, and the second step is to plan the sequence of farm
machines. It is a great challenge to synthesize the above two steps to obtain a solution with
excellent performance. All the above challenges make agricultural machinery scheduling
in emergencies harder to solve.

With the agricultural machinery scheduling, researchers usually model it as a com-
binatorial optimization problem (COP) [1–12]. In particular, Huang et al. [1] modeled an
agricultural machinery scheduling problem as a multi-depot vehicle routing problem with
time windows (MDVRPTW) problem and proposed a hybrid particle swarm optimization
(PSO) algorithm for solving it. Zhou et al. [2] considered the problem of scheduling opera-
tions in farmland with the irregular shape of the farmland and obstacles in the farmland;
a travelling salesman problem (TSP) and an ant colony optimization (ACO) algorithm
were used as the solutions. Jensen et al. [4] transformed the scheduling problem in fer-
tilizer application operations into a TSP-based model and proposed a coverage planning
algorithm. Pitakaso et al. [8] proposed an adaptive large neighborhood search (ALNS)
algorithm for the mechanical harvester allocation and time window routing problem to
maximize the total area served by mechanical harvesters under a shared infield resource
system. All the above agricultural machinery scheduling problems are always converted
into TSP-problems, and some of them consider time window constraints. The asymmetric
paths among farmlands in the real scenario have not been studied.

The exact algorithms, such as dynamic programming [13] and branch and bound
algorithms [14], are usually used in agricultural machinery scheduling problems. Although
approximate optimal solutions can be obtained using the exact algorithm, they take a long
time to solve and cannot be well applied to large-scale problems. Heuristic algorithms
such as genetic algorithms [15], tabu search algorithms [16], and simulated annealing algo-
rithms [17] are the most commonly used in the field of agricultural machinery scheduling.
However, it relies on experts to construct rules manually to solve the problem, and it is easy
to fall into the local optimal solution. In recent years, more and more deep-learning (DL)-
based methods have been used for COP. Among them, the neural networks to solve COP
are of emerging interest. Vinyals et al. [18], based on the classical sequence-to-sequence
(Seq2Seq) mapping model in the field of machine translation, proposed Pointer Network
(Ptr-Net) for solving COPs. The model is trained by supervised learning and achieves good
results on the TSP. Supervised learning necessitates a significant quantity of labeled data for
its training, which poses a significant challenge owing to the NP-hard complexity of COP.
Deep reinforcement learning (DRL) can be trained without labeled data, and more and
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more methods use DRL to study COPs [19–25]. In particular, Bello et al. [19] formulated the
TSP problem as a Markov decision process(MDP) for the first time and trained the pointer
network model as a strategy using the REINFORCE algorithm. Additionally, inspired
by Transformer [26], Kool et al. [21] proposed attention-based frameworks, which show
significant performance improvements. Some work also considers other settings such as
time windows, i.e., traveling salesman problem with time windows (TSPTW), which is first
mentioned in [27]. The authors propose a framework to solve the traveling salesman prob-
lem with time windows and rejection (TSPTWR) problem in [24]. Zhang et al. [25] proposed
a manager-worker framework for multiple traveling salesman problem with time windows
and rejection (MTSPTWR), which is a complex variant of TSP. In the MTSPTWR problem,
customers who fail to receive service by the specified deadline are subject to being rejected.
In agricultural machine scheduling, the general reinforcement learning methods consid-
ering Euclidean distance cannot work well because the transfer times among farmlands
are asymmetric, which makes the studied problem more complex. As we know, there are
two papers that consider the asymmetric paths [28,29] in the TSP-problem. Gao et al. [28]
converted a multi-robot task allocation into an open-path multi-depot asymmetric traveling
salesman problem (OPMATSP). A genetic algorithm is designed to minimize the total
cost of completing all tasks with asymmetric cost. Kris et al. [29] consider an asymmetric
multiple vehicle TSP with time windows. A two-phase hybrid deterministic annealing
and tabu search algorithm are proposed to minimize the number of vehicles deployed
and the total travel distance. Though the above papers consider asymmetric paths in the
TSP-problem, some of them ignore the time window constraint. While the solver with DL
in this paper is different from the existing methods for papers considering asymmetric
paths and time window. Meanwhile, the objective of CR and MS in our paper is different
from the above two papers.

