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Abstract: A measurement performed on a quantum system is an act of gaining information about its
state. However, in the foundations of quantum theory, the concept of information is multiply defined,
particularly in the area of quantum reconstruction, and its conceptual foundations remain surprisingly
under-explored. In this paper, we investigate the gain of information in quantum measurements from
an operational viewpoint in the special case of a two-outcome probabilistic source. We show that the
continuous extension of the Shannon entropy naturally admits two distinct measures of information
gain, differential information gain and relative information gain, and that these have radically different
characteristics. In particular, while differential information gain can increase or decrease as additional
data are acquired, relative information gain consistently grows and, moreover, exhibits asymptotic
indifference to the data or choice of Bayesian prior. In order to make a principled choice between
these measures, we articulate a Principle of Information Increase, which incorporates a proposal due to
Summhammer that more data from measurements leads to more knowledge about the system, and
also takes into consideration black swan events. This principle favours differential information gain
as the more relevant metric and guides the selection of priors for these information measures. Finally,
we show that, of the symmetric beta distribution priors, the Jeffreys binomial prior is the prior that
ensures maximal robustness of information gain for the particular data sequence obtained in a run
of experiments.

Keywords: information gain; Kullback–Leibler divergence; Bayesian analysis; Jeffreys prior; foundation of
quantum theory

1. Introduction

A measurement performed on a quantum system is an act of acquiring information
about its state. This informational perspective on quantum measurement is widely em-
braced in practical applications such as quantum tomography [1–4], Bayesian experimental
design [5], and informational analysis of experimental data [6,7]. It is also embraced in
foundational research.

In particular, information assumes a central role in the quantum reconstruction pro-
gram [8], which seeks to elucidate the fundamental physical origins of quantum theory by
deriving its formalism from information-inspired postulates [9–17]. Nonetheless, in the
foundational exploration of quantum theory, the concept of information is articulated and
formalized in many different ways, which raises the question of whether there exists a
more systematic basis for choosing how to formalize the concept of information within
this domain.

In this paper, we scrutinize the notion of information from an operational standpoint
and propose a physically intuitive postulate to determine the appropriate information
gained from measurements.

In both tomographic applications and reconstruction of quantum theory, the focus
often lies on probability distributions of physical parameters or quantities, which are up-
dated based on the measurement results. In these contexts, the outcomes of a measurement
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performed on a quantum system are modelled as the interrogation of an n-outcome prob-
abilistic source characterised by a set of parameters. For example, a given measurement
on a given system can be described by a probability distribution Pr(x|D) of a quantity x,
which is updated from a prior probability distribution given the results D obtained from a
series of measurements performed on identical copies of a system. It is natural to consider
using Shannon entropy to quantify the information gained from this updated distribution.
However, Shannon entropy is limited to discrete distributions, whereas physical quantities
and their associated probability distributions can be continuous.

The question thus arises: What is a suitable measure for quantifying the information
obtained from real data, especially for quantities associated with continuous probability
distributions?

One potential solution is to employ Kullback–Leibler (KL) divergence, also known as
the relative entropy, H(x|D) =

∫
Pr(x|D) ln Pr(x|D)

Pr(x|I) dx, where Pr(x|I) represents the prior
distribution of x, and Pr(x|D) represents the posterior distribution of x updated with the
data D. This quantity is commonly referred to as the information gain from the prior
distribution to the posterior distribution, and is widely used.

Since the KL divergence is non-negative and invariant under changes of coordinates, it
appears to be a reasonable generalization of the Shannon entropy for continuous probability
distributions. However, there are situations where information gain defined in terms of the
KL divergence does not have a unique representation. Consider a scenario where one has
acquired a series of data D, and one proceeds to take additional measurements, obtaining
additional data D′. What is the additional information gain pertaining to D′? Using the KL
divergence, there are two distinct ways to express the information related to this additional
data. The first, to which we refer henceforth as the differential information gain, is simply
the difference between the information gain from the combined dataset {D, D′} and the
information gain from D alone (see Figure 1). The second, which we refer to as the relative
information gain, is given by the KL divergence of the posterior distribution after obtaining
the complete dataset {D, D′} compared to the posterior distribution after receiving data D
alone (see Figure 2). These two measures of information gain exhibit notably different char-
acteristics. For instance, whether the differential information gain increases or decreases
when data D′ is acquired depends on the choice of the prior distribution over the parameter,
while the relative information gain consistently increases regardless of the choice of prior.

As we shall discuss in Section 2, both of these measures can be viewed as arising as
a consequence of seeking to generalize the Shannon entropy to continuous probability
distributions. In order to determine which of these options is most appropriate for our
purposes, we seek a physically intuitive informational postulate to guide our selection. The
first criterion comes from the intuitive notion proposed by Summhammer [18,19] that more
data from measurements leads to more knowledge about the system. This idea has its origin in the
observation that, as we conduct more measurements to determine the value of a physical
quantity, the measurement uncertainty tends to decrease. In the following, we employ
information theory to formalize and explore the plausibility of this idea. We find that
relative information gain is consistently non-negative, whereas the positivity of differential
information gain hinges on the choice of the prior distribution.

Contrary to Summhammer’s criterion, we argue that under certain circumstances,
negative information gain due to acquisition of additional data D′ is also meaningful. Take,
for instance, the occurrence of a black swan event: an event so rare and unexpected that it
significantly increases one’s uncertainty about the colour of swans. If the gain of information
is considered to result from a reduction in the degree of uncertainty, the information gain
associated with the observation of a black swan should indeed be negative. By combining
this observation with Summhammer’s criterion, we are led to the Principle of Information
Increase: the information gain from additional data should be positive asymptotically and
negative in extreme cases. On the basis of the Principle of Information Increase, in the case
of a two-outcome probabilistic source, we show that differential information gain is the
more appropriate measure.
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In addition, we formulate a new criterion, the robustness of information gain, for selecting
priors to use with the differential information gain. The essential idea behind this criterion
is as follows. If the result of the additional data D′ is fixed, then the information gain due
to D′ will vary for different D. Robustness quantifies this difference in information gain
across all possible data D. We show that for a two-outcome probabilistic source amongst
the symmetric beta distributions, the Jeffreys binomial prior exhibits the highest level
of robustness.

The quantification of knowledge gained from additional data is a topic that has re-
ceived limited attention in the literature. In the realm of foundational research on quantum
theory, this issue has been acknowledged but not extensively explored. Summhammer
initially proposed the notion that “more data from measurements lead to more knowledge
about the system” but did not employ information theory to address this problem, instead
using changes in measurement uncertainty to quantify knowledge obtained in the asymp-
totic limit. This approach limits the applicability of the idea, as it excludes considerations
pertaining to prior probability distributions and does not readily apply to finite data.

