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Abstract: Opportunistic Networks (OppNets) are characterized by intermittently connected nodes
with fluctuating performance. Their dynamic topology, caused by node movement, activation, and
deactivation, often relies on controlled flooding for routing, leading to significant resource consump-
tion and network congestion. To address this challenge, we propose the Adaptive Clustering-based
Routing Protocol (ACRP). This ACRP protocol uses the common member-based adaptive dynamic
clustering approach to produce optimal clusters, and the OppNet is converted into a TCP/IP network.
This protocol adaptively creates dynamic clusters in order to facilitate the routing by converting
the network from a disjointed to a connected network. This strategy creates a persistent connection
between nodes, resulting in more effective routing and enhanced network performance. It should
be noted that ACRP is scalable and applicable to a variety of applications and scenarios, including
smart cities, disaster management, military networks, and distant places with inadequate infrastruc-
ture. Simulation findings demonstrate that the ACRP protocol outperforms alternative clustering
approaches such as kRop, QoS-OLSR, LBC, and CBVRP. The analysis of the ACRP approach reveals
that it can boost packet delivery by 28% and improve average end-to-end, throughput, hop count,
and reachability metrics by 42%, 45%, 44%, and 80%, respectively.

Keywords: clustering; OppNet (Opportunistic Network); routing protocols; adaptive clustering;
heuristic function

1. Introduction

The concept of smart cities revolves around merging information communication
technologies (ICTs) with the Internet of Things (IoT) to achieve efficient urban resource
management [1]. Integrating intelligent vehicles into these frameworks has the potential
to improve safety, traffic flow, and environmental sustainability within cities [2]. Wireless
technologies have enabled communication systems based on vehicles, leading to the de-
velopment of Vehicular Ad Hoc Networks (VANETs). VANETs, a subset of Mobile Ad
Hoc Networks (MANETs), are characterized by highly dynamic network connectivity and
frequent topology changes due to vehicle movement [3,4]. VANETs play a crucial role in en-
hancing safety and traffic conditions through Intelligent Transport Systems (ITSs), marking
a significant advancement in transportation management [5]. However, the dynamic nature
of VANETs often results in a dispersed network structure, leading to intermittent connec-
tivity and forming an opportunistic network [6]. Consequently, VANETs face challenges
such as high node mobility, frequent disconnections, and significant end-to-end delays.

Delay-Tolerant Networking (DTN) is a network paradigm specifically designed to
facilitate communication in environments where continuous end-to-end connectivity is
unreliable or unavailable [7]. Unlike traditional networks that rely on stable connections,
DTNs operate in scenarios with intermittent connectivity, common in rural areas, disaster
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zones, or space missions. Data transmission in DTNs is opportunistic, utilizing store-and-
forward techniques where nodes store messages and forward them to other nodes when
direct communication is not possible. DTNs offer a solution to the challenges mentioned
earlier for VANETs by being specifically designed to manage prolonged and unpredictable
delays in delivering messages. Within DTNs, messages are relayed through intermediary
nodes in a step-by-step fashion, leveraging intermittent connections to eventually reach
their intended destination [7]. Opportunistic Networks (OppNets), a subset of DTNs,
emphasize the sporadic nature of communication, where nodes exploit encounters with
other nodes to exchange data. OppNet protocols commonly employ store-carry-forward
techniques, where nodes store messages in their buffers and relay them to other nodes
when suitable opportunities arise [8] (see Figure 1). However, the limitations of sup-
porting TCP/IP routing protocols in DTNs due to frequent disconnections and network
fragmentation pose significant challenges. DTN routing protocols, although robust in
highly partitioned environments, typically result in higher delays, lower delivery ratios,
and increased overhead, as they rely on store-and-forward mechanisms and opportunistic
forwarding [9]. To overcome these challenges and leverage the well-established efficiencies
of TCP/IP protocols, the conversion of the DTN into a more connected network structure
can be achieved by implementing a cluster-based routing protocol within the DTN. The core
idea is to dynamically group nodes into clusters based on their connectivity and proximity.
Cluster heads (CHs) are then responsible for relaying traffic within their clusters, and
clusters can communicate with each other during periods of temporary network stability.
This enables reliable end-to-end communication required for TCP/IP protocols [10]. This
approach represents a significant enhancement in DTNs to address the practical challenges
of operating in highly dynamic and disrupted environments. Nevertheless, there remain
several hurdles to overcome, including the selection of cluster heads, dynamic network
conditions, limited network awareness, and scalability [11].

Carry

Source node Middle node Destination node StoreForward message

Figure 1. Store-carry-forward architecture in OppNet.

