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Abstract: In response to the anticipated scarcity of terrestrial land resources in the coming years,
the acquisition of marine mineral resources is imperative. This paper mainly summarizes the
development of underwater collection and transportation equipment of polymetallic nodules in
deep-sea mining. Firstly, the collection equipment is reviewed. The deep-sea mining vehicle (DSMV),
as the key equipment of the collection equipment, mainly includes the collecting device and the
walking device. The micro and macro properties of sediments have a great influence on the collection
efficiency of mining vehicles. For the collecting device, the optimization of the jet head structure and
the solid–liquid two-phase flow transport of the hose are discussed. The structure of the walking
device restricts mining efficiency. The optimization of the geometric structure is studied, and the
geometric passability and lightweight design of the walking device are discussed. Secondly, the core
of transportation equipment is the lifting device composed of a riser and lifting pump. In order to
explore the key factors affecting mineral transport, the lifting device is summarized, and the design
optimization of the lifting pump and the factors affecting the stability of the riser are discussed.
Then, the relationship between each device is discussed, and the overall coupling of the device is
summarized. Finally, the existing problems and future research focus are summarized.

Keywords: polymetallic nodule mining; collection equipment; transportation equipment; equipment
interconnections; key devices

1. Introduction

With the rapid development of industrialization, the demand for rare minerals in
high-tech industries has increased sharply, and terrestrial mineral resources have been
unable to meet the growing demand [1,2]. Countries began to focus on the vast majority of
the earth’s oceans. The ocean’s depths hold abundant reserves of precious metal minerals,
including polymetallic nodules, cobalt rich crust, and polymetallic sulfides. It has been
estimated that the global quantity of metallic nodules present in our oceans amounts to
approximately 500 billion tons. The deep ocean’s abundant reserves of valuable metals have
captured the attention of numerous nations. The extraction of resources from the depths of
the sea has emerged as a crucial strategic objective for leading global economies [3,4].

Polymetallic nodules, cobalt rich crust, and polymetallic sulphides are the typical
marine mineral resources at present. Polymetallic nodules are potato-shaped and widely
distributed in 4000–6000 m of deep-sea basin sediment surfaces [5]. Cobalt-rich crust is
attached to seamount mountains, ridge tops, and survey surfaces, or exposed bedrock
surfaces at 800–2500 m [6]. Polymetallic sulfides are distributed near hydrothermal vents.
Figure 1 shows the distribution of the three major minerals.
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Polymetallic nodules have the greatest mining potential. Polymetallic nodules are 
rich in a variety of metals that are scarce on land and are rich in commercial value. They 
are considered the most critical alternative resources for land minerals and have become 
an increasingly strategic objective of major economies [8]. However, the operating envi-
ronment inside the deep-sea is extremely harsh and complex, and still, only a few com-
mercial organizations and countries are able to make use of deep-sea minerals. There are 
many operational problems in the deep-sea environment, such as the interaction of vari-
ous mining devices [9], soft deep-sea geological environment, low temperature, and high 
pressure [10]. 

This paper summarizes the latest development of underwater polymetallic nodule 
collection and transportation equipment, and the problems encountered in the process of 
its optimization are discussed, reviews existing research on deep-sea mining systems, and 
presents problems and future directions for the equipment. The research focuses on col-
lecting, walking, and lifting devices, and the interaction between each device is introduced 
in this paper. The research framework is shown in Figure 2. 
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tion equipment. 

Figure 1. Distribution of the three major minerals in the global ocean [7].

Polymetallic nodules have the greatest mining potential. Polymetallic nodules are rich
in a variety of metals that are scarce on land and are rich in commercial value. They are
considered the most critical alternative resources for land minerals and have become an
increasingly strategic objective of major economies [8]. However, the operating environ-
ment inside the deep-sea is extremely harsh and complex, and still, only a few commercial
organizations and countries are able to make use of deep-sea minerals. There are many op-
erational problems in the deep-sea environment, such as the interaction of various mining
devices [9], soft deep-sea geological environment, low temperature, and high pressure [10].

This paper summarizes the latest development of underwater polymetallic nodule
collection and transportation equipment, and the problems encountered in the process
of its optimization are discussed, reviews existing research on deep-sea mining systems,
and presents problems and future directions for the equipment. The research focuses
on collecting, walking, and lifting devices, and the interaction between each device is
introduced in this paper. The research framework is shown in Figure 2.
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Figure 2. Research frame diagram of underwater polymetallic nodule collection and
transportation equipment.

2. Current Development of Deep-Sea Mining Systems

Four major mining systems have been proposed for the exploitation of deep-sea
polymetallic nodules (DSPN) over the past few decades: submarine drag bucket mining
system [2], continuous line bucket mining system [11], shuttle vessel mining system [12],
and pipeline-lift mining system [13] (Figure 3). The pipeline-lift mining system is consid-
ered to be the most efficient system after offshore tests, cost control, and mining difficulty
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are proven [14]. The system includes three main parts: the surface support vessel, the
hoisting system, and the DSMV. Among them, the DSMV traveling on tender deep-sea
sediments relies on the walking device to maintain its passing performance and collects the
polymetallic nodules on the seabed through the collecting system. The nodule minerals
gathered by the DSMV are delivered to the relay station for crushing treatment through the
connecting hose, and the riser and lifting pump in the riser lifting devices transport the col-
lected polymetallic nodules to the mining vessel [15]. The mining vessel classifies and treats
the transported polymetallic nodules and sends signals to the deep-sea mining vehicle.
Cobalt-rich crusts are usually collected by screw rollers that are crushed and stripped from
the bedrock [16]. Polymetallic sulfides are mined in a similar way to cobalt-rich crusts, and
the ore is lifted to the surface through the lifting system after mining operations [17]. How
to reduce the impact of each underwater device on the environment during mining is also
a key issue in equipment research. As mining continues, the dispersion of fine sediment
disturbed by mining may change over time, and plume monitoring and vulnerable species
mapping must be rationed to adjust mining operations and minimize impacts outside the
mine site [18,19].

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 3 of 31 
 

 

2. Current Development of Deep-Sea Mining Systems 
Four major mining systems have been proposed for the exploitation of deep-sea 

polymetallic nodules (DSPN) over the past few decades: submarine drag bucket mining 
system [2], continuous line bucket mining system [11], shuttle vessel mining system [12], 
and pipeline-lift mining system [13] (Figure 3). The pipeline-lift mining system is consid-
ered to be the most efficient system after offshore tests, cost control, and mining difficulty 
are proven [14]. The system includes three main parts: the surface support vessel, the 
hoisting system, and the DSMV. Among them, the DSMV traveling on tender deep-sea 
sediments relies on the walking device to maintain its passing performance and collects 
the polymetallic nodules on the seabed through the collecting system. The nodule miner-
als gathered by the DSMV are delivered to the relay station for crushing treatment 
through the connecting hose, and the riser and lifting pump in the riser lifting devices 
transport the collected polymetallic nodules to the mining vessel [15]. The mining vessel 
classifies and treats the transported polymetallic nodules and sends signals to the deep-
sea mining vehicle. Cobalt-rich crusts are usually collected by screw rollers that are 
crushed and stripped from the bedrock [16]. Polymetallic sulfides are mined in a similar 
way to cobalt-rich crusts, and the ore is lifted to the surface through the lifting system after 
mining operations [17]. How to reduce the impact of each underwater device on the envi-
ronment during mining is also a key issue in equipment research. As mining continues, 
the dispersion of fine sediment disturbed by mining may change over time, and plume 
monitoring and vulnerable species mapping must be rationed to adjust mining operations 
and minimize impacts outside the mine site [18,19]. 