Wootters demonstrated the significance of the Jeffreys prior in the context of quantum
systems from a different information-theoretical perspective [20]. In the domain of commu-
nication through quantum systems, the Jeffreys prior can maximize the information gained
from measurements. Wootters approaches the issue from a more systematic perspective,
utilizing mutual information to measure the information obtained from measurements.
However, mutual information quantifies the average information gain over all possible data
sequences, which is not suitable for addressing the specific scenario we discussed earlier, for
which the focus is on the information gain from a fixed data sequence.

More broadly, the question of how much information is gained with the acquisition of
additional data has been a relatively under-explored topic in both practical applications and
foundational research on quantum theory. Commonly, mutual information is employed as
a utility function. However, as noted above, mutual information essentially represents the
expected information gain averaged over all possible data sequences. Consequently, it does
not address the specific question of how much information is gained when a particular
additional data point is obtained. From our perspective, this averaging process obscures
essential edge effects, including black swan events, which, as we will discuss, serve as
valuable guides for selecting appropriate information measures.

While our investigation primarily focuses on information gain in quantum systems,
we conjecture that the principles and conclusions we draw can be extended to general
probabilistic systems. Based on our analysis, we recommend quantification using differ-
ential information gain and the utilization of the Jeffreys multinomial prior. If one seeks
to calculate the expected information gain in the next step, both the expected differential
information gain and the expected relative information gain can be employed since, as we
demonstrate for the two-outcome probabilistic case, they yield the same result.

The paper is organized as follows. In Section 2, we detail the two information gain
measures, both of which have their origins in the generalization of Shannon entropy to
continuous probability distributions. We will also examine Jaynes’ approach to continuous
entropy, which serves as the foundation for understanding these two information gain
measures. Sections 3 and 4 focus on the numerical and asymptotic analysis of differential
information gain and relative information gain for two-outcome probabilistic sources. Our
primary emphasis is on how these measures behave under different prior distributions.
We will explore black swan events, where the additional data D′ are highly improbable
given D. In this unique context, we will assess the physical meaningfulness of the two
information gain measures. In Section 5, we will discuss expected information gain under
the assumption that data D′ from additional measurements have not yet been received.
Despite the general differences between the two measures, it is intriguing to note that the
two expected information gain measures are equal. Section 6 presents a comparison of
the two information gain measures and the expected information gain. It is within this
section that we propose the Principle of Information Increase, which crystallises the results
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of our analysis of the two measures of information gain. Finally, Section 7 explores the
relationships between our work and other research in the field.

2. Continuous Entropy and Bayesian Information Gain
2.1. Entropy of Continuous Distribution

The Shannon entropy serves as a measure of uncertainty concerning a random vari-
able before we have knowledge of its value. If we regard information as the absence of
uncertainty, the Shannon entropy can also be used as a measure of information gained
about a variable after acquiring knowledge about its value. However, it is important to
note that Shannon entropy is applicable only to discrete random variables. To extend the
concept of entropy to continuous variables, Shannon introduced the idea of differential
entropy. Unlike Shannon entropy, differential entropy was not derived on an axiomatic
basis. Moreover, it has a number of limitations.

First, the differential entropy can yield negative values, as exemplified by the dif-
ferential entropy of a uniform distribution over the interval [0, 1

2 ], which equals −log 2.
Negative entropy, indicating a negative degree of uncertainty, lacks meaningful interpre-
tation. Second, the differential entropy is coordinate-dependent [21], so that its value
is not conserved under a change of variables. This implies that viewing the same data
through different coordinate systems may result in the assignment of different degrees of
uncertainty. Since the choice of coordinate systems is usually considered arbitrary, this
coordinate-dependence also lacks a meaningful interpretation.

In an attempt to address the challenges associated with continuous entropy, Jaynes
introduced a solution known as the limiting density of discrete points (LDDP) approach
in his work [22]. In this approach, the probability density p(x) of a random variable X is
initially defined on a set of discrete points x ∈ x1, x2, · · · , xn. Jaynes proposed an invariant
measure m(x) such that, as the collection of points xi becomes increasingly numerous, in
the limit as n → ∞,

lim
n→∞

1
n

(number of points in a < x < b) =
∫ b

a
m(x)dx (1)

With the help of m(x), the entropy of X can then be represented as

H(X) = lim
n→∞

log n −
∫

p(x) log
p(x)
m(x)

dx (2)

In this manner, the weaknesses associated with differential entropy appear to be
resolved. This quantity remains invariant under changes of variables and is always non-
negative. A similar approach is also discussed in [21]. However, two new issues arise. In
Equation (2), H(X) contains an infinite term, and the measure function m(x) is unknown.

Regarding the infinite term, two potential solutions exist. The first option is to retain
this infinite term and to reserve interpretation to the difference in the continuous entropy of
two continuous distributions. The second solution is more straightforward: simply to omit
the problematic log n term.

1. Entropy of continuous distribution as a difference:
For example, when variable X is updated to X′ due to certain actions, the decrease in
entropy can be expressed as:

∆H(X → X′) ≡ H(X′)− H(X) =
∫

p′(x) log
p′(x)
m(x)

dx −
∫

p(x) log
p(x)
m(x)

dx (3)

where p′(x) represents the probability distribution of X′. Here, the two infinite terms
cancel. The quantity ∆H quantifies the reduction in uncertainty about variable X
resulting from these actions. This reduction in uncertainty can also be interpreted as
an increase in information.
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2. Straightforward solution:
Jaynes directly discards the infinite term in Equation (2). For the sake of convenience,
the minus sign is also dropped. This leads to the definition of Shannon–Jaynes information:

HJaynes(X) =
∫

p(x) log
p(x)
m(x)

dx (4)

This term quantifies the amount of information we possess regarding the outcome
of X rather than the degree of uncertainty about X. HJaynes is equivalent to the KL
divergence between the distributions p(x) and m(x).

In short, there are two ways to represent the entropy of a continuous distribution, with
no obvious criterion to choose between them. In a special case where the variable X initially
follows a distribution identical to the measure function, i.e., p(x) = m(x), and X undergoes
evolution to X′ with distribution p′(x), then we find that ∆H(X → X′) = HJaynes(X′).

The remaining challenge lies in the selection of the measure function m(x). When
applying this concept of continuous entropy to the relationship between information theory
and classical statistical physics, Jaynes opted for a uniform measure over phase space [22].
However, there is no established criterion for the choice of the measure function in any
given application. We note that this measure function is analogous to the prior distribution
in the context of Bayesian probability, with which it is often identified, which then leads to
the well-known challenge of prior selection in Bayesian data analysis.

2.2. Bayesian Information Gain

In a coin-tossing model, let p denote the probability of getting a head in a single toss,
and let N be the total number of tosses. After N tosses, the outcomes of these N tosses can
be represented by an N-tuple, denoted as TN = (t1, t2, · · · , tN), where each ti represents
the result of the ith toss, with ti taking values in the set {Head, Tail}. Applying the Bayes
rule, the posterior probability for the probability of getting a head is given by:

Pr(p|N, TN , I) =
Pr(TN |N, p, I)Pr(p|I)∫
Pr(TN |N, p, I)Pr(p|I)dp

(5)

where Pr(p|I) represents the prior. The information gain after N tosses would be the KL
divergence from the prior distribution to the posterior distribution:

I(N) = DKL(Pr(p|N, TN , I)||Pr(p|I)) =
∫ 1

0
Pr(p|N, TN , I) ln

Pr(p|N, TN , I)
Pr(p|I) dp (6)

Based on the earlier discussion on continuous entropy, this quantity can be interpreted
in two ways, either as the difference between the information gain after N tosses and the
information gain without any tosses or as the KL divergence from the posterior distribution
to the prior distribution.