Overcoming the aforementioned challenges necessitates the development of sophis-
ticated, adaptive clustering routing protocols that can dynamically adjust to network
conditions and minimize the end-to-end path between source and destination nodes [12].
This paper proposes a novel cluster-centric routing protocol that establishes network con-
nectivity through dynamic clustering. This method adapts cluster configuration based
on shared nodes between clusters. Additionally, a heuristic function extends the radio
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range of the cluster head, effectively transforming a fragmented network into an ad hoc
network. As a result, our proposed protocol offers significant performance improvements
for OppNets, making it a compelling solution for managing transportation routes and
determining optimal paths between source and destination nodes. This paper presents the
following key contributions:

• Adaptive Clustering with Extended Radio Range: We propose an adaptive cluster-
ing method that leverages a new heuristic function to increase the cluster head’s
radio range, thus enhancing network efficiency. This approach allows the Opp-
Net to function similarly to a TCP/IP network, making it suitable for dynamic
network topologies.

• Infrastructure-Independent Clustering for Efficient Routing: We introduce a novel
common member constraint-based routing algorithm for clustering. This algorithm
facilitates the creation of optimal clusters, enabling faster data transmission and shorter
paths between source and destination nodes. Notably, this technique eliminates
reliance on network infrastructure like roadside units (RSUs), which can introduce
delays and routing inefficiencies.

• Demonstrated Performance Improvement: We present a method that achieves sig-
nificant improvements across various performance metrics, including delivery ra-
tio (approximately 28% increase), end-to-end delay (approximately 42% decrease),
throughput (approximately 45% increase), hop count (approximately 44% decrease),
and reachability (approximately 80% increase).

2. Related Work

Sharma et al. [13] introduce k-Means clustering-based routing protocol for opportunis-
tic networks (kROp), a routing protocol for DTNs that leverages k-means clustering. It
utilizes network features like contact duration, frequency, buffer occupancy, and delivery
predictability for next-hop selection, and whereas kROp demonstrates improvements over
other protocols in terms of dropped packets, overhead, and average hop count, its effective-
ness might be limited in scenarios with low node mobility due to its assumptions about
cluster creation and maintenance. Location-Based Clustering Approach for Next-Hop Se-
lection in Opportunistic Networks (LBC), presented in [14] by Dutta et al., identifies cluster
points based on human interaction patterns, achieving lower latency compared to existing
protocols. However, LBC may incur higher energy consumption due to frequent location
updates and cluster computations. Chaurasia et al. [15] introduce Metaheuristic-Based
Optimized Opportunistic Routing Protocol (MOORP), a routing protocol designed for
Wireless Sensor Networks (WSNs) that utilizes a metaheuristic approach combined with
opportunistic routing strategies. MOORP focuses on optimizing data transmission effi-
ciency and reducing energy consumption by selecting optimal forwarder nodes and routes,
and whereas it shows potential for DTNs, its complexity and scalability limitations require
careful consideration during implementation in resource-constrained DTN environments.
The study by Saravankumar et al. [16] presents a novel routing protocol for wireless mobile
networks that employs a cluster-based approach with innovative techniques to improve
coverage delay performance. It utilizes a sophisticated algorithm considering factors like
residual energy, node mobility, and distance to optimize cluster head selection. Addition-
ally, a fuzzy logic system adjusts node transmission power based on network conditions.
However, the protocol lacks clear explanations on how the DTN technique integrates with
the clustering algorithm, and it also lacks validation through real-world experiments or
testbeds, limiting its applicability to DTNs. Kadadha et al. [17] propose a cluster-based, QoS-
optimized OLSR protocol for urban VANETs. The protocol incorporates cluster formation,
cluster head election, and QoS-aware routing, prioritizing metrics like bandwidth, delay,
and packet loss for path selection. However, it lacks an analytical model or theoretical proof
for the protocol’s effectiveness, hindering its wider adoption in DTNs. Cheng et al. [18]
introduce a novel model for clustering and routing VANETs in urban environments. This
model comprises two key components: a connectivity prediction method (CP) and a dy-
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namic clustering model (DC). CP forecasts connectivity based on vehicle features, whereas
DC forms clusters and selects core nodes as cluster heads, adapting to network changes.
This method also includes a routing approach based on DC. However, this approach may
introduce overhead and complexity due to prediction and clustering processes, potentially
impacting its suitability for resource-constrained DTNs. A clustering-based routing method
for vehicular networks called CRLLR is introduced in [19] by Fakhar et al. Utilizing Ant
Colony Optimization (ACO), CRLLR aims to determine optimal routes between communi-
cating vehicles, emphasizing four quality of service (QoS) metrics: reliability, end-to-end
latency, throughput, and energy consumption. Although showing potential in delivering
dependable and low-latency routing, further research is needed to evaluate its performance
in real-world DTN scenarios and compare it with other advanced routing schemes. It is
important to assess how CRLLR’s reliance on ACO translates to the more intermittent
connectivity patterns of DTNs compared to VANETs. Pal et al. [20] introduced the AMRBC,
a MAC protocol for VANETs, focusing on stable clustering and communication range
to improve network stability. AMRBC offers an adaptive, range-based MAC protocol
tailored for VANETs, prioritizing safety messages to reduce safety message delay. However,
its applicability to DTNs is limited as it primarily focuses on VANET-specific challenges
and lacks comparison with other state-of-the-art MAC protocols designed for DTNs. The
work by Mohammad Nasr et al. [21] introduces CBVRP, a cluster-based VANET routing
protocol tailored for non-populated areas like deserts. CBVRP achieves high communi-
cation efficiency and reliable information delivery by implementing a cluster structure
and cluster head election suitable for desert environments. However, its effectiveness
may be limited to specific network conditions with sparse node distribution. Its perfor-
mance in more dynamic or dense DTN environments might require further investigation.
Feyzi et al. [22] introduced fuzzy logic into the Ad Hoc On-Demand Distance Vector
Routing AODV routing protocol for VANETs to enhance route selection. This integration
enables more flexible decision-making by considering factors like vehicle speed, distance,
and traffic conditions. Fuzzy logic facilitates stable route selection, enhancing network effi-
ciency. However, implementing the fuzzy system may demand additional computational
resources, potentially increasing overhead; whereas this approach focuses on VANETs, it
highlights the potential benefits of incorporating fuzzy logic for dynamic routing decisions
in DTNs. However, the trade-off between routing efficiency and overhead requires careful
consideration in resource-constrained DTN environments.

