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Abstract: Lightweight convolutional neural networks are widely used for face detection due to their
ability to learn local representations through spatial induction bias and translational invariance.
However, convolutional face detectors have limitations in detecting faces under challenging condi-
tions like occlusion, blurring, or changes in facial poses, primarily attributed to fixed-size receptive
fields and a lack of global modeling. Transformer-based models have advantages on learning global
representations but are insensitive to capture local patterns. To address these limitations, we propose
an efficient face detector that combines convolutional neural network and transformer architectures.
We introduce a bi-stream structure that integrates convolutional neural network and transformer
blocks within the backbone network, enabling the preservation of local pattern features and the
extraction of global context. To further preserve the local details captured by convolutional neural
networks, we propose a feature enhancement convolution block in a hierarchical backbone structure.
Additionally, we devise a multiscale feature aggregation module to enhance obscured and blurred
facial features. Experimental results demonstrate that our method has achieved improved lightweight
face detection accuracy with an average precision of 95.30%, 94.20%, and 87.56% across the easy,
medium, and hard subdatasets of WIDER FACE, respectively. Therefore, we believe our method
will be a useful supplement to the collection of current artificial intelligence models and benefit the
engineering applications of face detection.

Keywords: artificial intelligence; face detection; transformer

1. Introduction

The process of facial detection involves the meticulous identification and localization
of human facial features within images. Face detection is a crucial task in the field of com-
puter vision and has garnered significant attention due to its pivotal role in downstream
applications like face recognition and reconstruction [1–4]. In recent years, face detection
methods [5,6] have witnessed significant advancements in detection accuracy and speed
owing to the emergence and refinement of convolutional neural networks (CNNs). Sophis-
ticated face detection models, such as MogFace [7], RetinaFace [8], and AInnoFace [9], have
demonstrated impressive performance in face detection tasks. However, complex models
usually come with a huge number of parameters, which inevitably slow down the speed
of detection.

The transformer model’s ability to capture long-range dependencies has led to its
impressive success in various natural language processing (NLP) tasks [10,11]. Recognizing
the model’s vast potential, scholars have begun to adapt the transformer structure for a
wide range of tasks beyond NLP. For example, an innovative work by Wang et al., who
introduced a unique variant of the transformer, termed 3Mformer [12]. This advanced
model is designed to fuse multi-stage feature representations, significantly enhancing its
performance in skeletal action recognition tasks. Similarly, Li et al. [13] leveraged the
transformer to construct a strong semantic scene completion framework, demonstrating
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excellent experimental results. The vision transformer (ViT) was introduced into computer
vision by [14], leading to exceptional outcomes for image classification tasks. ViT and its
variants [15,16] demonstrate a remarkable capacity to substitute for CNN in computer
vision tasks. Mehta et al. have developed a novel variant of ViT, known as MobileViT [17],
which integrates a transformer block with CNNs to achieve remarkable performance in var-
ious mobile vision tasks. The lightweight design of MobileViT enables efficient processing
on mobile devices, and the synergistic combination of the transformers and CNNs results in
state-of-the-art(SOTA) performance. However, the aggressive downsampling system in the
vision transformer model often leads to inadequate low-level feature extraction [18], lead-
ing to the loss of image representation and poor generalization of the model. Consequently,
the existing models fail to detect human faces in complex environments accurately.

Generally, the conventional face detector usually consists of three parts: a CNN-based
backbone, a feature pyramid network (FPN) [19], and a detector head. The backbone
network is responsible for extracting the features from the input image, while FPN is
employed to merge the deep semantic and shallow information from these features. Fi-
nally, the obtained features are fed into the detector head to complete the detection task,
as illustrated at the top region in Figure 1. However, these existing detection solutions
tend to reach their performance bottleneck, since the fixed-size receptive fields of CNN
lead to the backbone being unable to effectively extract semantic information with limited
model parameters.

Figure 1. Pipeline overview. The main highlight of our model is the novel hybrid backbone to
replace the traditional CNN-based backbone, and proposing a multiscale feature aggregation mod-
ule in the neck part to improve face detection performance, with model details provided in the
subsequent chapters.