In this paper, the studied problem is named asymmetric multiple traveling salesman
problem with time windows (AMTSPTW), i.e., MTSPTW with asymmetry paths. In order
to finish farmlands with time windows in emergencies, the objectives of the scheduling of
agricultural machinery (e.g., leveling machines, ploughs) are to maximize the number of
finished farmlands in the given time window and to minimize makespan. We propose a
DRL framework to provide an end-to-end solution for the studied problem. Specifically, our
DRL framework utilizes an encoder-decoder structure for the policy network. Inspired by
the excellent performance of attention mechanisms in feature extraction for solving vehicle
routing problem (VRP) problems as demonstrated in [21,30], we propose a heterogeneous
feature fusion attention mechanism that integrates time window information with asym-
metric path information to enhance the feature extraction capability of the policy network.
By incorporating virtual depots and mask mechanisms, we design a path segmentation
mask mechanism to partite solutions for each agricultural machinery more efficiently. We
summarize the main contributions of this study as follows:

• We transform the emergency agricultural machinery scheduling problem into a class
of AMTSPTW problems, taking into account the asymmetry of field transfer time and
time windows.

• We propose a DRL framework for end-to-end solving of the AMTSPTW problem.
The framework employs an encoder-decoder structure. We propose a heterogeneous
feature fusion attention mechanism in the encoder that allows the policy network to
integrate time windows and path features for decision-making.

• In the decoder, we add virtual depots to assign farmlands to each agricultural machin-
ery. We design a path segmentation mask mechanism to enable the policy to utilize
the virtual depots and mask mechanism to partition the solutions efficiently.

Section 2 describes the problem description. Section 3 introduces a DRL approach
for the studied problem. Section 4 investigates the experimental results. And Section 5
concludes the paper and shows our future work.
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2. Problem Description

Based on practical investigations and theoretical analysis, the studied problem is based
on the following assumptions:

1. The location of the agricultural machinery depot, the farmlands, and their entry and
exit points are known and fixed.

2. The number of agricultural machines is known, and they have the same parameters.
The influence of machinery lifespan on power is ignored.

3. The transfer time of agricultural machinery from one farmland to another farmland is
known, and the time windows for each farmland are also known.

4. Agricultural machinery departs from the depot. Each farmland can only be served
by one agricultural machine once, and the machine needs to return to the depot after
completing its farmlands.

5. There are no capacity restrictions for the agricultural machinery. It is assumed that
they can complete all their tasks, such as leveling machines, ploughs, and so on.

Under the aforementioned assumptions, the agricultural machinery scheduling problem
can be formulated as the AMTSPTW problem. The objectives are to meet the time windows
and minimize the makespan. Let χ = {x0, . . . , xn} represents the time windows of farmlands
with n farmlands and xi = (bi, ei)(i ∈ {0, 1 . . . , n}). Specially, x0 ∈ (0,+∞) represents the
time windows of the depot and virtual depot used in Section 3.2.1. M = {v1, . . . , vλ} is the
agricultural machines set with λ identical machines. For each farmland, if the machine
arrives earlier than the start time bi, it will wait. A n× n asymmetric matrix τ represents
the transfer time among the farmlands. ς = {ς0, . . . , ςn} denotes the processing time
required for each farmland, and ς0 = 0. Different from vehicles arriving in time of VRP, the
studied problem requires agricultural machinery to complete farmlands in time windows.
Therefore, we make the following adjustments:(

bi, e
′
i

)
= (bi, ei − ςi), i ∈ {0, 1 . . . , n} (1)

Subsequently, we calculate the cost matrix C as the transfer cost for the agricultural
machines:

Ci = τi + ςi, i ∈ {0, 1 . . . , n} (2)

where Ci and τi represent the ith row of cost matrix C and the ith row of matrix τ, re-
spectively. Let ymj be a binary variable to indicate whether the time window constraint of
farmland i is met by the agricultural machine vm(vm ∈ M). Assume xmij is a binary variable
to indicate whether agricultural machine vm is processing farmland xj from farmland xi.
ℓami is the arrival time of agricultural machinery vm to i, and wmi is the waiting time of
agricultural machinery vm at farmland i. Assume α is the weight of the sub-tour length.
The objective of AMTSPTW is defined as:

min

(
−

λ

∑
m=1

n

∑
i=1

ymi+ α×max
m

n

∑
j=1

xmj0
(
amj + wmj + Cj0

))
(3)

where Cij represents the transfer cost from farmland xi to farmland xj.
Assume P represent an extreme large positive number; the AMTSPTW satisfies the

following constraints:
λ

∑
m=1

n

∑
j=1

xm0j + xmj0 = 2λ (4)