This section reviewed various cluster-based routing protocols proposed for DTNs or
related network types, and these studies offer valuable insights and techniques. However,
limitations exist, including scalability concerns, increased overhead due to complex cluster-
ing algorithms, and challenges in achieving high delivery ratios and low end-to-end delays
inherent to DTNs. Our proposed Adaptive Clustering-based Routing Protocol (ACRP)
addresses these shortcomings by focusing on dynamic cluster formation, efficient cluster
head selection, and a lightweight routing mechanism to improve network performance
in OppNets.

3. Proposed Method

Clustering within an OppNet entails organizing vehicles according to factors like
proximity and geographic positioning. This arrangement fosters adaptable groups with
basic data exchange and effective communication among vehicle nodes, prompting the
development of various clustering algorithms. An important aspect in clustering is the
selection of CHs, which can be accomplished via either a centralized approach utilizing
network infrastructure such as RSU, or a decentralized method where CHs are chosen based
on decisions made by vehicles within each cluster. In this study, we propose an Adaptive
Clustering-based Routing Protocol (ACRP) that utilizes dynamic clustering, resulting in
improved packet delivery and a dynamic clustering approach that groups nodes based on
distance and location. The protocol is divided into four phases:

• Phase 1: calculating the Euclidean distance between vehicles.
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• Phase 2: selecting a node as a CH.
• Phase 3: network addressing architecture.
• Phase 4: dynamic clustering adaptively.

In the first phase of the proposed ACRP, we consider an area where each vehicle
(Vi) is randomly positioned. We assume that GPS data are globally available for all
nodes that contribute to the calculation of distances between nodes. This is based on
the individual capability of each node (e.g., vehicle) to independently access GPS sig-
nals from satellites directly, rather than relying on the transmission of GPS data between
nodes. Accordingly, we calculate the Euclidean distance between two vehicles as follows
d(Vi ,Vj)

=
√
(XVi − XVj)

2 + (YVi −YVj)
2 where the selected vehicles are assumed to be (Vi)

and (Vj) and the corresponding coordinates are (XVi , YVi ) and (XVj , YVj ). This distance
makes the closest node to be placed in the cluster and also two nodes communicate with
each other in a lesser time interval.

In the second phase, we utilize two crucial criteria for choosing the cluster head:
Encounter Rate (ϕ) and Remaining Energy (Ψ).