To address the aforementioned challenges, we present a novel lightweight model,
entitled E-CT Face, with a bi-stream architecture that aims to improve the face detection
performance in a trade-off between detection accuracy and efficiency. In our method, we
introduce a hybrid backbone architecture that combines CNNs and transformer blocks in a
bi-stream manner. This structure enables the model to capture both global and local features
while retaining rich facial texture details [20–22]. To effectively integrate feature maps from
transformers and CNNs, mitigate the loss of face details during down-sampling operations,
and enhance the feature extraction capability of the hybrid backbone, we present a novel
convolutional block called the feature enhancement convolution (FEC) block. The proposed
FEC architecture comprises a detail preservation (DP) layer and standard convolutional
layers. The standard convolutional layers are employed to capture and encode local patterns
within the input feature maps and merge features from the corresponding transformer
block. The DP layer reconstructs the spatial dimension of the input feature maps, retaining
fine-grained details while reducing the width and height of the feature map to half of its
original size. This layer proves significantly beneficial for detecting blurred and small
faces, ultimately improving the overall detection accuracy. Previous detectors primarily
focus on spatial features of the feature map, neglecting the rich texture contained within
the inter-channel features [23]. To deal with this limitation, we introduce the multiscale
feature aggregation (MFA) module, positioned between the FPN module and the head,
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as illustrated at the bottom region in Figure 1. This innovative approach enables the
aggregation of valuable interchannel features to enhance the accurate of face detection.
The MFA module consists of three standard convolutional layers with different kernel
sizes and a branch channel attention part [24]. By processing the input feature maps in
spatial and channel dimensions, the MFA module enhances the detector’s performance
in detecting faces under challenging conditions such as occlusion, insufficient lighting,
atypical poses, and small scales. Through standard convolution layers with different
kernel sizes and branch channel attention, tje MFA module effectively distinguishes the
face from background, achieving better detection performance. Our multibranch head
follows the design of the RetinaFace [8]. In the following sections, we will provide detailed
explanations of these components and present experimental results to demonstrate the
superiority of our method.

In summary, the key contributions of this work are as follows:

1. We have introduced a novel backbone architecture for efficient face detection, which
has leveraged the advantages of both CNNs and transformers and outputs multiscale
features through a hybrid backbone to detect faces with scale variations.

2. The proposed FEC block employs a spatial dimension reconstruction operation and
standard convolutional stacks to optimize the preservation of detailed facial textures
while facilitating feature fusion between the transformer and CNN blocks.

3. By combining the standard convolution layers and a branch channel attention archi-
tecture, our proposed MFA module is able to enhances the ability of the detector to
differentiate between facial features and background elements along both the spatial
and channel dimensions.

2. Related Works
2.1. CNN-Based Face Detectors

In the past few years, significant advancements in CNN-based face detection methods
have been noteworthy, owing to the exceptional feature extraction ability and visual
induction bias. The existing CNN-based face detection methods can be categorized into
two distinct groups: two-stage detectors and one-stage detectors. Two-stage detectors
involve the generation of candidate regions in the initial step, followed by the classification
and regression of the candidate regions in the subsequent steps. Notable examples of
two-stage detectors include Face R-CNN [4], ScaleFace [25], and FDNet [26]. These two-
stage detectors of face detection achieve superior performance but at the cost of slower
detection speed. One-stage detectors directly classify and regress images based on the
anchor without needing a separate region generation step. Prominent One-Stage methods
include SSD [27], RetinaFace [8], and Faster R-CNN [28]. One-Stage detectors have emerged
as the prevailing research direction for face detection algorithms due to their ability to
balance performance and speed. The facial detection models, designed by [7,9,29], have
demonstrated remarkable performance on public datasets. However, the high number
of parameters associated with these models poses a significant challenge in deploying
the detectors on edge devices. Implementing face detection tasks on devices with limited
computational resources is a prevalent concern. The majority of face detection tasks are
executed through devices with limited computational resources. To implement detector
to edge devices, lots of great lightweight detectors have sprung up. By regarding the
receptive fields as natural “anchors” which can cover continuous face scales, LFFD [30]
designed a light and fast face detector. Qi et al. redesigned the detection head and loss
function of the Yolov5 object detector and obtained the Yolov5 Face [31], which achieves
state-of-the-art performance in the WIDER FACE dataset. EfficientFace [32] integrated
three key features upon the EfficientNet to obtain a high-performance lightweight detector.
The Extremely Tiny Face Detector (EXTD) designed by [33], which generates the feature
maps by iteratively reusing a shared lightweight and shallow backbone network, and this
approach significantly reduces the number of parameters. However, these lightweight face
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detectors with a small number of parameters are limited due to the fixed-size receptive
fields of CNNs, limiting their effectiveness in extracting features.