λ

∑
m=1

∑
i ̸=k

xmik = 1, (k = 1, . . . , n) (5)
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λ

∑
m=1

∑
j ̸=k

xmkj = 1, (k = 1, . . . , n) (6)

λ

∑
m=1

∑
i ̸=j; i,j∈S

xmij ≤ |S| − 1, (2 ≤ |S| ≤ n− 1, S ⊆ {1, . . . , n}) (7)

λ

∑
m=1

N

∑
i=1

ymi ≤ n (8)

ℓami + wmi + Cij + P(1− xmij) ≤ ℓami, (i = 1, . . . n, m = 1, . . . , λ) (9)

bi ≤ ℓami + wmi, (i = 1, . . . n, m = 1, . . . , λ) (10)

ℓami + wmi ≤ e
′
i , (i = 1, . . . n, m = 1, . . . , λ) (11)

Constraint (4) assures that the agricultural machinery must go from depot to depot
again. Meanwhile, constraints (5) and (6) ensure each farmland is only visited once.
Constraint (7) represents the subtour elimination constraint, which prevents the generation
of routes that are disconnected from the depot. Constraint (8) guarantees that the number of
finished farmlands in the time window cannot exceed n. Constraints (9)–(11) specify that the
agricultural machinery must adhere to the corresponding time window for each farmland.

3. Materials and Methods
3.1. Formulation of MDP

The AMTSPTW can be seen as the process of constructing paths of machines, which is
essentially conceptualized as a sequential decision-making process. Such problems can be
naturally formulated and solved by reinforcement learning. Then we formulate the process
of constructing the paths as an MDP, and Figure 2 illustrates an illustration example with
an MDP. Assume ai denotes the action at step i. The basic components of MDP are defined
in the following manner:

0

Depot

0

1

0

2 Masked task0

1

0
2 0

1

0

2
Virtual depot

Figure 2. An illustration of MDP with 2 agricultural machines and 2 farmlands.

State. We set st to denote the state at time step t, which denotes the partial solution
created at time step t. In other words, the solution is constructed iteratively by st. Assuming
T represents the total time steps, sT is our final solution. As shown in Figure 2, there are
two farmlands and two agricultural machines. Virtual depot 0 and depot 0 both denote the
same depot. The initial state s0 = 0 denotes the current machinery that would depart from
the depot. With the action a0 = 1, we can obtain s1 = {0, 1}. And s2 = {0, 1, 0} is obtained
by a1 = 0, which represents the solution of the current machinery is finished. Since the
studied problem includes many machines, s0, s1, and s2 here are just partial solutions. The
reason for adding virtual depot 0 is to partite solutions efficiently in the decision-making
process, which is elaborately described in Section 3.2.2. The number of virtual depots
depends on the number of agricultural machines.
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Action. At time step t, the policy selects i from the set {0, 1, . . . , n} as the current action.
Transition. The transition between states depends on the current state and the chosen

action. The transition matrix is the possibility of moving from the current state to the next
state. If the chosen action is 0, the number of 0 needs to reduce 1. In other words, one
machine has obtained its solution and returned to the depot.

Reward. The reward function consists of two parts shown in Equation (12). The first
part is the reward obtained from each farmland finished in time windows. The negative
reward from farmlands violating the deadline is the second part. In Equation (12), assume
αr is the weight and lm denotes the round-trip time of agricultural machinery vm from
depot to depot again. The reward R is calculated as follows:

R =
T

∑
t=0

rt − αr ×max
m

lm. (12)

where

rt =

{
1 if farmland satisfies deadline
−1 otherwise

. (13)

Policy. Given a problem instance I, our attention-based encoder-decoder model
defines a random policy pθ to select a feasible solution. pθ outputs at as the current action
to satisfy the constraint at each time step until a feasible solution is constructed. Assume
the partial solution generated at step i is denoted by πi, the policy pθ is obtained as follows:

pθ(π | I) =
T−1

∏
0

pθ(πt | I, π0:t−1). (14)

The action selection at each time step will be based on the learned pθ . Two strategies Greedy
and Sampling are used for action selection in this paper, which are shown in Section 4.3.