The cluster head (χi) is chosen based on the encounter value of other neighbors within
a specific range. In order to monitor the frequency of encounters for a note, the ACRP
keeps track of two local variables: an encounter history (ϕi) and a current window counter
(CW). The ϕi reflects the node’s historical encounter rate, calculated as a weighted moving
average. On the other hand, the CW provides information about the number of encounters
within the current time interval. Periodically, the ϕi is updated to incorporate the most
recent CW, ensuring that the latest rate of encounter information is taken into account. The
calculations for updating the ϕi are conducted in the following manner:

ϕi(New) = γ ∗ CW + (1− γ) ∗ ϕi(Current) (1)

The exponentially weighted moving average gives greater importance to the most
recent complete current window (CW), with the emphasis being proportional to the factor
γ. Updating the CW is a simple process: for each encounter, the CW is incremented. After
the current window update is finished, the history of encounters is updated, and the CW is
set back to zero. According to Equation (1), it represents a simple filter for updating the
encounter rate such that the recent encounter rate receives a higher weight compared to
the previous encounter rate. Through our experiments, we discovered that using a γ value
of 0.85 and an update interval of approximately 30 s yielded good results. Based on this
interval time, if the interval duration is long, the encounter rate becomes uneven, whereas
with shorter intervals, nodes fail to encounter neighboring nodes (best in our test of 30 s).
With this knowledge, the node with the highest ϕi can be selected as a candidate cluster
head. The objective of this optimization problem is to maximize the sum of the weights of
the links between the χi and its neighbors. This means each vehicle has a list of neighboring
nodes and the node with the highest ϕi to its neighbors is selected as the χi. We consider ϕi
to be the encounter history of node i, representing the number of encounters node i has
had with its neighbors, which can be expressed as follows:

ϕimax = max(Vi, Vj), ∑(ϕ(Vi, Vj) f or all Vj ∈ neighbors Vi) (2)

A higher ϕi indicates greater efficiency in terms of easily sending and receiving more
packets. Therefore, the node with the highest ϕimax is a good candidate for χi as it helps
maintain long-term stability in the cluster and enables communication with nearest neigh-
bors. The encounter rate as used in our study refers specifically to the number of times
vehicles come within their communication range of each other, rather than the duration for
which they remain in mutual proximity.

Ψi is employed for gauging the remaining energy of a node, which can be computed
using Equation (3), where ΨCurrent

i (t) denotes the remaining energy of node i at time slot t,
and ΨInitial

i (o) represents the initial energy of node i. By utilizing this equation, we are able
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to identify the node with the highest remaining energy, which has the potential to serve as
a cluster head.

Ψi =
ΨCurrent

i (t)
ΨInitial

i (o)
(3)

To choose cluster heads, we propose a heuristic function. Initially, we need to compare
two factors: the highest encounter rate (ϕi) and the most remaining energy (Ψi). To make
this comparison fair, we can apply min–max normalization. This process standardizes
the data, making sure all features are scaled equally. This prevents any one feature from
dominating others due to differences in their sizes. This process involves rescaling the
data to a fixed range, usually between 0 and 1. In general, we determine the minimum
(σi(min)) and maximum (σi(max)) values of the feature we want to normalize. Then, we
calculate the range of the feature by subtracting the minimum value from the maximum
value: σi(max) − σi(min). Therefore, for each data point (σi) in the feature, we apply the
min–max normalization formula. The min–max(σi(normalized)) scale is as follows:

σi(normalized) =
σi − σi(min)

σi(max) − σi(min)
(4)

By following Equation (4), we guarantee uniform scaling across all nodes, ensuring
that each node’s data are standardized to the same scale relative to the entire dataset.
Normalization not only ensures that both factors are scaled within the range of [0, 1], but
also ensures equal contribution from both factors in the analysis, facilitating a balanced
consideration of encounter rate and remaining energy when selecting cluster heads. Conse-
quently, the normalized expressions for encounter rate (ϕi) and remaining energy (Ψi) for
node i, utilizing the min–max scaling technique, can be articulated as follows:

ϕi(normalized) =
ϕi − ϕi(min)

ϕi(max) − ϕi(min)
(5)

and

Ψi(normalized) =
ψi − ψi(min)

ψi(max) − ϕi(min)
(6)

Therefore, utilizing Equations (5) and (6), we introduce a heuristic function for the
selection of cluster heads. The heuristic function ξi is as follows:

ξi = ϕi(normalized) + Ψi(normalized) (7)