When considering the information gain of additional tosses based on the results of the
previous N tosses, we may observe two different approaches to represent this quantity.

Let tN+1 represent the outcome of the (N + 1)th toss, and let TN+1 = (t1, t2, . . . , tN, tN+1)
denote the combined outcomes of the first N tosses and the (N + 1)th toss. The posterior
distribution after these N + 1 tosses is given by:

Pr(p|N + 1, TN+1, I) =
Pr(TN+1|N + 1, p, I)Pr(p|I)∫
Pr(TN+1|N + 1, p, I)Pr(p|I)dp

(7)

When considering information gain as a difference between two quantities, the first
form of information gain for this single toss tN+1 can be expressed as:

Idiff = DKL(Pr(p|N + 1, TN+1, I)||Pr(p|I))− DKL(Pr(p|N, TN , I)||Pr(p|I)) (8)
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In this expression, the first term H(Pr(p|N + 1, tN+1, I)||Pr(p|I)) represents the infor-
mation gain from 0 tosses to N + 1 tosses, while the second term H(Pr(p|N, TN , I)||Pr(p|I))
represents the information gain from 0 tosses to N tosses. The difference between these
terms quantifies the information gain in the single (N + 1)th toss (see Figure 1). In this
context, we can refer to Idiff as the differential information gain in a single toss.

prior posterior
post-

posterior

I(N) =

H(posterior||prior)
I(N + 1) =

H(post-posterior||prior)

Idiff = I(N + 1) − I(N)

TN tN+1

Figure 1. Differential information gain in a single toss. Assuming we have data from the first N tosses,
denoted as TN . Using a specific prior distribution, we can calculate the information gain for these
first N tosses, denoted as I(N). If we now consider the (N + 1)th toss and obtain the result tN+1, we
can repeat the same procedure to calculate the information gain for a total of N + 1 tosses, denoted
as I(N + 1). The information gain specific to the (N + 1)th toss can be obtained as the difference
between I(N + 1) and I(N).

Alternatively, we directly calculate the information gain from the Nth toss to the
(N + 1)th toss. Hence, the second form of information gain is defined as follows:

Irel = DKL(Pr(p|N + 1, TN+1, I)||Pr(p|N, TN , I)), (9)

which is simply the KL divergence from the posterior distribution after N tosses to the
posterior distribution after N + 1 tosses (see Figure 2). We refer to Irel as the relative
information gain in a single toss.

prior posterior
post-

posterior

Irel = H(post-posterior||posterior)

tN+1TN

Figure 2. Relative information gain in a single toss: The posterior distribution calculated from the
results of the first N tosses serves as the prior for the (N + 1)th toss. The KL divergence between this
posterior and the subsequent posterior represents the information gain in the (N + 1)th toss.

In general, these two quantities, Idiff and Irel, are not the same unless N = 0, which im-
plies that no measurements have been performed. Idiff could take on negative values, while
Irel is always non-negative due to the properties of the KL divergence. (This non-negativity
is a consequence of Jensen’s inequality applied to the convex logarithmic function, en-
suring that the expected logarithmic difference between two probability distributions,
which constitutes the KL divergence, cannot be negative.) Although KL divergence is not a
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proper distance metric between probability distributions (as it does not satisfy the triangle
inequality), it is a valuable tool for illustrating the analogy of displacement and distance in
a random walk model. (In a random walk, the change in total distance after N + 1 steps
compared to after N steps could be either positive or negative, analogous to how Idiff can
have positive or negative values. On the other hand, the net displacement between the
positions at step N and step N + 1 represents the absolute change in position, which is
analogous to Irel always having a non-negative value.) This analogy helps elucidate the
subtle difference between the two types of information gain.

Our goal is to determine which information gain measure is a more suitable choice.
To do so, we use Summhammer’s aforementioned postulate—“more measurements lead
to more knowledge about the physical system” [18,19]—as our point of departure. If we
quantify “knowledge” in terms of information gain from data, this notion suggests that
the information gain from additional data should be positive if it indeed contributes to
our understanding. This consideration makes relative information gain seem an appealing
choice, as it is always non-negative. However, the derivation of differential information
gain also carries significance. This leads to the question of whether Summhammer’s
intuitive idea is sufficient, and if not, what can replace it. In the following sections, we first
will investigate differential information gain in both the finite N and asymptotic cases. We
will explore the implications of negative values of differential information gain, particularly
in extreme situations. We will then conduct numerical and asymptotic analyses of relative
information gain. After analysing both measures of information gain, we will be better
equipped to compare and establish connections between them and to assess the physical
meaningfulness of Summhammer’s proposal.

3. Differential Information Gain
3.1. Finite Number of Tosses

For the prior distribution, we employ the symmetric beta distribution, which serves as
the conjugate prior for the binomial distribution:

Pr(p|I) = pα(1 − p)α

B(α + 1, α + 1)
(10)

where α > −1, and B(·, ·) is the beta function.
In general, the beta distribution is characterized by two parameters. However, as the

prior over p is invariably taken to be symmetric about p = 1/2 (which follows from the
desideratum that the prior be invariant under outcome relabelling), we use a symmetric,
single-parameter beta distribution. This distribution encompasses a wide spectrum of
priors, including the uniform distribution (when α = 0) and the Jeffreys binomial prior
(when α = −0.5).

The differential information gain of the (N + 1)th toss is (see Appendix A)

Idiff = ψ(hN + α + 2)− ψ(N + 2α + 3)

+
hN

hN + α + 1
− N

N + 2α + 2
+ ln

N + 2α + 2
hN + α + 1

(11)

where ψ is the digamma function (the digamma function can be defined in terms of the
gamma function: ψ(x) = Γ′(x)

Γ(x) ), and hN is the number of heads in the first N tosses.
In this context, we assume that tN+1 = ‘Head’. There is also a corresponding

Idiff(tN+1 = ‘Tail’), but there is no loss of generality since we consider all possible values
of TN and since the expressions for both cases (Head and Tail) are symmetric.

Idiff is a function of hN and α, and hN ranges from 0 to N. In the following, we select a
specific value for α and calculate all the N + 1 values of Idiff for each N (see Figure 3).
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3.1.1. Positivity of Idiff

Returning to our initial question—“Will more data lead to more knowledge?”—if
we use the term “knowledge” to represent the differential information gain and use Idiff
to quantify the information gained in each measurement, the question becomes rather
straightforward: “Is Idiff always positive?”