3.2. Policy Network

In order to obtain a better policy, the similar structure with [21,30] generating
by Transformer [26] is used in this paper, which is shown in Figure 3. The encoder
generates embeddings for all input farmlands. xi ∈ χ is linearly mapped to obtain
the embedding, and the C is obtained by Equation (2). Subsequently, the embedding
of the obtained C matrix and xi ∈ χ is fed into the encoder. The encoder consists of
multiple blocks; each block has an attention layer, addition and normalization layer,
feed-forward layer, and addition and normalization layer. hN

i and hN are the values of
each farmland and the mean values of all farmlands after N encoders. Since the study
problem considers not only the time window but also transfer costs among farmlands,
these heterogeneous features make the existing feature fusion [21,26,30] not work well.
Therefore, we designed a heterogeneous feature fusion attention mechanism. After going
through multiple encoder blocks, the feature vectors, including time windows and the
transfer cost of each farmland, are obtained. Since the obtained solution consists of paths
of many agriculture machinery, dividing the solution efficiently for each machinery is
difficult in the decoder. As aforementioned, the virtual depot added to solutions can
make the partition solution just by removing the representing 0, which leads to great
efficiency. Because the mask mechanism can effectively avoid invalid action selections,
we designed the path segmentation mask mechanism based on the solutions with a
virtual depot in the decoder for solution partition in the decoder.
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Figure 3. The framework of policy network.

3.2.1. Encoder

Existing heterogeneous feature fusion based on attention is always used in image
processing, which segments images into grids and calculates the weights of a grid and its
neighborhoods for feature fusion. Since the study problem considers not only the time
window but also the transfer cost among farmlands, these heterogeneous features make
the existing feature fusion not work well. Furthermore, with the asymmetric paths in our
paper, the transfer cost of each farmland from the cost matrix needs to be exactly selected
for feature fusion, which is ignored in existing feature fusion. In this paper, we design a
heterogeneous feature fusion attention mechanism in the encoder to fuse the asymmetric
paths and the transfer cost efficiently. In Figure 4, the input farmland time windows xi ∈ χ
and the cost matrix C are linearly mapped into initial embeddings with a dimension of
128. Specifically, the cost matrix C needs to be split into rows, where each row corresponds
to a respective farmland embedding of transfer cost. Meanwhile, the C

′
0 corresponds to

the depot embedding of x0. Then, the embeddings go through the N encoder block, each
consisting of a designed multi-head attention sub-layer and a feed-forward sub-layer.

Designed HFFMHA

FF

Farmland input

Cost input

Row embedding

Farmland embedding

Attention query

Message from row embedding

Skip connection

Original message

Message from Farmland embedding

Designed HFFMHA

FF

Farmland input

Cost input

Row embedding

Farmland embedding

Attention query

Message from row embedding

Skip connection

Original message

Message from Farmland embedding

Figure 4. An elaborated structure of the Heterogeneous Feature Fusion Multi-Head Attention
(HFFMHA).

Since the proposed heterogeneous feature fusion is improved by the existing attention
mechanism, we introduce the attention mechanism first with the time window xi ∈ χ,
for example. All xi ∈ χ need to initial embed to sequence hl−1

i , i ∈ {0, 1, . . . , n}, which
represents the farmland embedding xi of attention layer l − 1. Assume the multi-head
attention consists of D = 8 heads. For the layer embedding hl−1

i , the following equation is
used for mapping:

Qi = WQ × hl−1
i , Kn

i = WK × hl−1
i , Vn

i = WV × hl−1
i (15)

where WQ, WK ∈ Rdh×dk and WV ∈ Rdh×dv are trainable parameter matrices and the
dimensions of dk and dv are dh

D . Qi, Kn
i , and Vn

i respectively represent Query, Key, and
Value. Then the softmax function is processed to calculate the weights aij between farmland
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i and farmland j, where a larger value indicates a higher correlation. It is calculated
as follows:

aij = so f tmax(
Qi × Kj√

dk
), i, j ∈ {0, 1 . . . , n} (16)

As shown in the above attention, it just considers one feature, for example, the time
window in this paper. It is difficult to incorporate information about the transfer cost of
agricultural machinery as it travels from i to j. Furthermore, the transfer cost contains all
farmlands, which needs to be split for each farmland for the next calculation. To address
the above problem, we propose the heterogeneous feature fusion attention mechanism,
which is shown in Figure 4. The FF layer in Figure 4 means the feed-forward layer. Since
hl−1

i is the embedding time window for each farmland, we first calculate the embedding of
the transfer cost of each farmland. As shown in Equation (17), we compute the key and
value of the transfer cost matrix C, which are denoted as Ke and Ve.