2.2. Transformer-Based Vision Tasks

The transformer architecture introduced by [10] represents a seminal contribution to
the field of natural language processing. By implementing the multihead self-attention
and fully connected feed forward networks, this structure enables the network to extract
global context in a highly effective manner, leading to significant advances in the field.
The advent of ViT [14] marks a significant milestone in computer vision, as it represents
the first instance of transformer architecture being applied to this field. ViT reduces
model complexity and the number of parameters by partitioning images into uniform
patches, which are subsequently encoded for processing via the transformer. The detection
transformer (DETR) [34] designs an end-to-end target detector based on the transformer,
leveraging its global representation capabilities to improve the accuracy and efficiency of
the model. ViT is inherently less efficient in detection tasks due to the large model parameter
size, motivating the need for lightweight variants such as Mobile ViT [17], which employs a
global context extraction module designed to optimize the model’s efficiency. Mehta et al.’s
subsequent research [35] introduced novel techniques for computing self-attention that
reduced the model complexity while improving the performance. However, the aggressive
downsampling system of the vision transformer loses the image representation, leading to
the model exhibiting suboptimal performance in detecting faces with complex backgrounds
and small targets. To address this limitation, we have developed a novel hybrid lightweight
face detector that merges the merits of transformers and CNNs in a bi-stream manner and
introduces a detail-preserving layer to mitigate the loss of representative features caused
by the aggressive downsampling system employed by the transformer.

3. Proposed Method
3.1. Method Overview

In this section, we have presented the overall framework of the E-CT Face detector.
Subsequently, we have explicated the principal components of the model in the subsequent
subsections. As shown in Figure 2, the framework of E-CT face is familiar to conventional
object detectors, which consists of three parts: the hybrid backbone, neck, and head.

Figure 2. Overall network architecture of our proposed method. The input image is first fed into
the hybrid backbone to extract transformer and CNN features; the semantic and spatial information
from each stage is integrated by employing the FPN. After that, the feature maps are systematically
fed into the multiscale feature aggregation module to achieve feature fusion. Finally, the aggregated
feature maps go through the multibranch head to output the face detection result.

We have designed the backbone network of the detector with a bi-stream configuration
by integrating the CNNs and transformer blocks in a hybrid manner, in which the FEC
block is proposed to effectively integrate the feature maps derived from transformer
and CNN blocks. For the neck part of the detector, a conventional FPN structure is
adopted to merge the deep semantic and shallow information from the input features.
The subsequent MFA module employs the standard convolutional layers with attention
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mechanism and multiple kernel sizes to strengthen the capability of the model to detect
faces in complex environments. Finally, the feature map is sent to the head part for
classification and localization.

3.2. Hybrid Backbone

In this section, we have presented a detailed exposition of the backbone component
of our hybrid architecture and elucidate the benefits of our innovative backbone, which
combines the merits of the transformer block and the CNN block for face-detection tasks.
Transformer-based models have advantages on learning global representations but are
weakly to capture local patterns. The lightweight CNN models are limited due to the fixed-
size receptive field and lack of global modeling, but they have good ability to learn local
representations. To make our backbone be aware of both global and local features and good
model generalization capability, we have proposed the bi-stream backbone architecture,
one steam is the transformer pipeline composed of transformer blocks, in which the
MobileVitV2 block is adopted to extract the global context of the input image. The other one
is the CNN pipeline composed of FEC blocks, in which consist of standard convolutional
layers and a DP layer. A comparison of our hybrid backbone with the conventional
backbone is illustrated in Figure 3.

Figure 3. The comparison between CNN-based backbone and our proposed hybrid backbone.
(a) depicts the backbone of conventional detector, primarily consisting of a hierarchical CNN structure.
(b) depicts our purposed hybrid backbone. Compared to conventional detector backbone, our hybrid
detector backbone incorporates a transformer part for global modeling, while maintaining the
hierarchical structure to retain multiscale features.