The χi is a vehicle selected as the group leader and maintains a routing table for every
vehicle in its cluster. Based on the χi, clusters are formed (Ci), with each cluster containing
some nodes (Mi) that are supported by its respective cluster head χi. However, due to
estimation errors in contact probabilities and unpredictable sequencing of meetings among
mobile nodes, it is possible for numerous small or large clusters to form, some of which may
have significant overlap with other clusters. To address this problem, we propose a novel
strategy where each cluster (Ci) maintains an Overlapping Degree (OD) with other clusters,
indicating the count of shared members among them. Assume Ci represents the i-th cluster,
ℵq represents the q-th common member, and βχi represents the transmission range of the
i-th χ, whereas every cluster head maintains a consistent maximum transmission distance
(βχi ≤ R). In cases where there is no overlap (OD = 0), the cluster head can adjust its
transmission range (βχi ) to establish communication with other clusters. Additionally, we
introduce a limit of common members between clusters. After experimenting with different
values, we found that a maximum of five common members between clusters provides
ideal clustering. Put differently, we establish a boundary wherein clusters can share a
maximum of five common members and a minimum of two. Having a cluster size larger
than five common members results in less ideal conditions with significant overlap among
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clusters. Moreover, the cluster head should not be a common member (χi ̸= ℵq) among
the clusters. This ensures that the clusters remain ideal and do not overlap completely,
thereby increasing their clustering effectiveness. Furthermore, clusters interact with each
other through common members and also have members that are unique to each cluster. In
other words, each cluster has common members and non-common members between other
clusters. Additionally, if members within each cluster are unable to communicate with
their cluster head, they have the capability to independently increase their transmission
range. Whenever a node has difficulty communicating with its cluster head, it can extend
its transmission range. Our experiment shows that even a slight increase in transmission
range allows a node to communicate with the cluster head, given their Euclidean distance
proximity. In addition, clusters must have minimal connectivity with other clusters to
facilitate communication through shared members. Ultimately, the cluster must satisfy one
of the constraints listed below.

(2 ≤ OD ≤ 5) OR (Mi ≥ 5) (8)

According to Equation (8), if the specific cluster Ci has less than two members in
common, the χi should increase the transmit range to be able to connect with other clusters.
In this way, the communication between the clusters is permanent and it becomes possible
to send the packet in the whole network through common members. Furthermore, if
the cluster is unable to satisfy the specified constraint (2 ≤ OD ≤ 5), it must consist
of a minimum of Mi = 5 members. This ensures that the cluster head can extend its
transmission range in cases where the cluster comprises fewer than five members (Mi < 5).
For clarity, we highlight that these numbers are obtained based on our simulation studies
and the value depends on the network specifications. This implies that the values could be
different within a different network with different specifications to achieve better results.
We assume that if χi has fewer than two common members (OD < 2), or if the cluster head
has fewer than five members (Mi < 5), the cluster head will increase its transmission range
by the amount of ∆, where ∆ represents the minimum distance between a cluster head and
its members. We expand the transmission range of the cluster head by integrating the value
of ∆ until it fulfills one of the conditions specified in Equation (8). Put simply, if the cluster
head fails to meet the specified constraints, it should augment its transmission range (βχi )
by adding ∆ to it (βχi = βχi + ∆).

In the third stage, after clustering, a new routing method is introduced for improved
results between the source (S) and destination (D). This routing method focuses on inter-
cluster communication, allowing each cluster to have limited connections with other
clusters. This enables optimal selection of subsequent transfer and forwarding nodes
towards the destination. Limiting the common members serves two purposes. Firstly, it
ensures optimal clustering and unique members for each cluster. Secondly, the common
members are responsible for routing as they can carry packets between clusters. Figure 2
illustrates a cluster configuration with common members, which means that each cluster
communicates with other clusters (2 ≤ OD ≤ 5) through common members. For example,
envision a situation where the source node V1 inside cluster C1 sends a packet intended
for V10 to its cluster head χ1. Afterward, χ1 relays the packet to a common member, ℵ1,
which serves as the intermediary node shared between clusters C1 and C2. As ℵ1 is a shared
member between the two clusters, it is able to communicate with the cluster head of the
other cluster χ2 and transfer packets to χ2. If χ2 finds the destination node in its list, it
dispatches the packet to V10. Otherwise, the packet is routed to the shared node ℵ2 in
other clusters until it reaches the intended destination. This packet routing process can be
depicted as follows:

V1 → χ1 → ℵ1

{
V10 i f V10 ∈ χ2

χ2 → ℵ2 → χ3 → V10, ...
(9)
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This method follows a reliable routing to the destination of the packet. In the final
stage, after a time interval, clustering is conducted again and phases one, two, and three
are repeated. Due to the high mobility of nodes in these networks, any node can leave the
cluster and new nodes can join the cluster.