Ke = WKe × C, Ve = WVe × C (17)

where WKe ∈ Rdh×dk and WVe ∈ Rdh×dv are trainable parameter matrices. After obtaining
the key and value of the matrix C, we need to split the embedding of the matrix according
to the row for each farmland’s embedding. Assume eij and a

′
ieij

denote the jth element in

each row Ci of C and the weight of eij, respectively. The calculation of a
′
ieij

is processed
as follows:

a
′
ieij

= so f tmax(
Qi × Ke

eij√
dk

), i, j ∈ {0, 1, . . . , n} (18)

After the obtained weights aij and a
′
ieij

, both the time window xi and the transfer cost
Ci are fused to calculate embedding by Equation (19).

hd
i = aijVn

j + a
′
ieij

Ve
j , d ∈ {1, . . . , D} (19)

With the hd
i , all features of time window and transfer cost are considered to have a

better feature representation. The above process is the computation process of a single head
in the attention mechanism, and the concatenating from D heads as follows:

MultiHead(Qi, Ky
j , Vy

j ) = Concat(h1
i , . . . , hD

i ), y ∈ {e, n} (20)

Finally, each layer works as follows,

ĥi = BNl(hl−1
i + MultiHeadl

i(Qi, Ky
j , Vy

j )) (21)

hl
i = BNl(ĥi + FFl(ĥi)) (22)

where BNl and FFl is batch normalization and feed forward at layer l. After passing
through N layers, the graph embeddings hN are calculated as the mean of the farmland
embedding at the last layer, i.e., hN = 1

n+1 ×∑n
i=0 hN

i . Meanwhile h̄N = 1
n+1 ×∑n

i=0 hN
i +

Vv, where Vv is the embedding of the number of agricultural machines.

3.2.2. Decoder

In MTSP and its variants, the solution to the problem always adds extra nodes [31]
to simplify the solution partition for different travelers. While in our policy network, the
method of adding additional nodes can greatly increase the complexity of the solution
partition, which makes the problem size grow. In this paper, we invite the virtual depot
to provide solutions for a more efficient solution partition. In other words, except for the
first 0 in a solution, when another virtual depot 0 emerges, the path of one machine is
obtained. Since the solution obtained from the policy network consists of the paths of many
agriculture machinery, the actions used in the constructed paths of some machinery need to
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be removed from the solution, which can efficiently calculate the path of the next machine.
Because the mask mechanism can effectively avoid invalid action selections, we designed
the path segmentation mask mechanism based on the solutions with a virtual depot in the
decoder for solution partition. The decoder takes h̄N and hN

i from the encoder as input,
and each time step it will generate a probability vector. A context hc is always required at
the beginning of each time step, which is shown below:

Vr = Wr × v (23)

hc = Concat(h̄N , hN
πt−1

, Vr) (24)

where Vr and v are the embeddings of the number of remaining agricultural machines and
the number of virtual depots in the unmasked part of the solution, respectively. Similar to
glimpse [30], we use the following equation to compute the context hN

t :

hN
t = MultiHead(Wqhc, WkhN

i , WvhN
i ) (25)

In this equation, Wq, Wk ∈ Rdh×dk , Wv ∈ Rdh×dv are trainable parameters.
In order to partite the solution efficiently, we invite the virtual depot to represent

a path for the agricultural machine. In other words, except for the first 0 in a solution,
when another virtual depot 0 emerges, the path of one machine is obtained. Assume

qT = Wq
′
× hN

t and k j = Wk
′
× hN

j , where the Wq
′
, Wk

′
∈ Rdh×dk are trainable parameters.