At first, the input image is fed into stage 1 of the backbone by using the traditional
CNN block to reduce the spatial resolution of the feature map to 1/4 and increases the
dimension of channels to 96. Then, we feed the output feature map of stage 1 into the
subsequent bi-stream pipelines. The transformer block extracts global context and implicitly
learn the semantic information within the face, body, and background [36]; the FEC block
extracts the local face features while adding up the feature maps form the transformer block
and the FEC block before feeding them to the subsequent layers to fusion features. As a
result, we can obtain multilevel feature maps through four stages These output feature
maps are delivered to the subsequent neck part, and the resolution 4 stages are 1/4, 1/8,
1/16 and 1/32 of the input image in our method, respectively. The embedding dimensions
of each stage are 96, 192, 288, and 384, and the dimensions of the transformer block and
FEC block in Hybrid Stages are 96, 144, and 192, respectively. The hierarchical structure
ensures that the backbone extracts face features from coarse to fine and sparse to dense.
Hence, our proposed method can precisely capture the semantic information of face images
and flexibly achieve face detection tasks in various scenarios.
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3.3. Feature Enhancement Convolution Block

The transformer block captures complex relational interactions between different
spatial patches more easily, whereas the low-level features containing images details are
inadequate in the vision transformer’s aggressive down-sampling system. To overcome this
limitation, we have designed the FEC block as a compensation for the transformer, which
consists of standard convolutional layers and a DP layer, as shown in Figure 4. The DP
layer retains the low-level features containing images details by downsampling the input
feature maps through reconstructing the spatial dimensions of the input feature maps.
The FEC block in stage 2 takes the output feature maps from stage 1 as input. Similarly,
the input of the FEC block in stage P + 1 (P = 2, 3) is formed by adding up the output
feature maps of the FEC block and the Transformer block from stage P. Finally, the output
feature maps from the FEC block in stage 4 are fed into the neck part of the entire network.

Figure 4. The architecture of the proposed feature enhancement convolution (FEC) block. The FEC
block comprises several key components: a positional encoding layer, convolutional layers, batch
normalization layers, activation function layers, and a DP layer. We have listed the pipeline of FEC
block at the top, and we have demonstrated the DP layer structure at the bottom.

At the stage P, the FEC block takes an input tensor X ∈ RH×W×C1 and applies
pointwise convolution layer to generate X1 ∈ RH×W×T , followed by a standard convolution
layer with kernel size 3 × 3 and stride of 1 to generate X2 ∈ RH×W×T . The pointwise
convolution layer projects the tensor into a T-dimensional space by learning a linear
combination of the input channels, T is the dimension of the transformer block from the
corresponding stage P. The convolutional layer with kernel size of 3 × 3 encodes the local
spatial features of the face. To make the model preserve the image details when learning
local features of tiny faces, we feed X2 into the DP layer in order to reconstruct it into four
tensors of the same size, as shown in Figure 5. More specifically, the output of the DP layer
is computed as

X3 = Concat(X1
2, X2

2, X3
2, X4

2) (1)

Xi
2 = R(P1(n, m), · · · , Pk(n, m), · · · , PK(n, m), ) (2)

where Concat(•) represents the tensor using the concatenation operation in the channel
dimension. At first, the DP layer splits X2 into K = H/2 ∗ W/2 patches. The dimension
of each patch is R2×2×T ; Pk denotes the kth patch In Equation (2). Here, R(•) represents
the reorganization of the tensor at (n, m) of each patch into a new tensor Xi

2 ∈ Rh×w×T ,
i ∈ {1, 2, 3, 4}, where the correspondence among i , m, and n can be described as

n · 20 + m · 21 = i − 1 n, m ∈ {0, 1} (3)
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Figure 5. The main operations of detail preservation (DP) layer include the following: (1) Split into
patches: We split the input tensor X2 into H/2 ∗ W/2 patches of uniform size. Within each of these
patches, there are four tensors with dimensions of R1×1×T , which are designated with spatial indices
of (0,0), (0,1), (1,0), and (1,1), respectively. (2) Reorganization into a new tensor: We reorganized
the tensors located at corresponding index positions within each patch to construct a new tensor.
(3) Concat: We concatenated the four reorganized tensors together along the channel dimension.

The proposed DP layer effectively reduces the loss of low-level features by transferring
the information of adjacent pixels from the spatial dimension to the channel dimension.
After that, we apply a standard convolutional layer with kernel size 3 × 3 to merge these
concatenated features in X3 ∈ Rh×w×t, in which t = T ∗ 4. Then, we use a pointwise
convolution layer to project the tensor into the low-dimensional space to obtain X4 ∈
Rh×w×C2 . In mathematics, the FEC block can be described as

X3 = DP(Conv3×3(Conv1×1(X + P))) (4)

X4 = Conv1×1(Conv3×3(X3)) (5)

Among them, the stride of Conv3×3 and Conv1×1 are both 1, and P denotes the position
encoding (PE). For position-sensitive tasks such as face detection, the preservation of spatial
structure is crucial. The PE layer can effectively capture the position information of the input
feature and ensure the model’s sensitivity to the spatial position of the input feature maps.