In Figure 3, we present the results of numerical calculations for various values of
N. Upon close examination of the graph, it becomes evident that Idiff is not always
positive, except under specific conditions. In the following sections, we will investigate the
conditions that lead to exceptions.

Figure 3. Differential information gain (Idiff) vs. N for different priors. Here, the y-axis represents the
value of Idiff, and the x-axis corresponds to the value of N. In each graph, we fix the value of α to
allow for a comparison of the behaviour of Idiff under different priors. Given N, there are N + 1
points in the vertical direction as hN ranges from 0 to N. Notably, for α = −0.7, all points lie above
the x-axis, while for other priors, negative points are present, and the fraction of negative points
becomes constant as N increases. The asymptotic behaviour of this fraction is shown in Figure 4.
Moreover, it appears that the graph is most concentrated when α = −0.5, whereas for α < −0.5 and
α > −0.5, the graph becomes more dispersed.

For certain priors, the differential information gain is consistently positive (Figure 3a),
while for other priors, both positive and negative regions exist (Figure 3b–d). We note that
for priors leading to negative regions, the lowest line exhibits greater dispersion compared
to the other data lines. This lower line represents the scenario where the first N tosses all
result in tails, but the (N + 1)th toss yields a head. This situation is akin to a black swan
event, and negative information gain in this extreme case holds significant meaning—if we
have tossed a coin N times and obtaining all tails, we anticipate another tail in the next toss;
hence, receipt of heads on the next toss raises the degree of uncertainty about the outcome
of the next toss, leading to a reduction in information about the coin’s bias.
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3.1.2. Fraction of Negatives

In order to illustrate the variations in the positivity of information gain under different
priors, we introduce a new quantity that we refer as to as the Fraction of Negatives (FoN),
which represents the ratio of the number of hN values that lead to negative Idiff and N + 1.
For instance, if, for a given α, N = 10 and Idiff < 0 when hN = 0, 1, 2, 3, the FoN under
this α and N is 4

11 .
From Figure 4, we identify a critical point, denoted as αp, which is approximately −0.7.

For any α ≤ αp, Idiff is guaranteed to be positive for all N and hN values.

Figure 4. Fraction of Negatives (FoN) vs. N under different values of α. In Figure 3, we can observe
that larger α values lead to more dispersed lines and an increased number of negative values for
each N. We use FoN to quantify this fraction of negative points. It appears that for α ≤ −0.7, FoN
is consistently zero, indicating that Idiff is always positive. For α ≤ −0.5 FoN decreases and tends
to be zero as N becomes large, while for α > −0.5, FoN tends to a constant as N increases, and this
constant grows with increasing values of α.

If α > αp, negative terms exist for some hN ; however, the patterns of these negative
terms differ across various α values.

Additionally, we notice the presence of a turning point, α0 = −0.5. For α ≤ α0, FoN
tends to zero as N increases, whereas for α > α0, FoN approaches a constant as N grows.

A clearer representation of the critical point αp and the turning point α0 can be found
in Figure 5, where the critical point αp is approximately −0.68.
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Figure 5. Fraction of Negatives (FoN) vs. α for different values of N. We identify a critical point, denoted
as αp, where the FoN equals zero when α ≤ αp. The critical point exhibits a gradual variation with
respect to N following these patterns: (i) for small N, αp is in close proximity to −0.68; (ii) for large
N, αp tends to −0.5.

3.1.3. Robustness of Idiff

In Figure 3, different priors not only exhibit varying degrees of positivity but also
display varying degrees of variation in Idiff for different values of hN ; we refer to this as
divergence. The divergence depends upon the choice of prior. To better understand this
dependence, we quantify the dependence of Idiff on hN by the standard deviation of Idiff
across different values of hN . Figure 6 illustrates how the standard deviation changes with
respect to α while keeping N constant.

It is evident that when α is close to −0.5, the standard deviation is at its minimum.
Reduced dependence of Idiff on hN enhances its robustness against the effects of nature, as
we attribute hN to natural factors, while N is determined by human measurement choices.
As N increases, the minimum point approaches −0.5. In the limit of large N, this minimum
point will eventually converge to α = − 1

2 , which means that under this specific choice of
prior, Idiff depends minimally on hN and primarily on N.
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Figure 6. Robustness of differential information gain (Idiff). The y-axis represents the logarithm of the
standard deviation of Idiff over all possible hN values, while the x-axis depicts various selections of
α. A smaller standard deviation indicates that different hN values lead to the same result, implying
greater independence of Idiff from hN . This independence signifies the robustness of Idiff with respect
to the natural variability in hN , as we consider hN to be solely determined by nature. The standard
deviation, given a fixed N, is notably influenced by α, and there exists an α value at which the
dependence on hN is minimized. This particular α value approaches −0.5 as N increases.

3.2. Large N Approximation

Utilizing a recurrence relation and a large x approximation, the digamma function can
be approximated as:

ψ(x) =
1

x − 1
+ ψ(x − 1) ≈ 1

x − 1
+ ln(x − 1)− 1

2(x − 1)
=

1
2(x − 1)

+ ln(x − 1) (12)

As a result, the large N approximation for the differential information gain in
Equation (11) becomes:

Idiff =
2hN + 1

2(hN + α + 1)
− 2N + 1

2(N + 2α + 2)
(13)

Using this approximation, when α = − 1
2 , Idiff =

1
2(N+1) , which shows that Idiff solely

depends on N. This finding aligns with Figure 3, which demonstrates that Idiff is most
concentrated when α = −0.5 and is also consistent with the results of [23].

In Figure 4, we observe that the FoN tends to become constant for very large val-
ues of N. These constants can be estimated using the large N approximation of Idiff in
Equation (13) (see Table 1). If Idiff ≤ 0, then

hN ≤ 2Nα + N + α + 1
4α + 3

, (14)
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and we obtain:
FoN =

1
N + 1

2Nα + N + α + 1
4α + 3

≈ 2α + 1
4α + 3

(15)

This equation aligns with the asymptotic lines in Figure 4, providing support for the
observation mentioned in Figure 3: namely, that for α = −0.7, all points lie above the
x-axis, while for other priors, negative points are present, and the fraction of negative
points becomes constant.

Table 1. Fraction of Negatives (FoN) under selected priors. A comparison between numerical results
and asymptotic results demonstrates their agreement.

α
FoN (Numerical

Result, N = 1000)
FoN (Asymptotic

Result)
Discrepancy between

the Two Results

−0.7 0 0 0
−0.6 0.001 0 0.1%
−0.5 0.013 0 1.3%
−0.4 0.144 0.143 0.1%

0 0.334 0.333 0.1%
1 0.429 0.429 0
3 0.467 0.467 0

4. Relative Information Gain

The second form of information gain in a single toss is relative information gain,
which represents the KL divergence from the posterior after N tosses to the posterior after
N + 1 tosses. We continue to use the one-parameter beta distribution prior in the form of
Equation (10). The relative information gain is (see Appendix B):

Irel(tN+1 = ‘Head’) = ψ(hN + α + 2)− ψ(N + 2α + 3) + ln
N + 2α + 2
hN + α + 1

(16)

Relative information gain exhibits entirely different behaviour compared to differential
information gain. Due to the properties of KL divergence, relative information gain is
always non-negative, eliminating the need to consider negative values. We explore the
dependence of relative information gain on priors and the interpretation of information
gain in extreme cases.