 
Figure 3. Development of deep-sea mining systems [2]. 

DSMV is the core component of most deep-sea mining [20]. Deep-sea polymetallic 
nodule (DSPN) mining is the key goal of deep-sea mining in various countries, and the 
internationally recognized deep-sea mining system is generally composed of a surface 
working mother vessel with certain power and mineral resource storage capacity, and the 
mining system and mineral transportation system carried by them [21]. This mining sys-
tem has been developed and designed in many countries [22]. 

In 1978, the Ocean Management Incorporated (OMI) developed a pipeline lift mining 
system composed of three parts: collecting, lifting, and a surface support vessel. The sea 
test was carried out from a water depth of 5000 m, and 800 t of manganese nodule was 
extracted, indicating that the system had technical feasibility in deep-sea operations. The 

Figure 3. Development of deep-sea mining systems [2].

DSMV is the core component of most deep-sea mining [20]. Deep-sea polymetallic
nodule (DSPN) mining is the key goal of deep-sea mining in various countries, and the
internationally recognized deep-sea mining system is generally composed of a surface
working mother vessel with certain power and mineral resource storage capacity, and the
mining system and mineral transportation system carried by them [21]. This mining system
has been developed and designed in many countries [22].

In 1978, the Ocean Management Incorporated (OMI) developed a pipeline lift mining
system composed of three parts: collecting, lifting, and a surface support vessel. The sea test
was carried out from a water depth of 5000 m, and 800 t of manganese nodule was extracted,
indicating that the system had technical feasibility in deep-sea operations. The German
Institut für Konstruktion (IKS) and the University of Siegen in Germany jointly designed a
DSMV, which was tested in 2001 for a short period of sand and silt mining at a depth of
410 m [1]. In 2002, the Japan Oil, Gas and Metals National Corp conducted a mining vehicle
experiment at a water depth of 1600 m [23]. In 2013 and 2015, the Korea Advanced Institute
of Ocean Science and Technology conducted sea trials for deep-sea mining vehicles and
hydraulic lifting systems, respectively. CSU and Cebynetic developed second-generation
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DSMV [10]. However, no mature development pattern of marine mineral wealth exists
globally, nor has commercial exploitation been realized in developed countries.

3. Deep-Sea Mining System Collecting Device

DSPNs are scattered on deep-sea sediments and are collected by the collecting device.
The main composition of the DSMV is shown in Figure 4. Polymetallic nodules are scattered
on deep-sea sediments (DSS) and are collected by deep-sea mining system collecting
devices. Currently, there are three kinds of collection heads commonly used, including
suction type, Coandă type, and double-row type (Figure 5). The parameters of jet nozzles
in collecting devices affect the efficiency of jet collection. Meanwhile, the flexible pipe is
directly connected to the collecting device. Because of the complex nature of the deep-sea
environment, the position of the flexible hose and the collection device is often changed,
so the flexible pipe is often in a horizontal and vertical state. Therefore, it is also very
important to optimize the design of the flexible pipe and its internal solid–liquid two-phase
flow conveying [7].
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3.1. Properties of Deep-Sea Sediments

Many studies for deep-sea sediment characterization are presented, especially because
of their unique high-pressure saline sedimentary environment. Deep-sea sediments are dif-
ferent in nature from terrestrial soils, characterized by ultra-high water content, ultra-small
internal friction angle, ultra-large porosity, high liquid limit, high plasticity, high sensitivity,
high compressibility, and low density [25–32]. Their physical and chemical properties and
microstructure are significantly different from those of land soil and inshore soil.

In an effort to research the impact of mechanical disturbance on the microscopic
peculiarity of DSS, Nian et al. [23] conducted electron microscope scanning on the deep-
sea sediments undisturbed and under different disturbance forces, the microstructure
consists of a sheet-like link structure and honeycomb-like flocculation structure co-existing
and filling each other [33]. Their microstructure is shown in Figure 6. The data from
41 measuring points in the eastern Pacific mining area showed that both the shear strength



J. Mar. Sci. Eng. 2024, 12, 788 5 of 29

and penetration resistance of the bottom material increased with increasing test depth,
reached a maximum value, and then decreased slightly [34]. With the deepening of depth,
the state of the sediment gradually changes, from fluid to fluid-plastic to plastic [28,35].
In the flow-like state, the shear strength is minimal and has no engineering significance.
In the flow-plastic state, the shear characteristics change significantly, the shear strength
increases sharply, and the grouser tip damage is accelerated. At the same time, the track
plate collapses rapidly, and the driving resistance increases sharply. In the plastic state, the
shear performance is uniform, the shear strength is slowly reduced, and it can be used as
the traction layer of the deep-sea mining vehicles walking track [24].
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3.2. Jet Nozzle Parameter Design

As the core component of the jet collecting device, nozzles mainly include circular
nozzles and Venturi nozzles [36] (Figure 7). The main function of the nozzle is converting
the pressure energy in the jet into kinetic energy, causing the jet to shoot out at a high speed.
The structure of the nozzle has a strong impact on the hydrodynamic properties of the
water jet. In recent years, the effect of different nozzle parameters on water jetting has been
extensively studied by many scholars [37]. The working mechanism is shown in Figure 8.
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The scour problem resulting from water jet was first addressed by Rouse et al. [40].
Subsequently, Tastan et al. [41] researched the influence of sedimentary layers on jet scour.
Many scholars have investigated how nozzle type, nozzle size, impact angle, and impact
velocity affect fluid jets [42,43]. Baylar et al. [42] compared Venturi nozzles with circular
nozzles and found that Venturi nozzles were much more efficient than circular nozzles.
Kartal et al. [44] studied the influence of circulating water jet on the scouring depth. By
changing the thermodynamic and structural parameters of the nozzle plate and no plate, it
was shown that the nozzle plate plays a leading role in the nozzle head. Wang et al. [45]
studied the change law of nozzle injection coefficient with the working pressure of the
injector, and the influence of the nozzle with different thermal and structural parameters
on the performance of the injector was obtained. Yao et al. [46] studied the effects of
high-pressure common rail nozzle structure on hydrodynamic characteristics by using a
three-dimensional phase Doppler particle analyzer and the particle size distribution trend
of the jets was obtained. Veysi et al. [38] conducted an experimental study on the local
scour generated by water jets from different types of nozzles and made a detailed analysis
of static scour depth, the change of scour with time, scour features, the influence of nozzle
types on scour, and the air entraining rate of various nozzles. The experimental design is
illustrated in Figure 9. Based on numerical analysis, Shi et al. [47] obtained the numerical
simulation water phase diagram of pulsed water jets with nozzles of various structures,
and the variation rules of distance and width of water jet were obtained.