3.4. Multiscale Feature Aggregation Module

One of the major challenges for face detection task is to detect faces in the crowd.
Since high-resolution feature maps can improve the sensibility of the detector for small face
detection, we have developed a top-down connection method for four multilevel feature
maps of different scales in the neck part of the E-CT face detector to obtain additional
semantic information with high-resolution feature maps to achieve the purpose of detecting
faces at different scales. In the real application scenarios, problems such as occlusion,
illumination, face pose variation, and face scale variation frequently occur. To overcome
this problem, the MFA module is proposed in this study, the structure of which is shown
in Figure 6. The MFA module processes the input feature maps separately to obtain four
feature maps with different scales and then delivers the four feature maps hierarchically
to the head part for classification and localization. For a single feature map of the input,
the specific structure of MFA can be defined as

DS(FM) = Conv3×3(FM), Conv5×5(FM), Conv7×7(FM) (6)

Res1, Res2, Res3 = DS(FM) (7)

Res = Concat(Res1, Res2, Res3) (8)

V1, V2, V3 = Swish
(

Conv1×1

(
Pooling(Res1, Res2, Res3)

))
(9)

OM = Res + Res ∗
(

Sigmoid
(

Conv1×1

(
Concat(V1, V2, V3)

)))
(10)
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where OM and FM represent the single input and output of MFA. The Pooling(•) operation
contains two methods, the Maxpool method and the Avgpool method. We used both
average pooling and maximum pooling to obtain the model with optimum performance.
We applied maximum pooling to the feature maps after convolutional layers with kernel
size 7 × 7 to preserve the contour information of the big face and applied average pooling
to the feature maps after convolutional layers with kernel size 5 × 5 and convolutional
layers with kernel size 3 × 3 to preserve the overall features of the small face. In Section 4.3,
we demonstrate the ablation experiments on pooling methods.

The input feature maps of MFA are four feature maps at different scales, which is
the output of the FPN network. Each feature map is processed separately by standard
convolutions with three different kernel sizes for multiscale feature extraction, allowing
the model to better distinguish faces from other backgrounds on the spatial dimension.
The feature maps from each of our three standard convolutional outputs are fed into the
branch channel attention part to enable our method to focus on channels that are more
relevant for face details [37].

Figure 6. The structure of the multiscale feature aggregation (MFA) module. MFA module comprises
convolutional layers with varying kernel sizes and a branched channel attention component.

4. Experimental Results
4.1. Datasets and Evaluation Metrics

We have evaluated our approach on two publicly available datasets: WIDER FACE [38],
FDDB [39]. The WIDER FACE dataset contains 32,203 images and 393,703 annotated faces
for face detection and recognition. Since the WIDER FACE dataset contains various scenes,
lighting conditions, and variations of face pose, it is widely applied in face detection and
recognition. The Face Detection Dataset and Benchmark (FDDB) contains 5171 faces with
various challenges and is one of the most significant datasets in face detection. FDDB have
two different evaluation methods: discrete score and continuous score. We chose discrete
score as our evaluation method to avoid the labeling style of the training dataset affecting
the test results since we only use FDDB as a test dataset.

For a fair comparison with the SOTA methods, we also divide the WIDER FACE
dataset into three subsets: train (40%), validation (10%), and test (50%). The validation
subset and test subset are divided into three subsets according to the difficulty level of the
detection, which are easy, medium and hard subsets. The training subset of WIDER FACE
was used for training, the validation subset and test subset of WIDER FACE were used for
performance evaluation, and we also evaluated our method on the FDDB dataset. All of
the training images were resized to 640 × 640, and the testing images were kept at their
original size, which means that no rescaling was used. Our evaluation metric on the easy,
medium, and hard subset was the average precision (AP) of IoU = 0.5.
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4.2. Implementation Details

Our experiments were performed on a workstation with two NVIDIA GeForce RTX
2080Ti GPUs (with 24 G memory) and 64 G RAM. Our network was implemented in Python
3.7 with Pytorch 1.8.1. We adopt the AdamW optimizer [40] for parameter optimization.
We set the batch size to 8, and we trained our model for 70 epochs. The learning rate was
set to 0.001 at the first 2500 iterations as the warm-up stage and then it annealed to 0.000001.
In addition, our hybrid backbone was pretrained using ImageNet-1k datasets.