According to the four phases mentioned above, we present the proposed Algorithm 1.
As shown in the algorithm, when a node V2 wants to send a message to a vehicle at a great
distance (V12), vehicles receive information from GPS. The distance between each vehicle
is then calculated using the Euclidean distance (from lines 1 to 5). χi with the highest
encounter rate and maximum remaining energy is selected for a group of vehicles (lines 6,
7, and 8). As long as conditions (Mi < 5 OR OD < 2) AND (βχi ≤ R AND χi ̸= ℵq) are
not fulfilled, the cluster head maintains the capability to enhance its transmission range by
the value of ∆ (lines 9 and 10). The routing phase starts, and the source node V2 into cluster
sends a message to its cluster head χ1 (line 12). The χ1 looks into the list of members, and
as explained above, each cluster head has its own table (list) of members. If the destination
node is not on the χi’s list of members, the packet is sent to the ℵq (it can be seen in lines
13 to 17). The next step is for the ℵq to send the packets to the neighboring cluster head
χ2 that it is a member of, and so on until the packet reaches its destination V12, these
steps will be repeated (line 20). Furthermore, the updating interval is independent of the
contact duration, emphasizing that the number of encounters is the determining factor in
our algorithm.

Algorithm 1 ACRP
Input: GPS data

1: for Vi ∈ V do
2: for Vj ∈ V do
3: Calculate the distance between Vi and Vj Euclidean distance d(Vi ,Vj)

=√
(XVi − XVj)

2 + (YVi −YVj)
2

4: end for
5: end for
6: Calculate ξi
7: ξ sorted from maximum to minimum value
8: The cluster heads (χ1, χ2, χ3, ..., χi) are selected from the maximum ξ value, respectively.
9: while (Mi < 5 OR OD < 2) AND (βχi ≤ R AND χi ̸= ℵq) do

10: βχi = βχi + ∆
11: end while
12: Vi → Send packet to χi
13: χi ← Receive the packet
14: χi check its list
15: if the destination address is at χi list then
16: χi → send the packet to the destination
17: Vi ← Receive the packet through χi
18: else
19: χi → Send packet to ℵq in Ci
20: Repeat lines 12 to 19
21: end if
22: interval time=0
23: Repeat line 1
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Figure 2. Routing based on dynamic clustering through common members where S and D are source
and destination nodes respectively.

4. Simulation Studies
4.1. Parameters of Simulation

We compare our work against well-known clustering-based routing protocols such
as [13,14,17,19–22]. The evaluation is based on hop count, delivery ratio average, through-
put, and end-to-end delay. To evaluate the ACRP in relation to mobility patterns and
vehicle movement, we have simulated a DTN with specific configurations given in Table 1.
Using the ACRP, we strategically convert this simulated DTN into a network employing
TCP/IP protocols through the adaptive clustering of nodes. This transformation is a pivotal
component of our protocol’s capability to enhance network connectivity and performance.
We utilized the Opportunistic Network Environment (ONE) simulator. ONE is an open-
source simulation tool for the development and testing of routing protocols, based on
Java [23]. It can be extended for analyzing protocols and network mobility models for
delay-tolerant networking. With ONE, it is easy to integrate contact records, route modules,
applications, and reports [24]. For the ACRP, we used the default ONE simulation map
from Helsinki, Finland. The geographical space for this experiment is 4000 × 3500 m2 in
size, with 50, 100, 150, 200, and 250 nodes distributed at random. In this setting, 64% of the
nodes represent vehicles moving from their current location to a randomly selected point
via the shortest route. These vehicles travel in one direction at speeds of 2.7 to 13.9 m/s.
The remaining nodes follow predefined routes like tram lines and travel at a speed between
7 and 10 m/s. All nodes have a transmission range of 20 m, except trams, which can
transmit up to 200 m. Each message generated in the network has a time-to-live value of
300 s. The generated messages range in size from 250 to 750 KB. The nodes’ buffer sizes are
5, 10, 15, and 20, respectively, and the starting point is 5 MB. The coordinates of the cluster
head nodes in each clustering can be acquired during a specific round of data collection,
following the cluster head election procedure described in Equation (7). Table 1 shows the
summary of the parameters.
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Table 1. Experimental parameters.

No. Parameters Value

1 Simulation tool The ONE and MATLAB
2 Routing protocols Cluster-based routing
3 Number of nodes 50, 100, 150, 200, and 250
4 Network size 4000 × 3500 m2

5 Mobility model Shortest Path Map
6 Channel type Wireless channel
7 Message size 250–750 KB
8 Buffer size 5, 10, 15, and 20 Mb
9 Total simulation time 1 h
10 Source and distention selection Random
11 Message TTL 300 MS
12 Interval time 30 S
13 Maximum transmit range of vehicles 100 M
14 Maximum transmit range of trams 300 M
15 Vehicle speeds 2.7–13.9 m/s
16 Tram speeds 7–10 m/s

4.2. Delivery Ratio

In brief, delivery rate is the main network metric used to evaluate network perfor-
mance. It is defined as the ratio of the number of packets successfully delivered to the
destination to the number of packets sent by the source node. The equation for the Num-
ber of Delivered Bundles (NDB) against the Number of Generated Bundles (NGB) is as
follows [25]:

Delivery Ratio =
NDB
NGB

(10)

4.3. End-to-End Delay

It is defined as the time it takes for a packet to travel from source to destination on a
network [26]. As shown by

End-to-End delay =
ET − ST

NC
(11)

where ET is the end time and ST is the start time. NC represents how many hops there are
between the source and destination.