There are many papers on the structural parameters and stability of water jet devices,
but there are still some shortcomings. The stability of water jets is critical to cutting
accuracy and efficiency, but maintaining jet stability remains a challenge in high-speed,
high-pressure, or long-distance jets. At the same time, the parameters of the water jet (such
as pressure, velocity, nozzle design) have a significant impact on the performance, but how
to optimize these parameters to achieve the best effect still needs further research.

3.3. Flexible Hose and Solid–Liquid Two-Phase Flow Transportation Optimization

There must be a section of flexible hose between the ore-collecting device and the
lifting device, and different shapes may appear depending on the location of the ore
collector and the main pipe; even close to the horizontal shape may appear, which is not
conducive to the transportation of coarse granular ore. At the same time, due to the seabed
crushing conditions and the environmental requirements of wastewater discharge, the
particle size of the deep-sea ores transported is relatively coarse; coarse particles and the
liquid phase cannot form a homogeneous slurry, which not only has complex resistance
characteristics but also easily blocks the pipeline, which may cause serious engineering
accidents. Consequently, it is particularly important to study the related problems of
solid–liquid two-phase flow conveying in a horizontal hose.

Asakura et al. [48] researched the impact of fluid phase, collision, and composition
term modeling in particle motion equations on particle concentration distribution and
fluid velocity. During solid–liquid two-phase flow, the motion state in the solid phase
also changes constantly with the change of the average velocity. Ye et al. [49] combined
experimental and theoretical studies and established a new formula to reflect the resistance
change in complex pipelines with average velocity. The paper reflected the relationship
with other parameters. Mengmeng et al. [50,51] adopted computational fluid dynamics
and the particle discrete element method to conduct a numerical study of the hydraulic
transportation of coarse solid particles. As shown in Figure 10, the simulated horizontal
pipeline studied the impact of solid concentration, particle diameter, and particle velocity
on hydraulic transportation.
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Cao et al. [52] studied the hydraulic transport law of a horizontal hose through experi-
ments and the calculation formula of additional pipeline loss was obtained, which provided
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a rationale for the parameter design of a coarse particle pipeline hydraulic transport system.
Different from other flexible hoses, when flexible hoses are in the horizontal states, the
solid–liquid two-phase flow has its unique flow characteristics, the coarse particles are
easy to deposit, and the conveying parameters are difficult to determine. Many scholars
have studied the hydraulic transportation characteristics of horizontal flexible hoses. Avi
et al. [53] researched the flow properties of coarse particles in horizontal hydraulic trans-
portation, they conducted a three-dimensional CFD-DEM simulation, and they obtained
information about the hydraulic transportation of coarse particles in well-developed hor-
izontal flow in pipelines, and the data were verified experimentally. A schematic of the
simulation for different particle concentrations is shown in Figure 11.
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In the meantime, the dragging of the flexible hose while the DSMV is driving compacts
the sediment at the ruts or flips the sediment on either side before it is redeposited [54],
which can influence the physical and mechanical properties of the DSS, as shown in
Figure 12.
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4. Deep-Sea Mining System Walking Device

When the walking device is running on the DSS, the grouser directly interacts with the
sediment. The study of the sediment properties and the influence of the grouser structure
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parameters on the traction force is the key factor in determining the travel of the mining
vehicle. The diversity of natural ecological environments creates biodiversity, and nature
provides researchers with a source of inspiration to solve major problems under complex
conditions. In recent years, more and more studies have been conducted on biomimetic
structures [55,56]. At the same time, due to the complex seabed topography and geological
environment, the ability of a walking device to deal with the complex environment is
essential. The body’s lightweight design can also reduce the pressure of the sediment on
the body and improve its traction performance and collection efficiency.

4.1. Optimization of Mining Grouser Parameters

The grouser is the most critical structure in the DSMV walking device, and the driving
force of the walking device is mainly generated by the sediment thrust on the grouser.
The key to the research of the walking device is to establish the correct tractive force
model. Optimization of the grouser structural parameters can also effectively improve its
traction performance.

4.1.1. Track and Sediment Model Construction

The walking device of the mining vehicle acts on the sediment surface, and the track
action will cause the deformation of the sediment and produce compressive and shear
forces. When the DSMV is traveling over deep-sea sediments, it must have enough traction
to ensure that it does not sink, slip, or overturn. Currently, the subsidence and tractive
force calculation is mainly based on the Bekker theory [57]. Due to the increased pore ratio,
elevated water content, and pronounced rheological properties of DSS in comparison to
terrestrial soil, the Bekker theory cannot be employed for determining the tractive force of
deep-sea mining vehicles without considering time effects.

The initial investigation by Schulte et al. [58] focused on examining how deep-sea
sediment pressure influenced subsidence, allowing for the determination of both magnitude
and timing of subsidence in static scenarios. Subsequent studies by Li et al. [59] as well as
Wang et al. [60] involved conducting experiments specifically targeting shear deformation
in relevant deep-sea sediments, revealing distinct stages within this process. As depicted
in Figure 13, the deep-sea sediments exhibit a typical pattern of elastic-plastic deformation,
which can be categorized into four distinct stages. Initially, during the linear elastic stage,
there is a proportional increase in shear stress and displacement, with the dominance
of elastic deformation. Subsequently, as it progresses to the strain-strengthening stage,
there is a non-linear rise in both shear stress and displacement until reaching their peak.
When it reaches the maximum point, the sediment enters a stage of strain softening.
As displacement increases, there is a non-linear decrease in shear stress until complete
destruction of the sediment occurs and stress reaches its residual level. Subsequently, shear
stress stabilizes as displacement continues to increase. Finally, the shear stress remains
consistent with the increase in displacement.
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Bekker’s elastoplastic constitutive model [57] is currently for the calculation of the
subsidence and tractive force of DSMV, in which time-dependent effects (i.e., rheological
properties) are not taken into account. As the crawler mining vehicle moves, the sediment
undergoes simultaneous compression and shearing, which affects the subsidence of crawler
mining vehicles. The compressive force as well as the shear force play a role in this
phenomenon. Xu et al. [62] deduced a rheological model that combined compression and
shear, utilizing the internal time theory. Its parameters were obtained through compression–
shear-coupled experiments, and the measurement of its creep curve was conducted using
a custom-built creep meter that combined compression and shear, which was verified
by making simulated soil. The experimental model can predict the coupled compressor-
shear rheological properties of deep-sea sediments. Under this compression-shear-coupled
rheological model, the maximum subsidence tractive force is minimal, which can reflected
the worst working conditions well. The model can provide the theoretical basis for the
design and optimization of mining vehicle walking devices. Xu et al. [63] proved the
compression–shear-coupled constitutive model of mining vehicle travel time and carried
out experimental analysis. Zhang et al. [64] researched the vertical stress fluctuations and
temporal distribution patterns of seabed sediments caused by the movement of DSMV on
the ocean floor.