We need to calculate the compatibility of ht
j between qT and k j. If the current farmland j

is not the virtual depot and it has not been selected, ht
j is calculated by

qTkj√
dk

. Especially

when j = 0, the number of currently available virtual depots v must be larger than 0, and

ht
j can be calculated by

qTkj√
dk

too. Because the actions used in the constructed paths of some

machinery need to be removed from the solution, the mask mechanism is adopted with
ht

j = −∞ to avoid this invalid information. In other words, some virtual depots need to
be masked for the path of the next machine. As aforementioned, the compatibility ht

j is
calculated as follows:

ht
j =


qTkj√

dk
if j ̸= 0 and j ̸= πt′ , ∀t

′
< t or j = 0, ∀t

′
< t

−∞ otherwise
(26)

In order to smooth the probability distribution of output, we clip the result into [−G, G]
for a better exploration, which is similar to [19]. G is set to 10.

ĥt
j = G× tanh(ht

j) (27)

As aforementioned, the path segmentation mask mechanism can divide the solution by the
number of 0 that have been selected, and the mask mechanism implies the assignments
between farmlands and agricultural machines.

Finally, we use the softmax function to output the probability vector.

p(πt | I, π0:t−1) = so f tmax(ĥt) (28)

3.3. Training Method

Since sparse rewards always exist in agricultural machinery scheduling, the REIN-
FORCE [32] algorithm is used to update parameters, which minimizes losses through
Monte Carlo sampling. Meanwhile, for the significant variance in policy gradients often
generated by Monte Carlo sampling, we subtract the mean of batch reward R̄B from an
episode reward Rϱ to reduce the variance during the calculation of policy gradient, which
is similar to [33]. The loss function is initialized as Epθ(π|Iϱ)[Rϱ(π)− R̄B], which represents
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the expected reward for a given instance Iϱ with the parameter pθ . Assume B is the batch
size. We compute the policy gradient using the following equation:

∇L← 1
B

B

∑
ϱ=1

(Rϱ − R̄B)▽θ log pθ(π
ϱ | Iϱ) (29)

4. Results
4.1. Experimental Environment

Following the settings of the existing DRL’s work to solve VRP problems [21,25,34,35],
we randomly generate instances of problems with varying sizes of tasks, denoted by n.
Specifically, we consider n = {21, 51, 101} to train and test our method. We use uniform
distribution to sample the working time of each farmland from U[0, 10] with the unit hour.
For the transfer times between farmlands, we also use uniform distribution to sample
from U[0, 1] with the unit hour for the agriculture scenario. The cost matrix is constructed
using the above two data points. For the generation of the time window, the start time
is considered as bi ∼ U

[
0, 11×n

5

]
, and the end time is ei = bi + 6, with U[·] denoting the

uniform distribution. The working time of the special depot is set to 0, and the time window
is set to [0,+∞]. In particular, the number of agricultural machines is set at 5. The problem
sizes range from 21 farmlands to 101 farmlands to indicate both small and large-scale
problems in reality. It is noteworthy that AMTSPTW is an NP-hard problem, and as the
scale of the problem increases, the computational complexity rises exponentially.

During the training phase, all instances are generated on the fly. We primarily referred
to [21] for the selection of hyperparameters. For instances of problem sizes 21 and 51,
we train 100 epochs, and for instances of problem size 101, we also train 100 epochs. In
each epoch, there are 1000 batches, each containing 256 instances. For each instance, the
farmland and matrix information is linearly projected onto a 128-dimensional vector and
processed through 3 attention layers of the encoder before entering the decoder. At the same
time, we use the Adam optimizer to train the policy network. The learning rate is fixed at
10−4. During training, the test instances of our method are fixed, where each problem size
generates 100 instances, using the same distribution as for training. The hardware we use
is a single GPU RTX A5000 (24 GB), an Intel(R) Xeon(R) Platinum 8358P CPU with 30 GB
memory. The evaluation metrics include CR (computation ratio), MS (makespan), and
CT (computation time), in which CR is calculated as the ratio of the number of farmlands
finished by the deadline to the number of whole farmlands.

4.2. Parameter Analysis

Before making comparisons with the baseline, our DRL method’s training curves are
detailed for every size of the problem. We analyze the effect of parameter α in the objective
function on the training process. We test the model at the end of each epoch and record the
results in Figures 5 and 6. The test set is fixed to a batch.