In Figure 7, it becomes evident that, under different priors, the data lines exhibit
similar shapes. This suggests that relative information gain is relatively insensitive to the
choice of priors. On each graph, the top line represents the extreme case where the first N
tosses result in tails and the (N + 1)th toss results in a head. This line is notably separated
from the other data lines, indicating that relative information gain behaves more like a
measure of the degree of surprise associated with this additional data. In this black swan
event, the posterior after N + 1 tosses differs significantly from the posterior after N tosses.
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Figure 7. Relative information gain (Irel) over different priors. The y-axis represents the value of Irel, while
the x-axis represents N. For each N, there are N + 1 different values of Irel. It is important to note
that Irel is consistently positive across these selected priors. Similar to the differential information
gain, each graph displays numerous divergent lines. However, the shape of these divergent lines
remains remarkably consistent across varying values of α. The majority of these lines fall within the
range of Irel between 0 and 0.2.

For small values of N, both the average value and the standard deviation of Irel exhibit
a clear monotonic relationship with α, meaning that larger values of α result in smaller
average values and standard deviations. However, as N becomes large, all priors converge
and become indistinguishable. Nonetheless, it is important to note that relative information
gain remains heavily independent on the specific data sequences (hN). Figure 8 illustrates
how the standard deviation of Irel under different priors converges to the same value as
N increases.
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Figure 8. Robustness of relative information gain (Irel). The y-axis represents the standard deviation
of Irel across all possible values of hN . This demonstrates the substantial independence of Irel from
hN . Additionally, as N increases, the standard deviations tend to approach zero for all priors.

By utilizing the aforementioned approximation of the digamma function, we obtain:

Irel(tN+1 = ‘Head’) ≈ 1
2(hN + α + 1)

− 1
2(N + 2α + 2)

=
N − hN + α + 1

2(hN + α + 1)(N + 2α + 2)

(17)

In the large N limit, Irel becomes:

Irel(tN+1 = ‘Head’) ≈ 1
2N

[(
hN
N

)−1
− 1

]
, (18)

which is independent of α. Thus, it appears that the properties of relative information
gain and differential information gain are complementary to each other. The differences
between them are summarized in Table 2.
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Table 2. Comparison of characteristics of two measures of information gain.

Information Gain Measure Asymptotic forms
(tN+1 = ‘Head’)

Asymptotic Sensitivity
to Prior

Differential Information Gain Idiff ≈ 2hN+1
2(hN+α+1) −

2N+1
2(N+2α+2)

Heavily dependent upon
prior. Independent of hN for

certain priors (α = −1/2).

Relative Information Gain Irel ≈ 1
2(hN+α+1) −

1
2(N+2α+2)

Insensitive to prior. For large
N, only affected by hN .

5. Expected Information Gain

In this section, we discuss a new scenario: after N tosses but before the (N + 1)th toss
has been taken, can we predict how much information gain will occur in the next toss? The
answer is affirmative, as discussed earlier.

After N tosses, we obtain a data sequence TN with hN heads. However, we can only
estimate the probability p based on the posterior Pr(p|N, TN , I). The expected value of p
can be expressed as:

⟨p⟩ =
∫ 1

0
p Pr(p|N, TN , I) dp =

hN + α + 1
N + 2α + 2

(19)

Based on this expected value of p, we can calculate the average of the information gain
in the (N + 1)th toss. We define the expected differential information gain in the (N + 1)th
toss as:

Idiff = ⟨p⟩ × Idiff(tN+1 = ‘Head’) + ⟨1 − p⟩ × Idiff(tN+1 = ‘Tail’)

=
hN + α + 1
N + 2α + 2

ψ(hN + α + 2) +
N − hN + α + 1

N + 2α + 2
ψ(N − hN + α + 2)− ψ(N + 2α + 3)

+
hN + α + 1
N + 2α + 2

ln
N + 2α + 2
hN + α + 1

+
N − hN + α + 1

N + 2α + 2
ln

N + 2α + 2
N − hN + α + 1

(20)

Idiff represents the expected value of differential information gain in the (N + 1)th
toss. Similarly, we can define the expected relative information gain as:

Irel = ⟨p⟩ × Irel(tN+1 = ‘Head’) + ⟨1 − p⟩ × Irel(tN+1 = ‘Tail’)

=
hN + α + 1
N + 2α + 2

ψ(hN + α + 2) +
N − hN + α + 1

N + 2α + 2
ψ(N − hN + α + 2)− ψ(N + 2α + 3)

+
hN + α + 1
N + 2α + 2

ln
N + 2α + 2
hN + α + 1

+
N − hN + α + 1

N + 2α + 2
ln

N + 2α + 2
N − hN + α + 1

(21)

Surprisingly, Idiff = Irel. This relationship holds true for any prior, not being limited
to the beta distribution type prior, and furthermore holds for an arbitrary n-outcome
probabilistic source. Please refer to Appendix C for a detailed proof. This suggests that
there is only one choice for the expected information gain.

We first show the numerical results of expected information gain under different
priors. It is evident that all data points are above the x-axis, indicating that the expected
information gain is positive-definite, as anticipated. Since both Irel and ⟨p⟩ are positive, it
follows that Irel must also be positive.

As with the discussions of differential information gain and relative information gain,
we are also interested in examining the dependence of expected information gain on α or hN .
However, such dependence appears to be weak, as illustrated in Figures 9 and 10. Expected
information gain demonstrates strong robustness concerning variations in α and hN .

The asymptotic expression of expected information gain is

Idiff = Irel =
1

2N
(22)
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Figure 9. Expected information gain vs. N for fixed α. The y-axis represents the value of expected
information, while the x-axis represents the value of N. Notably, all expected information gain
values are positive. The shapes of each graph exhibit remarkable similarity, with a limited number of
divergent lines. As α increases, the number of divergent lines decreases.
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Figure 10. Robustness of expected information gain. The y-axis represents the standard deviation of the
expected information gain over all possible values of hN , while the x-axis represents the value of N.
As N increases, and even for relatively small values of N, the standard deviation tends toward zero
for all priors.

6. Comparison of Three Information Gain Measures, and the Information
Increase Principle

From an operational perspective, the information measures we have considered can
be categorized into two types: differential information gain and relative information gain
pertain to a measurement that has already been made, while expected information gain
pertains to a measurement that has yet to be conducted.

Regarding positivity, which is tied to the fundamental question of “Will acquiring
more data from measurements lead to a deeper understanding of the system?”: for relative
information gain and expected information gain, the answer is affirmative, but differential
information gain is positive only under certain specific prior conditions.