Deep-sea sediment tractive forces differ from those of sandy soils. Theoretical models
derived from sandy soils are often used to evaluate soil tractive forces of cohesive soils.
The tractive force of soil is determined by the shear force applied to the clod, which has the
same shape as the track of the walking device. However, the shear properties of cohesive
soil are very distinct from those of sandy soil, and the expected soil tractive force will
also manifest in different forms [65,66]. In this context, Sung-Ha et al. [67] studied the soil
tractive force mechanism, and a series of experiments with simulated soil on the model
orbit system were conducted (Figure 14). They studied the soil tractive force mechanism of
cohesive soil, established a tractive force prediction model of cohesive soil, and verified
its applicability through comparative analysis, as depicted in Figure 15. For the purpose
of dealing with the more complex track layout, Lubao et al. [68] adopted triple Fourier
transform technology to obtain the dynamic three-dimensional distribution expression
of the dynamic load distribution of a dual track. The enclosed formula can be employed
in conjunction with theoretical approaches, whether elastic or plastic, to anticipate the
operational outcomes of mining vehicles across diverse circumstances involving deep-sea
sediments. The common schematic diagram of the double-track mining vehicle is depicted
in Figure 16. Zhiyong et al. [69] established a mathematical model of pressure subsidence
and tractive slippage of a four-track mining vehicle and verified its accuracy by numerical
simulation. The DSMV model is shown in Figure 17.
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4.1.2. Optimization of Grouser Structure

The traction force obtained by the DSMV on the DSS depends on the track’s contact
area and the grouser’s geometric characteristics [67]. The key is to optimize the parameters
of the grouser, which can effectively improve its tractive performance.

For the track of mining vehicles, there are several types of track plates, such as the
passive excavator proposed by Yong et al. [70], the active excavator, and the blade excavator
proposed by Hong et al. [66]. Hong et al. [66] researched the grouser types of 18 models
and evaluated the subsidence and traction of each grouser. Wang et al. [71] conducted
preliminary experimental research on the tractive force induced by different shapes and
sizes of grouser, but a theoretical structural model to obtain the maximum tractive force
was lacking. Li et al. [72] examined how tractive performance is influenced by varying the
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height of the grouser, where the calculation formula of grouser height and tractive force
through theoretical analysis were obtained, and experimental simulation was carried out.
The results showed that with the rise in grouser height and slip rate, there was a significant
surge in the overall propulsive force until it reached its maximum. Li et al. [73] surveyed
the traction performance of tracks with different shapes, including π-shaped, T-shaped,
and V-shaped tracks. By altering the structural parameters of these tracks, they established
a correlation between the structural characteristics and their mechanical properties. The
track structure and numerical simulation are shown in Figure 18.
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Janarthanan et al. [74] used the coupling Euler–Lagrange (CEL) method in ABAQUS
2020 software to numerically simulate tracks with different structural parameters, and
they verified the impact of grouser characteristics on the ability to generate traction
and displace soil. Sun et al. [75] evaluated the impact of different parameters, i.e., dif-
ferent velocities, number of grousers, and composition of sediments by the coupling
Euler–Lagrange method, where stress variation and disturbance data were obtained.
Xu et al. [76] conducted compression–shear creep experiments on deep-sea sediments
and obtained their rheological models. According to the experimental model, the formulae
for calculating the tractive force of the thick-triangle track shoe and the sharp-triangle track
shoe were deduced, and the optimal structure of the track plate was determined. The
results of this experiment show the different applications of the two types of track plates.
Finally, the validity of the model was verified.

4.1.3. Optimization Design of Bionic Grousers

Inspired by the theory of natural bionics, many studies have optimized the structure
of crawler walking devices from the perspective of bionics based on the low shear strength
and easy slipping of DSS. Based on the adaptability of buffalo hooves to walk in soft soil,
Cai et al. [55] designed and optimized the shoe grouser according to the appearance of
buffalo hooves. The relevant model of bionic grouser parameters and traction force was
established by experiments, and the optimization algorithm yielded the optimal parameters
for the finest bionic grouser. After analyzing the traction characteristics at various speeds, a
correlation between speed and maximum traction force was established. Consequently, the
optimal driving speed for the bionic grouser was determined.

Meanwhile, considering the strong adhesion properties of walking devices, researchers
drew inspiration from burrowing animals [77], and bionic-based anti-adhesion machines
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were developed [78], which yielded successful outcomes. Wen-bo et al. [56], studied the
adhesion of shoe grouser to deep-sea sediments. A bionic walking device was proposed
based on the characteristics of burrowing animals, as shown in Figure 19. According
to the DSS adhesion characteristics and discrete element method, a deep-sea sediment
cutting model was established. A simulation experiment was performed on the designed
grouser structure [56]. The experiment results demonstrated the efficient reduction in
deep-sea sediment adhesion was achieved by the bionic grouser and such adhesion was
minimized. The simulated soil was cut by a designed deep-sea mining vehicle, and its
reliability was verified.
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4.2. Geometric Passability of The Walking Device

The design requirement of a deep-sea mining vehicle walking device is to be able
to run stably on deep-sea sediments and address intricate road circumstances due to the
complex seabed environment, which requires the structural design of the walking device
to possess the capacity to handle intricate road situations including climbing, steering,
obstacle clearing, and anti-rollover capabilities.

Investigating the capability of mining vehicles to navigate challenging road conditions,
Sung-Ha et al. [80] conducted a study on the lateral force exerted by tracked vehicles
using the ram shear theory. Yong et al. [73] researched the correlation between structural
parameters and traction capabilities of unmanned underwater tracked bulldozers. This
study offers valuable insights into enhancing anti-skid measures and stability control for
locomotive apparatus. Feng et al. [63] were the pioneers in deriving a novel equation
to compute the steering grip of crawler mining vehicles by taking into account both the
resistance encountered during propulsion and the sinking phenomenon. Furthermore,
they investigated how turning speed, distance between tracks, and contact length between
tracks and deep-sea sediments impact this steering grip. Zhang et al. [81] developed an
intricate model based on multi-body dynamics to simulate different operational scenarios
such as straight-line motion, steering maneuvers, uphill climbs, as well as traversing ditches
for evaluating the overall performance of their crawler mining vehicle (CMV). Laboratory
tests were performed by researchers to examine how deep-sea mining vehicles steer, climb,
and cross obstacles. Numerical simulation experiments using RecurDyn V9R1 software
were conducted to analyze the dynamic properties of these vehicles in various operational
scenarios [82]. In another study by Yu et al. [83], a numerical analysis was carried out to
investigate the intricate flow patterns during straight movement, steering maneuvers, and
climbing actions. This research offers insights that can guide improvements in the design of
mining vehicle structures. Additionally, Ouyang et al. [84] explored how deep-sea mining
vehicles behave on inclined slopes sideways while establishing a mathematical model that
relates tractive force to drag.
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4.3. Lightweight Design of Vehicle Body Structure

Deep-sea mining vehicles, due to their significant weight, can easily become sub-
merged in soft sediments. These sediments have a higher pore ratio, increased water
content, lower shear strength, and more pronounced rheology. As a result, the mobility and
efficiency of deep-sea mining vehicles may be compromised [85]. In general, to address
this issue, one potential solution is to increase the amount of buoyant materials used in
deep-sea mining vehicles, which would enhance their overall buoyancy. Nevertheless,
the deep-sea mining vehicle will experience an increase in mass as a result of its volume
expansion and create greater water resistance. The lightweight design of the body is an
effective solution to reduce the sinking of the DSMV on the DSS, which is more simple and
reduces the development cost and cycle. At the same time, the lightweight design of the
body can further reduce the amount of buoyancy materials, further reduce the resistance of
the DSMV, and effectively improve the traction performance of the walking device.