4.3. Component Evaluation

In this section, to confirm the effectiveness of the major components in our method.
We have conducted the ablation experiments to quantitatively verify the performance of
the hybrid backbone, FEC, and MFA of our method.

4.3.1. Ablation Study on the Hybrid Backbone

Our hybrid backbone can merge the advantages of the transformer block and FEC
block to extract multiscale global contextual information of human faces effectively. We
have further conducted several experiments to demonstrate the superiority of our hybrid
backbone. We replace the hybrid backbone with two leading lightweight backbone net-
works, MobileNet V3 and EfficientNet, which have been widely used in lightweight face
detection models. Therefore, we compare the performance of using our hybrid backbone,
MobileNet V3, and EfficientNet-B0 as the backbone individually on the WIDER FACE vali-
dation subset. As shown in Table 1, our face detector benefits from the strong information
extraction ability based on the hybrid backbone and achieves the best results on the easy,
medium, and hard subsets.

Table 1. Quantitative comparison results of different backbones on the WIDER FACE valida-
tion subset.

Backbones Easy Medium Hard Params (M)

MobileNet V3 [3] 93.75% 91.48% 81.29% 3.67
EfficientNet-B0 [41] 94.27% 92.59% 83.82% 4.77
Ours 95.30% 94.20% 87.56% 3.80

4.3.2. Ablation Study on the FFC

The FEC block has two key points: one is that it extracts image details through
reconstructing operations in the spatial dimension to improve the performance of detecting
small faces, and the other one is encoding the local patterns and merging the features from
the corresponding transformer block. To validate the superiority of our FEC block, we have
conducted several experiments, with the quantitative results presented in Table 2. Similarly,
we have compared the performance of three models on the WIDER FACE validation dataset.
The “Baseline” in the first row of Table 2, denotes the results of the E-CT face without
FEC block, the “Baseline + FEC (w Conv)” denotes the results of the FEC block with the
standard convolution with stride 2, and the “Baseline + FEC (w DP)” denotes the results of
the complete FEC block.

Table 2. Quantitative comparison results of the FEC component on the WIDER FACE valida-
tion subset.

Model Easy Medium Hard

Baseline 93.78% 92.70% 86.87%
Baseline + FEC (w Conv) 94.13% 93.09% 87.03%
Baseline + FEC (w DP) 95.30% 94.20% 87.56%
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The results in Table 2 show that our FEC block has a significant impact in improving
the overall performance of the model, achieving 1.52%, 1.398%, and 0.69% improvement
in the easy, medium, and hard subsets, respectively, compared to the baseline model.
The decreased performance of the model without the DP layer also proves the effectiveness
in spatially reconstructing features.

4.3.3. Ablation Study on the MFA

We have also analyzed the performance of the model with/without MFA to verify the
effectiveness of MFA module. The quantitative results of our experiments are presented
in Table 3. As for the visual comparison shown in Figure 7, it can be seen that the images
obtained from the model without MFA have more missing faces compared with those from
model with MFA in detecting faces with occlusion, different poses, scales, and illumination.
The results demonstrated that MFA effectively improves the detector’s performance in
these critical aspects.

Table 3. Quantitative results with/without the MFA on the WIDER FACE validation subset.

Dataset w/o MFA w MFA

Easy 93.70% 95.30%
Medium 92.69% 94.20%
Hard 84.82% 87.56%

Simultaneously, to validate the effectiveness of the pooling method in the MFA module,
we have conducted ablation experiments including “E-CT face + Avgpool”, “E-CT face +
Maxpool”, and “E-CT face + Avgpool & Maxpool”. The quantitative results are presented
in Table 4, in which “E-CT face + Avgpool” and “E-CT face + Max pool” denote the results
of the E-CT face with only the average pooling method and maximum pooling method,
respectively, and “E-CT face + Avgpool & Maxpool” denotes the results of the E-CT face
with both average and maximum pooling methods. According to the results in Table 4,
the detection performance of the model with only the average pooling method on the hard
subset is superior to the model with only the maximum pooling method, and the detection
performance of the model with only the maximum pooling method on the easy and medium
subset is superior to the model with only average pooling method. In contrast, the model
with both maximum and average pooling methods has the best performance in all subsets.
The experimental results also show the importance of the appropriate combination of
pooling methods in MFA module for the improvement of model performance.

Table 4. Quantitative comparison results with different pooling methods of MFA on the WIDER
FACE validation subset.