All three measures are functions of variables denoted as N, α, and hN , which charac-
terize the size of the data sequences, the prior information, and the existing data sequence,
respectively. How sensitive are these measures to these parameters, particularly for large
values of N? As we have shown, differential information gain is heavily influenced by
all three parameters. It becomes nearly independent of hN only when α = −0.5. Relative
information gain is not highly sensitive to the choice of priors. In the case of large values of
N, relative information gain is affected by both hN and N, whereas expected information
gain depends solely on N. The comparison between them is summarized in Table 3.
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Table 3. Comparison of three information gain measures.

Type of Information Gain Positivity Robustness about TN

Differential

Strictly positive when α < αp
where αp ≈ −0.68.

Asymptotically positive
when α ≤ −0.5.

Robustness exists only
when α = −0.5 of beta

distribution prior.

Relative Strictly positive for all priors.
No significant differences of

robustness among beta
distribution priors.

Expected Strictly positive for all priors.
No significant differences of

robustness among beta
distribution priors.

At first, one might have expected that the idea that more data from measurements lead
to more knowledge about the system would hold strictly: namely, that the information gain
from additional data would always be strictly positive. However, our perspective has been
challenged by the observation of black swan events. In the extreme scenario where the
first N tosses all result in tails and the (N + 1)th toss yields a head, a negative information
gain in this (N + 1)th toss may be a more reasonable interpretation. To address this, we
propose the

Principle of Information Increase: In a series of interrogations of an n-outcome
probabilistic source, the information gain from additional data should tend towards
positivity in the asymptotic limit. However, in the extreme case where the first N data
points are identical and the data of the (N + 1)th trial is contrary to the previous data,
the information gain in this exceptional case should be negative.

Applying this criterion, the choice of using the differential information gain becomes
more appropriate for measuring the extent of knowledge contributed by additional data.
For the beta distribution prior, it should be constrained within the range of approximately
−0.68 ≲ α ≤ −0.5. If we also consider the robustness of information gain under various
given data scenarios, then the Jeffreys binomial prior (α = −0.5) emerges as the most
favourable choice.

7. Related Work
7.1. Information Increase Principle and the Jeffreys Binomial Prior

In [18,19], Summhammer introduces the idea that more measurements lead to more
knowledge about a physical quantity and quantifies the level of knowledge regarding a quantity
by assessing its uncertainty range after a series of repeated measurements. Quantified
in this manner, the notion can be summarized as: “The uncertainty range of a physical
quantity should decrease as the number of measurements increases.” For a quantity θ, the
uncertainty range ∆θ is a function of the number of measurements:

∆θ(N + 1) < ∆θ(N) (23)

If this quantity is determined by the probability of a two-outcome measurement, such
as the probability of obtaining heads (p) in a coin toss, then there exists a relationship
between the uncertainty range of θ and that of p,

∆θ =

∣∣∣∣ ∂θ

∂p

∣∣∣∣∆p (24)
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In large N approximation, ∆p =
√

p(1 − p)/N, so that

∆θ =

∣∣∣∣ ∂θ

∂p

∣∣∣∣√p(1 − p)/N. (25)

One intuitive way to ensure Equation (23) holds is by forcing ∆θ to be purely a function
of N. Observing the relationship between ∆θ and ∆p, the simplest solution would be to set
∆θ = const.√

N
. Under this solution, the relationship between p and θ takes the following form:∣∣∣∣ ∂θ

∂p

∣∣∣∣√p(1 − p) = const., (26)

which yields Malus’ law p(θ) = cos2(m(θ − θ0)/2), with m ∈ Z.
Summhammer does not employ information theory to quantify “knowledge about

a physical quantity” but instead utilizes the statistical uncertainty associated with the
quantity. However, viewed from the Bayesian perspective, if we assume that the prior
distribution of the physical quantity, θ, is uniform, the difference between θ and p in
Equation (25) implies that the prior distribution of the probability follows the Jeffreys
binomial prior:

Pr(p|I) =
∣∣∣∣ ∂θ

∂p

∣∣∣∣Pr(θ|I) = 1
π

1√
p(1 − p)

(27)

Thus, in the large N approximation, Summhammer’s result can be interpreted to mean that
the prior associated with the probability of a uniformly distributed physical quantity must
adhere to the Jeffreys binomial prior.

Goyal [23] introduces an asymptotic Principle of Information Gain, which states that
“In n interrogations of a N-outcome probabilistic source with an unknown probabilistic
vector P⃗, the amount of Shannon–Jaynes information provided by the data about P⃗ remains
independent of P⃗ for all P⃗ in the limit as n → ∞.” Goyal establishes the equivalence
between this principle and the Jeffreys rule. Under his Principle of Information Gain, the
Jeffreys multinomial prior is then derived. In the case of a two-outcome probabilistic model,
the Jeffreys multinomial prior reduces to the Jeffreys binomial prior. Asymptotic analysis
reveals that Shannon–Jaynes information is not only independent of the probability vector P⃗
but also monotonically increases with the number of interrogations. It is worth noting that
Shannon–Jaynes information can be viewed as the accumulation of differential information
gain. This asymptotic result aligns with our findings: under the Jeffreys binomial prior, the
differential information gain is solely dependent on the number of measurements.

7.2. Other Information-Theoretical Motivations of the Jeffreys Binomial Prior

Wootters [20] introduces a novel perspective on the Jeffreys binomial prior, where
quantum measurement is employed as a communication channel. In this framework, Alice
aims to transmit a continuous variable, denoted as θ, to Bob. Instead of directly sending
θ to Bob, Alice transmits a set of identical coins to Bob, where the probability of getting
heads, p(θ), in each toss is a function of θ. Bob’s objective is to maximize the information
about θ that he can extract from a finite number of tosses. The measure of information used
in this context is the mutual information between θ and the total number of heads, n, in
N tosses.

I(n : θ) = H(n)− H(n|θ) = −
N

∑
n=0

p(n) ln P(n)−
〈
−

N

∑
n=0

p(n|p(θ)) ln p(n|p(θ))
〉

(28)

However, the function p(θ) is unknown, and the optimization process begins with a
set of discrete values, p1, p2, . . . , pL rather than utilizing the continuous function p(θ). For
each discrete value, pk, there is an associated weight, wk. The mutual information can be
expressed as follows:
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I(n : θ) = −
N

∑
n=0

p(n) ln P(n) +
L

∑
k=1

wk

N

∑
n=0

p(n|pk) ln p(n|pk) (29)

In the large N approximation, it is found that the weight w takes on a specific form:

w(p) =
1

π
√

p(1 − p)
(30)

which serves a role akin to the prior probability of p. Remarkably, this prior probability
aligns with the Jeffreys binomial prior. A similar procedure can be extended to the Jeffreys
multinomial prior distribution. Wootters’ approach shares similarities with the concept of
a reference prior, where the selected prior aims to maximize mutual information, which
can be viewed as the expected information gain across all data. The outcome is consistent
with the reference prior for multinomial data [24], thus revealing another informational
interpretation of the Jeffreys prior.