The premise of lightweight design is not to reduce the performance of the original
mining vehicle. At present, lightweight design is widely used in underwater equipment to
reduce cost and improve performance. Wu et al. [34] optimized the structure of the pressure
vessel of the underwater glider with carbon fiber, and they verified the applicability of the
optimization of the DSMV using carbon fiber material. Kang et al. [86] used a titanium
and aluminum alloy to optimize the equipment of underwater gliders and found the best
optimization scheme through experimental research, which reduced the body mass by 31%
and adjusted the buoyancy by 26.4%.

Optimization of structural models is also often used in the lightweight design of
structures. Li et al. [87] established an ellipsoidal function neural network model and opti-
mized the arrangement and composition determined by the neural network approximation
model. Zhang et al. [43] established an approximate response surface method model and
used this model to improve the underwater vehicle. The improved hull had lower energy
consumption and longer endurance. Li et al. [88] adopted the dual-agent model global
optimization method to optimize the design of the underwater vehicle, which not only
significantly improved its structural performance but also reduced its mass by 10.82%.

In the past, most of the lightweight designs were concentrated in underwater vehicles,
and the research on the lightweight design of DSMV was relatively rare. Unlike underwater
vehicles, DSMVs must be attached to the seabed to work. Pin-Jian Wang et al. [39] studied
the lightweight design of the DSMV, mainly focusing on the lightweight design of the
front collector (FC). The structure of the collector was optimized with different alloys. The
stress contour map and displacement contour map of FC under the ultimate load at a
depth of 6000 m in the deep-sea are depicted in Figure 20. Aluminum alloy and titanium
alloy collectors of different materials were compared to ensure that the performance of
their mining vehicles is not affected. The experimental results showed that the weight
loss of aluminum alloy was the most significant, the weight loss rate was 19.22%, and the
structural properties were also improved.

In the forthcoming research, it is imperative to continue the lightweight design of the
track walking device and the body. In addition, the optimized mining vehicle structure
needs to test its structural performance in a real marine environment, thus verifying the
effectiveness of the lightweight optimization design.
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5. Deep-Sea Mining System Lifting Device

The lifting device of the deep-sea mining system transfers the solid–liquid two-phase
flow of polymetallic nodules collected by the DSMV to the mining vessel. The core of the
lifting device is the lifting pump and riser, and the lifting pump is the key driving force
of the lifting device [89]. The marine riser is exposed to the complex marine environment,
and the vortex-induced vibration (VIV) and solid accumulation caused by various factors
inside and outside the pipe are also the key to the research of the riser.

5.1. Design Optimization of Lift Pump Structure

Most of the lifting pumps used in deep-sea mining lifting devices are multi-stage
lifting pumps, whose structure is shown in Figure 21. The pipeline carries a mixture of
solid and liquid, creating a two-phase flow. Due to the presence of solid minerals, wear,
and blockage pose a serious threat to the dependability of the multistage lifting pump
and the whole system in the riser lifting device. The examination of the internal workings
behind the process of deterioration caused by friction and blockage in complex channels is
a critical problem in the study of lifting pumps. Meanwhile, the current deep-sea mining
system lifting pump adopts a high-speed ratio of a multi-stage lifting structure. Due to
the continuous pressurization of the multi-stage lifting pump, the impeller axial thrust is
too large, even up to dozens of tons, which seriously threatens the stable operation of the
pump. Improper design of the balancing device can also lead to problems such as bearing
overload and pump shaft fracture [90,91].
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The flow field diagram of the lifting pump is shown in Figure 22. In order to find
out the blockage law of solid–liquid two-phase flow, Wu et al. [93] researched the settling
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velocity equation of solid particles on the basis of theoretical analysis and experimental
statistics. Some scholars pay attention to improving the anti-clogging performance and
reasonably increasing the flow channel of the lifting pump; the increase flow method
designs a larger lifting pump by enlarging the flow rate and specific velocity [94]. However,
the lifting pump designed by this method is prone to backflow and flow separation, leading
to unstable lifting pump operation and increased hydraulic loss [4]. So as to prevent the
occurrence of wear and blockage in the lifting pump, it is essential to ensure that the design
and optimization of its various components are carried out meticulously, thereby effectively
addressing the aforementioned issues. The enhancement of the diffuser design in the
lifting pump contributes to the enhancement of pump performance and particle passage
capability, while the efficiency and head of the mud pump decline as the trailing edge
angle of the diffuser blade increases [95]. The impeller’s outlet dimensions and the number
of blades significantly impact the lifting pump. In addition, a limited quantity of blades
has the potential to eradicate the protrusion in the water head curve, thereby diminishing
hydraulic friction losses and obstructions, the number of blades to lift the pump impeller is
generally selected [9]. The outlet angle of the impeller blade has a great influence on the
performance of the pump, and it is advantageous to have a higher impeller outlet angle as it
helps minimize both friction loss within the impeller and the overall radial size. The Korea
Institute of Geological Marine Resources (KIGAM) established an experimental system to
study lifting pumps [10].
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In view of the lateral thrust suffered by the lifting pump, although researchers have
proposed a large number of theoretical formulas to evaluate the axial thrust of the pump,
there is still a discrepancy observed between the computed outcomes and the recorded
axial force during practical operational testing [97]. Therefore, more and more researchers
study the actual axial thrust of the pump through tests. On the basis of research conducted
by Badr and Ahmed et al. [98], the addition of a balance hole and a double sealing ring (as
depicted in Figure 23) is an effective method for mitigating the axial thrust experienced by
centrifugal pumps. Cao et al. [99] developed a centrifugal pump with eight recirculation
holes to effectively minimize the overall axial thrust and conducted experiments to evaluate
its effectiveness in reducing thrust forces. Wang et al. [20] conducted research on the
dynamic flow behavior of pumps, specifically focusing on the assessment of hydraulic axial
thrust. Elicio and Annese et al. [100] carried out experimental work on axial thrust, verified
and calibrated the theoretical formulas, and obtained the deviation range of hydraulic
axial thrust. Many scholars have carried out numerical simulations of axial thrust using
numerical simulation methods. Considering the cost and cycle of experiments, some
researchers employ numerical simulation techniques for forecasting axial thrust and flow
properties [101,102]. Babayigit et al. [103] utilized CFD to assess the impact of the balance
hole on the hydraulic efficiency of multistage pumps. In their study, Zhu et al. [104]
performed numerical simulations and conducted experiments to investigate the axial force
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generated by the asymmetric blade structure of the lifting pump, based on the consideration
of balancing plate and balancing hole. Kang et al. [96] conducted research on the axial force
and counterbalancing strategies of deep-sea multistage lifting pumps while minimizing
any adverse impact on hydraulic efficiency.
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The existing research has made some progress in improving the axial thrust of the
pump, including design optimization, fluid dynamics analysis, and performance testing of
the pump. These studies help to improve pump efficiency, reduce energy consumption,
and extend pump life. However, while existing pump designs have made progress in
improving axial thrust, there may still be design limitations. At the same time, the research
of lifting pump axial thrust often requires the knowledge of mechanical engineering, fluid
mechanics, materials science, and other disciplines, and the existing research may not be
fully cross-integrated.

