
1

Algorithm 1 NDNOTA Consumer Side

 1: Output 1: Handshake Authentication Request Interest (HAR) to AuthServ

 2: Output 2: Authentication Request Interest (AR) to AuthServ

 3: Output 3: Protected-Content Request Interest to Producer

4: Content Request Interest to Producer

 5: Data Packet ← Producer

 6: if Data Packet type == 0 (Blob) then

 7: do nothing

 8: else if Data Packet type == 3 (NACK) && AuthMsg.Type = 1 then

 9: Extract AuthServer list

10: if consumer has no AT of one of the AuthServ list then

11: AuthMsg ← 2 (Handshake-Request State), (2, Consumer public key)

12: ApplicationParameters ← AuthMsg

13: HAR Interest ← (AuthServer Name + ApplicationParameters) & Sign Interest with Consumer Signature

14: Issue HAR to AuthServ → Output 1

15: else

16: go to 26

17: end if

18: end if

19: Data Packet ← AuthServ

 20: switch Received Data Packet do

 21: case Handshake-Reply (3) State

 22: Extract CT, AuthServ public key

 18: D-CT ← Decrypt CT with Consumer private key

 19: CT ← Encrypt D-CT with AuthServ public key

 20: AuthMsg ← 4 (Authentication-Request State), (3, CT)

 21: ApplicationParameters ← AuthMsg

 22: AR Interest ← (AuthServer Name + ApplicationParameters) & Sign with Consumer Signature

 23: Issue AR to AuthServ → Output 2

 24: case Authentication-Reply (5) State

 25: Extract & save AT

 26: AuthMsg ← 6 (AuthToken State), (1, AuthServ), (4, AT)

 27: ApplicationParameters ← AuthMsg

 28: Content Request Interest ← (Producer Name + ApplicationParameters) & Sign with Consumer Signature

 29: Issue Content Request Interest to Producer → Output 3

2

Algorithm 2 NDNOTA Producer Side

1: Input 1: Content Request Interest from Consumer

2: Output 1: Is-Consumer-Authenticated Interest to AuthServ

3: Output 2: Data Packet to Consumer

4: if ApplicationParameters = Empty && requested content!= protected then

5: Issue Data packet that carries requested content

6: else

7: if ApplicationParameters = Empty && requested content = protected then

8: AuthMsg ← 1 (Redirect State), (1, list of AuthServs)

9: Content ← AuthMsg

10: NACK Data Packet ← (Content) & Sign with Producer Signature

11: else if AuthMsg.Type = 6 && AuthMsg.Parameter[1].key = 4 then

12: Extract AT, consumer key-locator

13: if consumer key-locator is cached then

14: if received AT = cached AT && NOT expired then

15: go to 27

16: else

17: AuthMsg ← 7 (Is-Consumer-Authenticated State), (2, consumer key-locator), (4, AT)

18: ApplicationParameters ← AuthMsg

19: Is-Consumer-Authenticated Interest ← (AuthServer Name + ApplicationParameters) & Sign with Producer Signature

20: Issue Is-Consumer-Authenticated Interest to AuthServ → Output 1

21: end if

22: end if

23: end if

24: Data Packet ← AuthServ

25: if AuthMsg.Type = 8 && AuthMsg.Parameter[0].value = True then

26: Store consumer key-locator & AT

27: Data Packet ← (Protected Content) & Sign with Producer Signature

28: Issue Data Packet with protected content to Consumer → Output 2

29: else

30: Issue NACK Data Packet to Consumer → Output 2

31: end if

3

Algorithm 3 NDNOTA AuthServ Side

 1: Input 1: Handshake Authentication Request Interest (HAR) from Consumer

 2: Output 1: Handshake Reply (HR) Data Packet to Consumer

3: Output 2: Authentication Reply (AR) Data Packet to Consumer

4: Output 3: Authenticate Verification Data Packet to Producer

5: if AuthMsg.Type = 2 then

6: Extract consumer public key, key-locator

7: CT ← Generate & encrypt a random token with consumer public key

8: entry ← Consumer key-locator, Plaintext CT, CT Expiry

9: AuthMsg ← 3 (Handshake-Reply State), (3, CT)

10: Content ← AuthMsg

11: HR Data Packet ← (Content) & Sign with AuthServ Signature

12: Issue HR Data Packet to Consumer → Output 1

13: end if

14: switch Received Interest Packet do

15: case Authentication-Request (4) State

16: Extract CT, consumer key-locator

17: D-CT ← Decrypt CT with AuthServ private key

18: if D-CT = entry (CT) then

19: AT ← Generate & encrypt a random token with AuthServ key

20: entry ← Consumer key-locator, AT, AT Expiry

21: AuthMsg ← 5 (Authentication-Reply State), (4, AT)

22: Content ← AuthMsg

23: AR Data Packet ← (Content) & Sign with AuthServ Signature

24: Issue AR Data Packet to Consumer → Output 2

25: else

26: Issue NACK Data Packet to Consumer

27: end if

28: case Is-Consumer-Authenticated (7) State

29: Extract AT, consumer key-locator

30: if AT = entry (AT) then

31: AuthMsg ← 8 (Authenticated State), (5, True)

32: Authenticate Confirmation Data Packet← (Content) & Sign with AuthServ Signature

33: Issue Authenticate Confirmation Data Packet to Producer → Output 3

34: else

35: AuthMsg ← 8 (Authenticated State), (5, False)

36: end if

37: Content ← AuthMsg

38: Authenticate Verification Data Packet← (Content) & Sign with AuthServ Signature

39: Issue Authenticate Confirmation Data Packet to Producer → Output 3