Model Easy Medium Hard

E-CT Face + Avgpool 94.77% 93.87% 87.28%
E-CT Face + Maxpool 95.14% 93.96% 86.65%
E-CT Face + Avgpool & Maxpool 95.30% 94.20% 87.56%
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(a) Occlusion o (b) Occlusion w (c) Pose & Scale o(d) Pose & Scale w (e) Illumination o(f) Illumination w

Figure 7. Visual results of with/without the MFA. (•)o represents without MFA, (•)w represents
with MFA. Red box represents the detection result.

4.4. Comparison with the SOTA Methods

We have compared our proposed method with state-of-the-art (STOA) lightweight
face detection methods and heavyweight detection methods on the WIDER FACE dataset
to visualize the superiority of our proposed method. We have strictly followed the standard
evaluation protocols for the WIDER FACE dataset, by training the model only on the
training subset and testing it on the validation and test subsets.

The results of the quantitative comparison with lightweight face detectors on the
WIDE FACE validation subset are present in Table 5, and the results of the quantitative
comparison with heavyweight face detectors are present in Table 6.

Table 5. Quantitative comparison results between our face detector and other lightweight face
detectors on the WIDER FACE validation subset.

Light Detector Easy Medium Hard Params (M)

YoloV5 Face-n [31] 93.6% 91.5% 80.5% 1.72
YoloV5 Face-s [31] 94.3% 92.6% 83.1% 7.06
EXTD [33] 92.1% 91.1% 85.6% 0.16
LFFD [30] 91.0% 88.1% 78.0% 2.15
OS-LFFD [42] 91.6% 88.4% 77.1% 1.44
Efficient Face-B0 [32] 91.0% 89.1% 83.6% 3.94
Efficient Face-B1 [32] 91.9% 90.2% 85.1% 6.64
Efficient Face-B2 [32] 92.5% 91.0% 86.3% 7.98
SCRFD-10GF [43] 95.1% 93.8% 83.0% 3.86
IRNet [44] 91.8% 89.3% 76.6% 1.68

Ours 95.30% 94.20% 87.56% 3.80
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Table 6. Quantitative comparison results between our face detector and other heavyweight face
detectors on the WIDER FACE validation subset.

Heavy Detector Easy Medium Hard Params (M)

AInnoFace [9] 97.0% 96.1% 91.8% 88.01
MogFaceAli-AMS [7] 94.6% 93.6% 87.3% 36.07
MogFace [7] 97.0% 94.3% 93.0% 85.26
TinaFace [45] 95.6% 94.2% 81.4% 172.95
YoloV5 Face-X6 [31] 96.67% 95.08% 86.55% 88.665

Ours 95.30% 94.20% 87.56% 3.8

The current STOA lightweight face detection methods have demonstrated impressive
performance on the WIDER FACE validation set, achieving average precision (AP) ranging
from 91.0% to 95.16% on the easy subset, 88.1% to 93.87% on the medium subset, and 76.6%
to 86.3% on the challenging hard subset. Among these methods, excluding DS-Face,
SCRFD-10GF stands out, utilizing 3.86 M parameters to achieve the highest AP of 95.1%
and 93.8% on the easy and medium subsets, respectively. Meanwhile, EfficienetFace-
B2, with 7.98 M parameters, leads the pack on the hard subset with an AP of 86.3%.
Our proposed DS-Face detector achieves remarkable performance on the WIDER FACE
validation set, attaining optimal AP scores of 95.30%, 94.20%, and 87.56% on the easy,
medium, and hard subsets, respectively, with a mere 3.8 M parameters. Specifically,
DS-Face exhibits the best performance among lightweight face detection methods with
similar parameter counts. Notably, on the challenging hard subset of the WIDER FACE
validation set, DS-Face outperforms EfficienetFace-B2 by achieving a 1.26% improvement
in performance while using less than half the number of parameters. This significant
enhancement is primarily attributed to the dual-stream architecture employed by DS-
Face, which enables the detector to perform exceptionally well in more complex detection
environments.