5.2. Riser Structure Design

The marine riser holds significant importance among the various devices in the lifting
system, which has a great slenderness ratio and will be affected by VIV and solid accu-
mulation when transporting solid sediment. Extensive studies have been conducted by
numerous academics regarding the accumulation of solids and VIV in marine risers. Com-
pared with solid accumulation, vorticity vibration caused by the combination of internal
and external excitation is the most critical problem in riser design. The external excitation
includes the hydrodynamic force and wave motion of the floating platform, while the
impact of internal flow is associated with internal excitation, as shown in Figure 24.
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The irregular feed of the riser can cause solids to overtake each other or even form
solid plugs to block the riser lift pipe. Evans and Shook [105] studied the axial dispersion
of vertical transport using sand and fine gravel to explore the problems related to solid
plugging. Talmon and Rhee [95] studied the transport process using advection diffusion
equations in lifting devices. J.M et al. [106] discussed the problem of riser blockage caused
by solid accumulation, conducted an in-depth study on the influence of axial dispersion on
batch vertical hydraulic transportation, and established a one-dimensional dynamic model
of the vertical transportation system. The experimental setup is depicted in Figure 25.
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Vortex-induced vibration in marine risers is the most critical issue in the research of
marine risers. Many scholars have studied the impact of external and internal excitations.
With the substantial rise in the riser’s aspect ratio, there is an escalation in the complexity of
vortex-induced vibration, leading to a higher occurrence of fatigue damage on the riser [94].
With the exploitation system extending to deep-sea areas, floating platforms and hulls are
increasingly applied in exploitation activities. Unlike the original fixed platform, floating
platforms lead to VIV of marine risers that exhibit significant amplitudes and higher-order
modes, which is very different from the vortex-induced vibration without taking into
account the motion of buoyant platforms [107]. Brika and Laneville [108] conducted wind
tunnel tests on moving cables and examined the oscillatory behavior of the eddy wake
mode under unconstrained conditions. Chen et al. [109] studied the diffusion rules of
platform horizontal movements such as swing and surge and found that platform hori-
zontal movements interacted with vortex-induced vibration of risers, which further led
to nonlinear coupling on the boundary of motion. Yin et al. [110] considered the impact
of platform movement on riser vibration and found that it is stronger than the crossflow
vortex-induced vibration caused by oscillating flow. Wang et al. [111] found that horizontal
motion would lead to significant drag amplification at small Keulegan–Carpenter (KC)
numbers. The amplitude and frequency of VIV are the result of platform motion demon-
strating consistent patterns over time. Time-frequency analysis results for this scenario are
depicted in Figure 26. A novel numerical approach was introduced by Wang et al. [112],
demonstrating excellent accuracy in forecasting vortex-induced vibration frequency, stress
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levels, and amplitude through rigorous experimental validation. In contrast to lateral move-
ment on the platform, vertical displacement predominantly impacts the riser’s dynamic
tension dynamics, leading to periodic variations in its structural characteristics, which
consequently gives rise to heightened risk factors associated with dynamic responses [113].
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Figure 26. Time-frequency results for the case from 41.1 s to 77.1 s ((a) top motion velocity; (b) top
axial tension variation; (c) time-varying response frequency for the top tension; (d,g,j,m,p) in-plane
and out-plane bending strain time histories at 5 selected stations; (e,h,k,n,q) time-varying response
frequency of the in-plane responses at 5 selected stations; (f,i,l,o,r) time-varying response frequency
of the out-of-plane responses at 5 selected stations) [111].

Most studies on VIV focus on external stimuli, such as fluid movement and the motion
of floating platforms, while disregarding the impact of internal flow on vortex-induced
vibration. When fluid flows in the riser, the mutual movement between the two will
generate centrifugal force and Coriolis force. Meng et al. [114] researched the influence of
centrifugal force and Coriolis force on vortex-induced vibration. Many investigations into
VIV primarily concentrate on external stimuli, such as fluid movement and the motion of
floating platforms, while disregarding the impact of internal flow on VIV. The variations
in mass, momentum, and pressure are heightened due to the fluctuations caused by
the flow velocity and volume ratio of diverse fluids, thereby amplifying the intricacy
associated with VIV [115]. Thorsen et al. [116] explored the impact of internal flow on
structural dynamics by using a numerical simulation method, focusing on the vortex-
induced vibration response under different internal flows, indicating that the internal
density wave will have a particular impact on the vortex-induced vibration of marine
risers. In addition to the influence of a floating platform and internal flow, factors such
as surface texture [117], choice of structural material [118], and interaction between the
riser and soil in the landing zone [111] also play a significant role in influencing VIV of the
riser. The polymetallic nodules transported inside the riser are not stable fluids during the
transportation process but form slug flows in the riser. Meng et al. [119] conducted a study
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on the impact of slug flow on the VIV of a flexible riser. The simulation diagram depicting
this phenomenon can be observed in Figure 27.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 22 of 31 
 

 

 
Figure 27. Numerical simulation cross-section. (a) A horizontal flexible riser; (b) liquid slug region; 
(c) film zone [119]. 

In the domain of ocean engineering, numerous researchers have conducted investi-
gations on techniques to mitigate vortex-induced vibration. The suppression of VIV in 
cylindrical structures can be achieved by utilizing the control rod as a passive mechanism. 
The performance of the control rods is influenced by various factors, including the num-
ber of control rods, diameter ratio, coverage, and angle of attack [120–123]. Lu et al. [124] 
calculated the fatigue damage assessment of the efficacy of the flexible cylinder model 
through the utilization of empirical measurements conducted within a controlled labora-
tory setting (Figure 28). Based on this premise, an investigation was conducted to analyze 
the fatigue lifespan of the master cylinder model equipped with varying angles of attack 
for either three or four control rods. The findings indicate that employing four control 
rods yields a more significant reduction in loss compared to using three control rods. A 
study showed that the control rod effectively suppresses the VIV of an ocean riser [36]. 
K.D et al. [125] designed a new boundary controller and developed the Lyapunov direct 
method for control design and stability analysis to achieve global adaptability for as-
sessing the resilience of marine riser systems to unpredictable environmental forces. 