8. Conclusions

In this paper, motivated by recent work in quantum reconstruction and quantum
state tomography, we have investigated the concept of information gain for a two-outcome
probabilistic source from an operational perspective. We have introduced an informational
postulate, the Principle of Information Increase, which serves as a criterion for selecting
the appropriate measure to quantify the extent of information gained from measurements
and to guide the choice of prior. We have shown that differential information gain is the
most physically meaningful measure when compared to the other contender: the relative
information gain. We have also uncovered the unanticipated and rather remarkable result
that the expected value of these two measures of information gain are equal for any prior
and for any n-outcome probabilistic source.

Within the set of symmetric beta distributions, we have shown that the Jeffreys bino-
mial prior exhibits notable characteristics. Both Summhammer’s work and ours demon-
strate that, under this prior, the intuitive notion that more data from measurements leads to more
knowledge about the system holds true, as confirmed by two distinct methods of quantifying
knowledge. Additionally, Wootters shows that this prior enables the communication of
maximal information, further highlighting its significance. Here, we have formulated the
novel notion of robustness and have shown that the Jeffreys binomial prior displays maximal
robustness within the set of symmetric beta distributions. Our work raises the intriguing
question of whether this feature could be extended to the multinomial Jeffreys prior and
whether it would be possible to lift the initial restriction to the set of beta distributions. We
also speculate that a deeper understanding of the robustness of the Jeffreys prior remains
to be uncovered.
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Appendix A. Derivation of Differential Information Gain

The posterior is determined by TN and a prior. For the sake of simplicity, we set that
the prior belongs to the family of beta distributions:

Pr(p|I) = pα(1 − p)α

B(α + 1, α + 1)
(A1)

where α > −1, B(x, y) is the beta function.
Given N, there are 2N different values of TN . However, we may not need to calculate

all 2N sequences. Suppose every toss is independent—this happens in quantum mechanics—
then this coin tossing model would become a binomial distribution. Let hN be the number
of heads inside TN ; the posterior Pr(p|N, TN , I) is equivalent to Pr(p|N, hN , I), and the
likelihood will be

Pr(hN |N, p, I) =
(

N
hN

)
phN (1 − p)N−hN . (A2)

Hence, the posterior after N tosses is

Pr(p|N, hN , I) =
Pr(hN |N, p, I)Pr(p|I)∫
Pr(hN |N, p, I)Pr(p|I)dp

=
phN+α(1 − p)N−hN+α

B(hN + α + 1, N − hN + α + 1)

(A3)

The information gain in the (N + 1)th toss would be

Idiff = DKL(Pr(p|N + 1, {TN , tN+1}, I)||Pr(p|I))− DKL(Pr(p|N, hN , I)||Pr(p|I)) (A4)

Idiff is determined by hN and the prior, and the result of the (N + 1)th toss tN+1. tN+1
could be either “Head” or “Tail”; then, the posterior after N + 1 tosses could be

Pr(p|N + 1, {TN , tN+1 = ‘Head’‘Head’}, I) =
phN+α+1(1 − p)N−hN+α

B(hN + α + 2, N − hN + α + 1)
(A5)

Pr(p|N + 1, {TN , tN+1 = ‘Tail’}, I) =
phN+α(1 − p)N−hN+α+1

B(hN + α + 1, N − hN + α + 2)
(A6)

Taking tN+1 = ‘Head’, the first term in (A4) would become

DKL(Pr(p|N + 1, {TN , tN+1 = ‘Head’}, I)||Pr(p|I))

=
∫ 1

0
Pr(p|N + 1, hN + 1, I) ln

Pr(p|N + 1, hN + 1, I)
Pr(p|I) dp

=
∫ 1

0

phN+α+1(1 − p)N−hN+α

B(hN + α + 2, N − hN + α + 1)
ln

phN+1(1 − p)N−hN B(α + 1, α + 1)
B(hN + α + 2, N − hN + α + 1)

dp

=
∫ 1

0

phN+α+1(1 − p)N−hN+α

B(hN + α + 2, N − hN + α + 1)

{
ln[phN+1(1 − p)N−hN ] + ln

B(α + 1, α + 1)
B(hN + α + 2, N − hN + α + 1)

}
dp

=
∫ 1

0

phN+α+1(1 − p)n−hN+α

B(hN + α + 1, n − hN + α + 1)
ln[phN+1(1 − p)N−hN ]dp + ln

B(α + 1, α + 1)
B(hN + α + 2, n − hN + α + 1)

(A7)

By using the integral∫ 1

0
xa(1 − x)bln(x)dx = B(a + 1, b + 1)[ψ(a + 1)− ψ(a + b + 2)] (A8)

where ψ(x) is the digamma function, we can obtain the following result:
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DKL(Pr(p|N + 1, {TN , tN+1 = ‘Head’}, I)||Pr(p|I)) =(hN + 1)ψ(hN + α + 2) + (N − hN)ψ(N − hN + α + 1)

− (N + 1)ψ(N + 2α + 3)

+ ln
B(α + 1, α + 1)

B(hN + α + 2, n − hN + α + 1)

(A9)

The second term in (A4) would become

DKL(Pr(p|N, hN , I)||Pr(p|I))

=
∫ 1

0
Pr(p|N, hN , I) ln

Pr(p|N, hN , I)
Pr(p|I) dp

=
∫ 1

0

phN+α(1 − p)N−hN+α

B(hN + α + 1, N − hN + α + 1)
ln

phN (1 − p)N−hN B(α + 1, α + 1)
B(hN + α + 1, N − hN + α + 1)

dp

=
∫ 1

0

phN+α(1 − p)N−hN+α

B(hN + α + 1, N − hN + α + 1)

{
ln[phN (1 − p)N−hN ] + ln

B(α + 1, α + 1)
B(hN + α + 1, N − hN + α + 1)

}
dp

=
∫ 1

0

phN+α(1 − p)n−hN+α

B(hN + α + 1, n − hN + α + 1)
ln[phN (1 − p)N−hN ]dp + ln

B(α + 1, α + 1)
B(hN + α + 1, n − hN + α + 1)

= hNψ(hN + α + 1) + (N − hN)ψ(N − hN + α + 1)− Nψ(N + 2α + 2) + ln
B(α + 1, α + 1)

B(hN + α + 1, n − hN + α + 1)

(A10)

Now, we obtain the final expression of (A4):

Idiff(tN+1 = ‘Head’) = DKL(Pr(p|N + 1, {TN , tN+1 = ‘Head’}, I)||Pr(p|I))− DKL(Pr(p|N, hN , I)||Pr(p|I))
= ψ(hN + α + 2)− ψ(N + 2α + 3)

+
hN

hN + α + 1
− N

N + 2α + 2
+ ln

N + 2α + 2
hN + α + 1

(A11)

Similarly, we can obtain Idiff when tN+1 = ‘Tail’:

Idiff(tN+1 = ‘Tail’) = ψ(N − hN + α + 2)− ψ(N − hN + 2α + 3)

+
N − hN

N − hN + α + 1
− N

N + 2α + 2
+ ln

N + 2α + 2
N − hN + α + 1

(A12)

This suggests that for fixed N and α, Idiff(tN+1 = ‘Head’) and Idiff(tN+1 = ‘Tail’) are
symmetric since hN ranges from 0 to N.