The existing STOA heavyweight face detection methods achieve AP ranging from
94.6% to 97.0% on the Easy subset, 93.6% to 96.1% on the Medium subset, and 81.4% to
91.8% on the Hard subset of the WIDER FACE validation set. Among these heavyweight
face detection methods, MogFace utilizes 22 times more parameters (85.26 M) than DS-Face,
yet it only achieves a marginal improvement of 1.7% and 5.44% in AP on the easy and
hard subsets, respectively. Similarly, AInnoFace, with 23 times more parameters (88.01 M)
than DS-Face, attains just a 1.902% increase in AP on the medium subset. Remarkably,
DS-Face uses only 1/50th of the parameters compared to TinaFace, yet it matches TinaFace’s
performance closely, with only a 0.3% and 0.002% decrease in AP on the easy and medium
subsets, respectively. Moreover, DS-Face outperforms TinaFace by 6.16% on the challenging
hard subset. Overall, DS-Face demonstrates competitiveness even when compared to
heavyweight face detection methods, highlighting the efficiency of the DS-Face detector
and the effectiveness of the design proposed in this paper.

Figure 8 provides the precision–recall curve of our model and the existing model in the
WIDER FACE validation subset and test subset. As depicted in the figure, the proposed DS-
Face face detection method achieves an average precision (AP) of 94.30%, 93.5%, and 86.4%
on the easy, medium, and hard subsets of the WIDER FACE test set, respectively. Compared
to the results obtained on the validation set, these values are slightly lower by 1%, 0.698%,
and 1.16%, respectively. This minor decrease in performance indicates that the DS-Face
face detection method possesses good generalization capabilities, suggesting its robustness
and adaptability to different images. We have used the FDDB dataset for testing without
any modification to better demonstrate the competitiveness of our model, and the results
of the receiver operating characteristic curve (ROC) are shown in Figure 9.
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(a) Val (Easy) (b) Val (Medium)

(c) Val (Hard) (d) Test (Easy)

(e) Test (Medium) (f) Test (Hard)

Figure 8. Precision–recall curves of different methods on the WIDE FACE validation and test subset.

Figure 9. ROC curves of our model’s detection results on the FDDB dataset.
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4.5. Running Efficiency

We have analyzed the inference speed of our method under different input sizes
and on different platforms. Our inference speed is measured in “ms”. We measured the
inference time of our method on each of the three platforms, NVIDIA GeForce 2080 Ti and
Intel i9-10940X). Also, we set the size of the input images as Small (1 × 3 × 320 × 320), Mid
(1 × 3 × 640 × 640), and Big (1 × 3 × 960 × 960). The final results are presented in Table 7.
The results show that our model is able to detect faces in realtime on PCs, and also it can
detect faces at 35ms latency in small images on CPU.

Table 7. Quantitative comparison results of the inference efficiency among different devices on
different input sizes (320 × 320, 640 × 640, 960 × 960). The CPU is Intel-10940X.

Platforms 320 × 320 640 × 640 960 × 960

NVIDIA GeForce 2080Ti
9 ms

(111 FPS)
13 ms

(76 FPS)
28 ms

(35 FPS)

CPU
35 ms

(28 FPS)
114 ms
(8 FPS)

----
----

5. Limitation and Future Work

Despite achieving a competitive performance on the WIDER FACE dataset with a
model utilizing only 3.8 M parameters, our approach has not yet attained optimal per-
formance when compared to heavyweight face detectors. In our future work, we intend
to investigate heavyweight face detection models with a larger parameter count. This
exploration aims to unlock the full potential of our network architecture and enhance its
adaptability to diverse detection scenarios.

6. Conclusions

This paper has proposed a novel efficient face detector, termed E-CT Face. We have
followed the widely used face detection structure as our baseline network. One of its main
limitations is its inability to extract features from images efficiently, which may impact
its detection performance in a complex environment. To handle this limitation, we have
adopted the hybrid backbone that leverages the advantages of both transformer and CNN
architectures, enabling our detector to achieve high performance with little parameter
size in face object detection tasks. Moreover, to enhance the effectiveness of our model in
detecting diminutive faces and optimizing its detection capabilities in various complex
scenarios, we have devised the feature enhancement convolution block and multiscale
feature aggregation module. Our method demonstrates superior performance compared
to the SOTA lightweight face detection methods on the face detection benchmarks. We
anticipate that our works will offer valuable insights for future research on the application
of transformers in the field of face detection.
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Notations

In this manuscript, we employ specific mathematical notation to ensure clarity and consistency.
The following conventions are used throughout: Notably, RH×W×C signifies the dimensionality of
tensors. Tensors are denoted by uppercase blodface, e.g., X. The superscripts and subscripts of X
denote its indices. Therefore, the dimensionality of the tensor X1

2 can be expressed as X1
2 ∈ RH×W×C.
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