Although the existing research has made some progress in VIV of the riser lift pipe, 
there are still some shortcomings. Vortex-induced vibration is a complex fluid–structure 
coupling problem, and existing mathematical models may not be able to fully capture all 
the details of the fluid–structure interaction, especially under complex marine environ-
mental conditions. Experimental studies are usually limited by conditions such as scale 
effects, and differences between the laboratory environment and the actual marine envi-
ronment, and these factors may affect the extrapolation of experimental results. The effects 
of vortex-induced vibration on structures are usually cumulative over a long period of 
time, so it may be difficult to accurately predict the effects of long-term vibration on struc-
tural integrity. 
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In the domain of ocean engineering, numerous researchers have conducted investi-
gations on techniques to mitigate vortex-induced vibration. The suppression of VIV in
cylindrical structures can be achieved by utilizing the control rod as a passive mechanism.
The performance of the control rods is influenced by various factors, including the number
of control rods, diameter ratio, coverage, and angle of attack [120–123]. Lu et al. [124]
calculated the fatigue damage assessment of the efficacy of the flexible cylinder model
through the utilization of empirical measurements conducted within a controlled labora-
tory setting (Figure 28). Based on this premise, an investigation was conducted to analyze
the fatigue lifespan of the master cylinder model equipped with varying angles of attack
for either three or four control rods. The findings indicate that employing four control
rods yields a more significant reduction in loss compared to using three control rods. A
study showed that the control rod effectively suppresses the VIV of an ocean riser [36].
K.D et al. [125] designed a new boundary controller and developed the Lyapunov direct
method for control design and stability analysis to achieve global adaptability for assessing
the resilience of marine riser systems to unpredictable environmental forces.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 23 of 31 
 

 

 
Figure 28. A flexible cylinder model was used in the experiment. (a) Cylinder model with 4 control 
rods. (b) Schematie diagram of the cylinder section. (c) Arrangement of the strain gauges [124]. 

6. Interconnections between the Components of a Deep-Sea Mining System 
Deep-sea mining encompasses a comprehensive system that involves not only indi-

vidual components but also the interplay among different underwater devices. Therefore, 
it is crucial to investigate the deep-sea mining system holistically rather than focusing 
solely on one device. This entails examining the interactions between various devices and 
the overall system, necessitating the development of a multi-body dynamics model ac-
cordingly. 

6.1. Coupling Analysis between Each Device of the Mining Vehicle 
The main devices of DSMV include a walking device and a collecting device, and the 

interaction between the two plays a crucial role in improving the overall collection effi-
ciency. The moving performance of the walking device will directly affect the efficiency 
of collecting polymetallic nodules in the collecting device, and the vibration generated by 
the collecting device during the collection of polymetallic nodules will also affect the mov-
ing performance of the walking device. Therefore, it is not feasible to design individual 
components of the DSMV based on specific sections of the objective. This makes the design 
of deep-sea mining devices a multi-variable, multi-disciplinary, coupled, and nonlinear 
problem [126]. 

Cho et al. [127] conducted laboratory and shore tests on the mining vehicle, consid-
ering the dynamic performance of the caterpillar and the nonlinear performance of the 
collector. In order to optimize the advantages derived from global optimization to their 
fullest extent, a proxy model was proposed as an effective alternative to derivative-free 
global optimization. The research framework used is shown in Figure 29. Zhu et al. [128] 
studied the vibrational impact of a collecting device on diverse DSS dynamic behavior. 
The heterogeneity of DSS was verified by experiments, and the nonlinear increase of elas-
tic modulus with depth was revealed. The establishment of the wave equation aims to 
analyze the dynamic response of DSS, which possesses a nonlinear modulus when it is 
subjected to loading from the collecting device. This research offers a theoretical founda-
tion for enhancing the operational effectiveness of the ambulatory apparatus. Zhu et al. 
[129] developed a dynamic response model that considers the coupling of thermal, hy-
draulic, and mechanical factors in heterogeneous saturated porous sediments in deep-sea 
environments. It investigates how variations in elastic modulus, density, frequency, and 
load amplitude impact the model’s behavior. By employing normal modal analysis tech-
niques, the researchers obtained a multivariate analytic solution. 

Figure 28. A flexible cylinder model was used in the experiment. (a) Cylinder model with 4 control
rods. (b) Schematie diagram of the cylinder section. (c) Arrangement of the strain gauges [124].

Although the existing research has made some progress in VIV of the riser lift pipe,
there are still some shortcomings. Vortex-induced vibration is a complex fluid–structure
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coupling problem, and existing mathematical models may not be able to fully capture all the
details of the fluid–structure interaction, especially under complex marine environmental
conditions. Experimental studies are usually limited by conditions such as scale effects,
and differences between the laboratory environment and the actual marine environment,
and these factors may affect the extrapolation of experimental results. The effects of vortex-
induced vibration on structures are usually cumulative over a long period of time, so it may
be difficult to accurately predict the effects of long-term vibration on structural integrity.

6. Interconnections between the Components of a Deep-Sea Mining System

Deep-sea mining encompasses a comprehensive system that involves not only individ-
ual components but also the interplay among different underwater devices. Therefore, it is
crucial to investigate the deep-sea mining system holistically rather than focusing solely on
one device. This entails examining the interactions between various devices and the overall
system, necessitating the development of a multi-body dynamics model accordingly.

6.1. Coupling Analysis between Each Device of the Mining Vehicle

The main devices of DSMV include a walking device and a collecting device, and
the interaction between the two plays a crucial role in improving the overall collection
efficiency. The moving performance of the walking device will directly affect the efficiency
of collecting polymetallic nodules in the collecting device, and the vibration generated
by the collecting device during the collection of polymetallic nodules will also affect the
moving performance of the walking device. Therefore, it is not feasible to design individual
components of the DSMV based on specific sections of the objective. This makes the design
of deep-sea mining devices a multi-variable, multi-disciplinary, coupled, and nonlinear
problem [126].

Cho et al. [127] conducted laboratory and shore tests on the mining vehicle, consid-
ering the dynamic performance of the caterpillar and the nonlinear performance of the
collector. In order to optimize the advantages derived from global optimization to their
fullest extent, a proxy model was proposed as an effective alternative to derivative-free
global optimization. The research framework used is shown in Figure 29. Zhu et al. [128]
studied the vibrational impact of a collecting device on diverse DSS dynamic behavior. The
heterogeneity of DSS was verified by experiments, and the nonlinear increase of elastic
modulus with depth was revealed. The establishment of the wave equation aims to analyze
the dynamic response of DSS, which possesses a nonlinear modulus when it is subjected
to loading from the collecting device. This research offers a theoretical foundation for
enhancing the operational effectiveness of the ambulatory apparatus. Zhu et al. [129]
developed a dynamic response model that considers the coupling of thermal, hydraulic,
and mechanical factors in heterogeneous saturated porous sediments in deep-sea envi-
ronments. It investigates how variations in elastic modulus, density, frequency, and load
amplitude impact the model’s behavior. By employing normal modal analysis techniques,
the researchers obtained a multivariate analytic solution.
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6.2. Coupling Analysis between Riser Lifting Device and Mining Vehicle

In order to study the monomer dynamics model of various deep-sea mining devices,
Zou et al. [130] proposed a novel approach for modeling and controlling unmanned tracked
vehicles in intricate terrains, utilizing estimation techniques for pose and torsion. Chen
et al. [131] investigated the impact of bidirectional internal flow interaction dynamics on
riser behavior using computational fluid dynamic simulation. Their findings revealed that
computational fluid dynamic analysis plays a significant role in determining vibration
and instantaneous amplitude. Adamiec et al. [132] proposed a discrete element method-
based theory for analyzing the behavior of planar elongated bar systems under large
deflections. A mixed finite-boundary element method was introduced by Cheng et al. [133]
to investigate the nonlinear interaction between mooring risers and ship waves, and
experimental validation was conducted to demonstrate the applicability of this approach.