Appendix B. Derivation of Relative Information Gain

From Appendix A, we know that the posterior after N tosses is

Pr(p|N, TN , I) = Pr(p|N, hN , I) =
phN+α(1 − p)N−hN+α

B(hN + α + 1, N − hN + α + 1)
(A13)

Therefore, the posterior after N + 1 tosses would be

Pr(p|N + 1, TN+1, I) =
Pr(hN , TN+1|p, N + 1, I)Pr(p|I)∫ 1

0 Pr(hN , TN+1|p, N + 1, I)Pr(p|I)dp
(A14)

Depending on different results for tN+1, the posterior after N + 1 tosses would be

Pr(p|N + 1, {TN , tN+1 = ‘Head’}, I) =
phN+α+1(1 − p)N−hN+α

B(hN + α + 2, N − hN + α + 1)
(A15)

Pr(p|N + 1, {TN , tN+1 = ‘Tail’}, I) =
phN+α(1 − p)N−hN+α+1

B(hN + α + 1, N − hN + α + 2)
(A16)
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And the corresponding relative information gain would be

Irel(tN+1 = ‘Head’)

= DKL(Pr(p|N + 1, {TN , tN+1 = ‘Head’}, I)||Pr(p|N, hN , I))

=
∫ 1

0
Pr(p|N + 1, {TN , tN+1 = ‘Head’}, I) ln

Pr(p|N + 1, {TN , tN+1 = ‘Head’}, I)
Pr(p|N, hN , I)

dp

=
∫ 1

0

phN+α+1(1 − p)N−hN+α

B(hN + α + 2, N − hN + α + 1)
ln

pB(hN + α + 1, N − hN + α + 1)
B(hN + α + 2, N − hN + α + 1)

dp

= ψ(hN + α + 2)− ψ(N + 2α + 3) + ln
N + 2α + 2
hN + α + 1

(A17)

Irel(tN+1 = ‘Tail’) = ψ(N − hN + α + 2)− ψ(N − hN + 2α + 3) + ln
N + 2α + 2

N − hN + α + 1
(A18)

Appendix C. Equivalence of Expected Differential Information Gain and Expected
Relative Information Gain

In a n-outcome model, the probability of each outcome is pi, and

p1 + p2 + · · ·+ pn = 1 (A19)

After N “tosses”, the data sequence has the form

DN = ( f1, f2, · · · , fn),
n

∑
i=1

fi = N (A20)

where fi is the number of ith outcomes in these N tosses.
We may use a tuple p⃗ = (p1, p2, · · · , pn) to represent the probabilities of these out-

comes. The prior is just Pr( p⃗|I), and the posterior based on the data DN is Pr( p⃗|DN , I).
The average value of the ith outcome probability is

⟨pi⟩ =
∫

pi Pr( p⃗|DN , I)dp1dp2 · · · dpn (A21)

Assume the (N + 1)th toss is the ith outcome, and the posterior of these after this
additional toss is

Pr( p⃗|DN , dN+1 = ‘i′, I) =
pi Pr( p⃗|DN , I)∫

pi Pr( p⃗|DN , I)dp1dp2 · · · dpn

=
pi
⟨pi⟩

Pr( p⃗|DN , I)
(A22)

Then we can write Idiff as

Idiff(dN+1 = ‘i′) = DKL(Pr( p⃗|DN , dN+1 = ‘i′, I)|Pr( p⃗|I))− DKL(Pr( p⃗|DN , I)|Pr( p⃗|I))

=
∫ pi

⟨pi⟩
Pr( p⃗|DN , I) ln

pi Pr( p⃗|DN , I)
⟨pi⟩Pr( p⃗|I) dp1dp2 · · · dpn −

∫
Pr( p⃗|DN , I) ln

Pr( p⃗|DN , I)
Pr( p⃗|I) dp1dp2 · · · dpn

(A23)

Then the expected differential information gain is given by
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Idiff =
n

∑
i=1

⟨pi⟩ Idiff(dN+1 = ‘i′)

=
n

∑
i=1

∫
pi Pr( p⃗|DN , I) ln

pi Pr( p⃗|DN , I)
⟨pi⟩Pr( p⃗|I) dp1dp2 · · · dpn −

n

∑
i=1

⟨pi⟩
∫

Pr( p⃗|DN , I) ln
Pr( p⃗|DN , I)

Pr( p⃗|I) dp1dp2 · · · dpn

=
n

∑
i=1

[∫
pi Pr( p⃗|DN , I) ln

pi
⟨pi⟩

dp1dp2 · · · dpn +
∫

pi Pr( p⃗|DN , I) ln
Pr( p⃗|DN , I)

Pr( p⃗|I) dp1dp2 · · · dpn

]
−

∫
Pr( p⃗|DN , I) ln

Pr( p⃗|DN , I)
Pr( p⃗|I) dp1dp2 · · · dpn

=
n

∑
i=1

∫
pi Pr( p⃗|DN , I) ln

pi
⟨pi⟩

dp1dp2 · · · dpn +
∫ n

∑
i=1

pi Pr( p⃗|DN , I) ln
Pr( p⃗|DN , I)

Pr( p⃗|I) dp1dp2 · · · dpn

−
∫

Pr( p⃗|DN , I) ln
Pr( p⃗|DN , I)

Pr( p⃗|I) dp1dp2 · · · dpn

=
n

∑
i=1

∫
pi Pr( p⃗|DN , I) ln

pi
⟨pi⟩

dp1dp2 · · · dpn

(A24)

Similarly, Irel can be written as

Irel(dN+1 = ‘i′) =DKL(Pr( p⃗|DN , dN+1 = ‘i′, I)|Pr( p⃗|DN , I))

=
∫ pi

⟨pi⟩
Pr( p⃗|DN , I) ln

pi Pr( p⃗|DN , I)
⟨pi⟩Pr( p⃗|DN , I)

dp1dp2 · · · dpn

=
∫ pi

⟨pi⟩
Pr( p⃗|DN , I) ln

pi
⟨pi⟩

dp1dp2 · · · dpn

(A25)

Then the expected relative information gain is, accordingly,

Irel =
n

∑
i=1

⟨pi⟩ Irel(dN+1 = ‘i′) =
n

∑
i=1

∫
pi Pr( p⃗|DN , I) ln

pi
⟨pi⟩

dp1dp2 · · · dpn (A26)

From (A24) and (A26), we can see that in this n-outcome model, the expected differen-
tial information gain Idiff and expected relative information gain Irel are equal, irrespective
of the choice of prior.
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