4.4. Hop Count

A hop count refers to the total number of intermediate devices, such as nodes, that a
data packet must traverse between its source and destination. Each node along the data
path represents a hop, transferring data from one source to another [27].

4.5. Throughput

This metric shows the amount of data transmitted from a source to a destination per
time unit over a communication link. It is measured in bits per second [28].

Average Throughput =
PDR

ST − SPT
(12)

PDR stands for packet delivery ratio, and ST− SPT stands for start time and stop time.

4.6. Reachability

It is calculated as the proportion of successful route discovery attempts out of the total
number of route discovery operations [29].
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5. Experiment and Result

Average Overlapping Degree (AOD) is defined as the average overlap degree between
any two overlapping clusters in the network. Let us consider that A and B are the cluster
head nodes in two clusters. We assume that OD is the maximum overlapping degree
between the two clusters, where OD ̸= 0. Two symmetrical circles with radius R =
maximum βC = maximum βχi , where βC is the range of communication between sensors,
which are present in cluster A or B. Notice that OD is specifically defined for clusters that
overlap (OD ̸= 0). We calculate the AOD as the mean value of this random variable OD.
d(A,B) is the Euclidean distance between the two nodes A and B. In other words, d(A,B) is
a continuous random variable that can contain values ranging from 0 to 2R. In the case
of d(A,B) = 0, there should be complete overlaps between two clusters; on the other hand,
when d(A,B) is greater than or equal to 2R, there should be no overlap. In the simulation
study, we investigated the degree of overlap with increasing ∆ value and without increasing
∆ value. Our method might not achieve complete overlap (100%). Moreover, there could be
instances where a direct path between the source and destination is unavailable at certain
times, but with ∆, achieving satisfactory AOD is feasible.

In Figure 3A,B, it is shown that as the number of clusters increases, the average overlap
between clusters increases. However, Figure 3B demonstrates a significant improvement
in the overlapping degree between clusters when comparing clustering with and without
increasing ∆. Therefore, this method enhances routing and reduces delay. During sev-
eral practical experiments, utilizing 60 clusters, we observed a 34% improvement with
increasing ∆ compared to without increasing ∆, and we also found an almost 98% overlap
between clusters.
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Figure 3. Overlapping percentages of ACRP ((A), without increasing ∆ value and (B), with increasing
∆ value).

Figure 4 shows the efficient performance ACRP method in the DR compared to other
clustering methods such as QoS-OLSR [17], CBVRP [21], kRop [13], and AMRBC [20].
ACRP routing protocols illustrate a very high and approximately stable DR during the
simulation. This is because ACRP considers the encounter rate, giving more weight to
nodes in high-density areas to be considered as cluster heads. This strategy increases the
likelihood of a high delivery ratio, contributing to the consistent performance observed
across different node densities. Figure 4 illustrates that the ACRP, when deployed with
250 nodes, achieved a DR improvement exceeding 28% in comparison to QoS-OLSR. Fur-
thermore, the AMRBC exhibited suboptimal performance, lagging behind other protocols.
In contrast, ACRP outperformed AMRBC by a substantial margin, achieving an impressive
51% enhancement. Additionally, when considering the highest number of nodes (250),
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ACRP exhibited superiority over both kRop and CBVRP, with enhancements exceeding 5%
and 13%, respectively. Our approach selects the cluster head based on the highest encounter
rate and the highest remaining energy. This prioritizes both network connectivity and
energy efficiency, ensuring that the cluster head effectively manages message forwarding
while conserving energy resources. In contrast, the KRop method, which relies on the
k-Means algorithm, may suffer from suboptimal cluster formations due to sensitivity to
initial cluster centroid selection. Similarly, in the CBVRP approach, clusters formed may
not consistently optimize communication efficiency or network coverage. However, with
ACRP, by enforcing constraints on cluster overlap and member count, we aim to create
optimal clusters that maximize both communication efficiency and coverage.
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Figure 4. The delivery ratio in different node densities.

The end-to-end average delay refers to the time taken for a packet to traverse a net-
work from its source to its destination. In the context of networking, this metric captures
the average duration between a packet leaving its origin and reaching its final endpoint.
Figure 5 demonstrates that the ACRP protocol exhibits a reduced end-to-end delay com-
pared to other protocols. Specifically, compared to fuzzy-AODV [22] and QoS-OLSR [17],
CBVRP [21], and AMRBC [20], ACRP was able to reduce end-to-end delay more effectively.
Additionally, under conditions of both lowest density and highest density, ACRP experi-
ences significant reductions: over 17%, 3%, 3%, and 7% for the former, and an impressive
42%, 38%, 13%, and 20% for the latter. This improvement can be attributed to the presence
of common nodes, which facilitate shorter packet travel distances and consequently lead to
reduced delays from source to destination.