In Figure 6, although α = 1 achieves the minimum in makespan at problem size 21,
the completion rate fluctuates more at α = 1. As the problem size increases, α = 0.1 and
α = 1 have almost the same makespan. In Figure 5, α = 0.1 has a slightly higher completion
rate than α = 1. α = 0.01 is less effective than either of the above cases. This is because
when α = 0.01, makespan takes less weight, resulting in the policy network paying more
attention to the completion rate of the time window. When α = 1, the policy network paid
too much attention to makespan. Therefore, through comprehensive consideration, we
fixed α = 0.1 in the subsequent experiments.
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Figure 5. CR of the proposed strategy with various α for different problem sizes.
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Figure 6. MS of the proposed strategy with various α for different problem sizes.

4.3. Strategy Analysis

For the proposed DRL model, two strategies were employed during the testing phase.

1. Greedy strategy, we consistently select the farmland with the greatest probability for
each decoding action.

2. Sampling, sampling through the probability distribution generated by the decoder,
generates ℜ solutions for each instance and selects the best solution, where ℜ is set to
128 and 1280, called DRL-128 and DRL-1280, respectively.

We test the performance of different strategies by randomly sampling 100 instances
and solving them with different strategies. The average performance after solving for these
100 instances is recorded in Figures 7 and 8.
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Figure 7. MS for various strategies with different problem sizes.
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Figure 8. CR and CT for various strategies with different problem sizes.
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As shown in Figure 7, we record the effects on makespan under different strategies.
In Figure 7, the sampling strategy’s performance is better than the greedy strategy’s
performance, and the more sampling times, the better its performance. Similarly, in
Figure 8, the completion rate increases with the number of sampling times. However,
the computation time also increases with the number of sampling times, especially when
the problem size increases. This is because there will be some errors when using neural
networks to fit data, which is difficult to avoid. Therefore, the optimal solution obtained
by using the Greedy strategy is not necessarily the optimal solution. The policy network
generates a policy distribution at each time step, and the more times of sampling strategies,
the more candidate solutions can be obtained, so that the optimal solution can be selected.
The increasing number of sample times also leads to an increase in computation time.
Therefore, the solution of DRL-1280 is the best among all strategies, but it also consumes
the most computation time. The greedy strategy is noteworthy for its ability to quickly
obtain high-quality solutions, making it particularly suitable for scenarios with strict time
constraints, such as agricultural machinery scheduling.

4.4. Comparision Analysis

We embrace three highly competitive and widely recognized conventional meta-
heuristic algorithms, notably the genetic algorithm (GA) [15], tabu search (TS) [36] and
simulated annealing (SA) [17] as baselines. We adapt the AM [21] method to the asym-
metric MTSPTW, a well-established state-of-the-art approach within DRL for addressing
TSP problems. We sampled 100 instances for testing. During the testing process, we use
DRL-1280 and baselines to calculate each of the 100 instances 5 times and take the average
to evaluate the average performance of the algorithm.

In Table 1, we record the performance of the DRL methods and all baselines for all
problem sizes. The evaluation is based on the completion rate, the makespan, and the
computation time. Through the analysis of Figures 7 and 8, it can be concluded that the
quality of the solution can be effectively improved by increasing the sampling times. So
the strategy we used in the baseline comparison is DRL-1280. For AM, we also sample
1280 times and then get the optimal solution, which is called AM-1280. In all baselines,
AM-1280 achieves the makespan with optimal performance on the test with problem size
21, but AM-1280’s performance decreases very quickly as the problem size increases. This
is because the AM-1280 cannot effectively fuse the two heterogeneous features when the
problem size increases, resulting in a sharp performance degradation. GA performs well
on problems with a problem size of 21, but as the problem size grows, the performance
starts to degrade drastically. This is because, with the increase in the problem size, the
search space of the solution also increases greatly, resulting in a decline in performance.
SA outperforms GA, but again, a dramatic drop in performance is found. Performance
degrades for the same reasons as GA, but SA is more efficient for searching solution spaces.
TS is optimal in all baselines on the rest of the tests due to its large search space and very
adequate search of the space, which also leads to a long computation time. Compared to
AM-1280, our method has a slightly worse length metric on the problem size of 21 but still
has a very competitive performance. As the problem size grows, AM-1280’s performance
decreases drastically, while our method can be well adapted to larger problems.

Table 1. CR, MS and CT of compared strategies with different problem sizes.