However, the whole dynamic model and the coordinated motion control of an in-
tegrated deep-sea mining system based on a nonlinear dynamic model have not been
realized. Chung et al. [134] simplified the use of nonlinear beam elements in pipelines.
They developed a finite element model and used an iterative solution of the incremen-
tal Newton–Raphson method to investigate the migration characteristics of each device
within a deep-sea mining system, considering various factors such as mass and subsystem
connection. They also conducted a hydraulic analysis and examined the linkage of lifting
pipes within the system. Y et al. [83] developed a robust and efficient nonlinear multi-body
dynamic model as well as a coordinated motion control model for a deep-sea mining
system. Building upon this, they successfully conducted a co-simulation of the dynamic
and control models, they proposed and simulated the integrated motion model for the
entire system. Chen et al. [135] developed a virtual prototype model of the deep-sea mining
system and a load model of the lifting device under the marine dynamic environment based
on the dynamic reaction of the riser and the DSMV under different linkage modes, and
the dynamic responses among the riser, the conveying hose and the mining vehicle were
analyzed. The safe and efficient operation of deep-sea mining systems and the early stage of
system design and safety checks heavily rely on understanding the dynamic characteristics
of the riser lifting system as well as the dynamic response exhibited by each subsystem.
Liu et al. [136] investigated the impacts of longitudinal–lateral coupling, external current
vortex induction, and internal fluid pulsation. They developed a nonlinear vibration model
for this system by employing the finite element method, energy method, and Hamiltonian
variational principle with multi-field coupling consideration, aiming at the overall vibration
failure induced by riser flow. The flow chart of solving the nonlinear dynamics model is
shown in Figure 30.

Although some studies have been carried out on the coupling analysis among various
devices, there are still many shortcomings in the overall study. Due to the limitations of
experimental simulation, all effective variables have not been fully considered, and there
are few studies on the interaction between the whole mining system and the influence
of the traveling device on the collection device. The direct influence mechanism of each
device and the tradeoff relationship between the constraints are still lacking.



J. Mar. Sci. Eng. 2024, 12, 788 23 of 29J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 25 of 31 
 

 

 
Figure 30. Solving nonlinear dynamics model flow chart [136]. 

Although some studies have been carried out on the coupling analysis among vari-
ous devices, there are still many shortcomings in the overall study. Due to the limitations 
of experimental simulation, all effective variables have not been fully considered, and 
there are few studies on the interaction between the whole mining system and the influ-
ence of the traveling device on the collection device. The direct influence mechanism of 
each device and the tradeoff relationship between the constraints are still lacking. 

7. Conclusions 
This paper summarized relevant articles on the latest development of underwater 

collection and transportation equipment of polymetallic nodules, and some typical deep-
sea mining systems are summarized. The latest developments in underwater collection 
and transportation equipment of polymetallic nodules are introduced, including collect-
ing devices, walking devices, and lifting devices, and a detailed analysis of different de-
vices was carried out, respectively. Deep-sea mining systems work in high-pressure envi-
ronments at a depth of 6000 m, and the efficiency assessment involves the acquisition of 
synthetic polymetallic nodules during sea experiments. 

Recent achievements on the collecting device and the walking device of DSMV are 
reviewed. The microstructure and physical properties of DSS are crucial for the traffica-
bility in soft deep-sea sediments. Considering the complexity of polymetallic nodules ac-
quisition, the influence of different jet head structure parameters on jet acquisition effi-
ciency is discussed. In order to adapt to fluctuation of the deep-seabed topography, a flex-
ible hose must be installed between the lifting device and the collecting device. The flow 
model in a horizontal pipe of coarse particles was studied and established. Furthermore, 
the optimal structural parameters of the walking device are proposed, and various consti-
tutive laws of sea soil are established in order to achieve maximum tractive force and min-
imum settlement. The dynamic characteristics of the DSMV in various operational scenar-
ios were analyzed in view of the complex subsea road conditions. In order to improve the 

Figure 30. Solving nonlinear dynamics model flow chart [136].

7. Conclusions

This paper summarized relevant articles on the latest development of underwater
collection and transportation equipment of polymetallic nodules, and some typical deep-
sea mining systems are summarized. The latest developments in underwater collection
and transportation equipment of polymetallic nodules are introduced, including collecting
devices, walking devices, and lifting devices, and a detailed analysis of different devices was
carried out, respectively. Deep-sea mining systems work in high-pressure environments
at a depth of 6000 m, and the efficiency assessment involves the acquisition of synthetic
polymetallic nodules during sea experiments.

Recent achievements on the collecting device and the walking device of DSMV are
reviewed. The microstructure and physical properties of DSS are crucial for the trafficability
in soft deep-sea sediments. Considering the complexity of polymetallic nodules acquisition,
the influence of different jet head structure parameters on jet acquisition efficiency is
discussed. In order to adapt to fluctuation of the deep-seabed topography, a flexible hose
must be installed between the lifting device and the collecting device. The flow model
in a horizontal pipe of coarse particles was studied and established. Furthermore, the
optimal structural parameters of the walking device are proposed, and various constitutive
laws of sea soil are established in order to achieve maximum tractive force and minimum
settlement. The dynamic characteristics of the DSMV in various operational scenarios
were analyzed in view of the complex subsea road conditions. In order to improve the
mobility and acquisition efficiency of DSMV, the lightweight design of different materials
was proposed.

It was concluded that the lifting pump and riser are crucial for the deep-sea mining
lifting device. The optimal lifting pump structure was established to effectively diminish
hydraulic friction losses and obstructions. The internal working mechanism behind the
deterioration process caused by friction and blockage in complex channels was investigated.
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The vortex-induced vibration response model of the riser under internal and external
excitation was established to show key factors affecting the stability of the riser.

The interaction between the deep-sea mining devices was summarized, and the non-
linear and dynamic coupling model between the devices was established by setting up the
finite element model and considering the linkage between the devices. This is essential to
consider the efficiency of deep-sea mining systems as a whole.

In order to ensure the commercial exploitation of polymetallic nodules, there are still
some key problems to be solved in the existing deep-sea mining research. First of all, deep-
sea mining will have a huge impact on the marine environment, and there needs to be a
full balance between ecological and commercial relations. Secondly, due to the limitation of
experimental simulation, all effective variables were not fully considered in optimizing the
mining efficiency of each device. Thirdly, there are few studies on the interaction between
the various devices in deep-sea mining. Finally, the direct influence mechanism of each
device and the tradeoff relationship between the constraints are still lacking.
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