Figure 6 shows the total number of intermediate nodes that a data packet must
traverse between the source and destination. Along the data path, each node forms a hop,
transferring data from one source to another. When compared to QoS-OLSR [17], kRop [13],
and LBC [14] methods, the ACRP method reduced hop count by over 33%, 44%, and 76%
at the highest node densities (250), respectively. Due to the fact that this protocol only uses
the common member and cluster head to transmit packets, communication between the
source and destination does not require sending packets to every member.

A decreased hop count indicates shorter transmission distances between nodes, lead-
ing to lower energy consumption in relaying messages within the network. Therefore,
the reduced energy expenditure per hop contributes to an overall decrease in energy us-
age across the network. Additionally, extended network longevity is achieved through
decreased energy consumption, thereby preserving energy resources.



Information 2024, 15, 283 13 of 16

0

50

100

150

200

250

300

50 100 150 200 250

A
v

er
a

g
e 

E
-T

o
-E

 D
el

a
y

-

Number of Nodes

ACRP QoS-OLSR Fuzzy-AODV CBVRP AMRBC

Figure 5. The end-to-end different node densities.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

50 100 150 200 250

ACRP QoS-OLSR kRop LBC

H
op

e 
C

ou
nt

Number of Nodes

Figure 6. The hop count averages different node densities.

Figure 7 shows the number of packets that transmit from source to destination
(throughput) based on Bit/Sec, and the performance of the ACRP method reached the high-
est amount when compared to other protocols. It is evident that the ACRP method exhibits
superior performance when compared to the CBVRP [21], QoS-OLSR [17], AMRBC [20],
and CRLLR [19] approaches. Among the examined methods, ACRP demonstrates superior
performance with a 27%, 50%, 54%, and 54% advantage over CBVRP, QoS-OLSR, AMRBC,
and CRLLR, respectively, in the scenario with the lowest node numbers (50). Additionally,
in the highest density scenario (250), ACRP outperforms other methods by 9%, 46%, 60%,
and 16%, respectively. Two factors contribute to this: firstly, as indicated by Equation (7),
the proper selection of the cluster head establishes a robust link between the member node
and its respective cluster head. Secondly, transmitting data via shared members across
clusters has led to an augmentation of this parameter.
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Speeding up the node causes a change in reachability. As the success of route discovery
is influenced by the change in network topology, reachability is correlated with node speed.
With increasing the speed of vehicles, reachability is decreased. This means network
topology changes accelerate as node speed increases, which reduces reachability. The
ACRP method remains stable during simulation over 80% with different densities. Due to
connection and routing by cluster head, each cluster can be viewed as a node that moves
throughout the network. The network topology is less affected by node mobility. As a
result, this reduces the number of routing table updates since the network topology changes
only when a cluster is changed. As shown in Figure 8, we can see that ACRP achieved
more than 80% access from the lowest speed to the highest speed. For example, it reached
87% with the highest speed.
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Figure 8. The percentage of reachability with different speed.

The efficacy of the ACRP was evaluated across a range of network sizes (500, 600, 700,
800, 900, and 1000) in terms of packet delivery ratio. Figure 9 demonstrates that the ACRP
consistently exhibits the highest packet delivery ratios across varying network sizes. For
example, in the lowest and highest network sizes, the ACRP achieves a remarkable delivery
ratio exceeding 89%.
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Figure 9. Delivery ratio packets for various network sizes.

6. Conclusions and Future Work

OppNets present unique challenges due to their intermittent connectivity and dynamic
network topologies. Traditional routing protocols struggle in these environments, often
leading to high resource consumption and inefficient performance. This paper proposes
a novel Adaptive Clustering-based Routing Protocol (ACRP) specifically designed for
OppNets. ACRP leverages a member-based adaptive dynamic clustering approach to
create a structured network that facilitates efficient routing. Our simulation results demon-
strate that ACRP outperforms existing clustering protocols in terms of packet delivery
ratio (increased by 28%), end-to-end delay (reduced by 42%), throughput (increased by
45%), hop count (reduced by 44%), and network reachability (increased by 80%). These im-
provements highlight the effectiveness of ACRP in enhancing communication performance
within OppNets.

In our future work, we aim to reduce energy consumption and improve important
network parameters using machine learning algorithms.
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