Method Measurement Size = 21 Size = 51 Size = 101

GA
CR (%) 95.47% 36.99% 22.04%
MS (h) 52.39 155.13 306.87
CT (s) ≥2000 ≥2000 ≥2000

SA
CR (%) 94.84% 72.34% 44.40%
MS (h) 53.51 134.21 287.05
CT (s) 602.71 1163.58 ≥2000
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Table 1. Cont.

Method Measurement Size = 21 Size = 51 Size = 101

TS
CR (%) 99.98% 99.70% 97.13%
MS (h) 50.812 116.57 226.53
CT (s) 156.29 722.24 ≥2000

AM-1280
CR (%) 100.00% 65.68% 50.03%
MS (h) 47.48 130.21 258.06
CT (s) 90.59 204.85 461.14

DRL-1280
CR (%) 100.00% 100% 99.50%
MS (m) 47.77 115.14 225.97
CT (s) 97.28 221.25 534.48

Bold indicates the best value in all methods.

4.5. Generalization Analysis

We demonstrate the generalization of our approach by applying the learned strategy
to larger problems. We increased the problem size to 31, 71, and 121, respectively, and
experimented with the corresponding problems using the learned strategy. We also set the
same settings for AM-1280. We evaluate the average performance of each algorithm by
calculating 5 times for each of the 100 instances and taking the mean value.

With the increase in problem size, the performances of all comparisons decreased in
Table 2. While our proposal has the fewest differences among all problem sizes. Compared
to the AM-1280, our method outperforms the AM-1280 for all problem sizes, proving that
our method generalizes better than AM-1280. This is because as the problem scale increases,
the processing requirements for χ and C heterogeneous features become higher, while
the AM-1280 is insufficient for heterogeneous features, resulting in rapid performance
degradation. Compared to the meta-heuristic baselines, DRL-1280 outperforms TS on
makespan metrics at 31 problem sizes, achieves competitive results at 71 problem sizes, and
outperforms TS on time-window completion rate metrics at 121 problem sizes. Therefore,
we can conclude that our method has good generalization. Meanwhile our proposal is
focused on algorithm improvement in a special scenario, so it can solve any other problems
with the same features (e.g., time window, transfer cost, and asymmetric paths) as the
studied problem, which just needs to retrain the policy network without any changes.

Table 2. CR, MS and CT of compared strategies with larger problem sizes for generalization.

Method Measurement Size = 31 Size = 71 Size = 121

GA
CR(%) 72.81% 28.96% 18.75%
MS (h) 83.29 215.08 370.35
CT (s) ≥2000 ≥2000 ≥2000

SA
CR (%) 88.40% 58.73% 37.97%
MS (h) 78.86 195.26 351.95
CT (s) 790.00 1538.21 ≥2000

TS
CR (%) 99.98% 98.79% 95.88%
MS (h) 72.89 161.11 270.93
CT (s) 332.67 1166.87 ≥2000

AM-1280
CR (%) 99.23% 49.58% 42.34%
MS (h) 72.40 192.09 318.69
CT (s) 130.87 272.84 614.41

DRL-1280
CR (%) 99.94% 98.36% 97.54%
MS (h) 71.27 161.02 271.14
CT (s) 140.10 333.36 718.21

Bold indicates the best value in all methods.
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5. Conclusions

In this study, the agricultural machinery scheduling problem with asymmetric paths
among farmlands and the given time windows of farmlands is named the AMTSPTW
problem, which is more suitable for the real scenario. We formulated the studied problem
to AMTSPTW and introduced a deep reinforcement learning framework to solve the above
problem. A heterogeneous feature fusion attention mechanism considers the transfer cost,
and the asymmetric paths are designed in the encoder of policy networks. Meanwhile,
we design a path segmentation mask mechanism based on a virtual depot and a mash
mechanism to allocate the farmlands for dividing the solutions of each agricultural ma-
chinery efficiently. Experimental results show that our proposal outperforms existing
modified baselines for the studied problem. Especially, the measurements of computa-
tion ratio and makespan are improved by 26.7% and 21.9% at average, respectively. The
computation time of our proposed strategy has a significant improvement over these com-
parisons. Meanwhile, our strategy has a better generalization for larger problems. In the
future, we will extend our framework to real-world data sets and other more complex and
realistic scenarios.
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