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Abstract: Three-dimensional porous scaffolds are substitutes for traditional bone grafts in bone tissue
engineering (BTE) applications to restore and treat bone injuries and defects. The use of computational
modelling is gaining momentum to predict the parameters involved in tissue healing and cell
seeding procedures in perfusion bioreactors to reach the final goal of optimal bone tissue growth.
Computational modelling based on finite element method (FEM) and computational fluid dynamics
(CFD) are two standard methodologies utilised to investigate the equivalent mechanical properties of
tissue scaffolds, as well as the flow characteristics inside the scaffolds, respectively. The success of a
computational modelling simulation hinges on the selection of a relevant mathematical model with
proper initial and boundary conditions. This review paper aims to provide insights to researchers
regarding the selection of appropriate finite element (FE) models for different materials and CFD
models for different flow regimes inside perfusion bioreactors. Thus, these FEM/CFD computational
models may help to create efficient designs of scaffolds by predicting their structural properties and
their haemodynamic responses prior to in vitro and in vivo tissue engineering (TE) applications.

Keywords: computational design; computational modelling; computer simulation; finite element
method; computational fluid dynamics; laminar flow; turbulent flow; perfusion bioreactor; bone
tissue engineering; bone scaffolds

1. Introduction

Bones are one of the most vital organs in the human body. They contain a reservoir of
minerals that provide protection for inner organs and support for muscles and physical
activities. Bone tissue is arranged as inner spongy cancellous bone of 75% to 95% porosity
with a mean pore size of 200 µm to 600 µm diameter and outer compact cortical bone of
5% to 10% porosity with 10 µm to 100 µm pore diameter [1]. Ageing, trauma, bone loss,
cancer, infection, and metabolic bone disorders are causes of bone defects and injuries. Bone
grafts are conventionally used for bone tissue reconstruction. However, they come with
disadvantages such as infection, immune rejection on the host site, lack of vascularisation,
disease transmission and increased patient morbidity [2].

Bone tissue engineering (BTE) is an interdisciplinary bioengineering field that com-
bines life sciences, engineering, materials, and physio-chemical and biological components
to restore and replace injured and damaged bone tissues with new biological tissues [3–5].
BTE procedures typically utilise three-dimensional (3D) porous temporary support struc-
tures known as scaffolds made of various materials to neo-tissues during regeneration
(Figure 1). These scaffolds assist stem cells in surviving, proliferating, migrating, and
differentiating into various functional tissues [6]. They achieve this by providing a net-
work of interconnected pores and struts that not only support mechanical loading but
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also enable efficient mass transport, allowing for the movement of nutrients and waste
materials [7,8]. The degradation rate of scaffolds must be near the neo-tissue growth rate in
the regeneration of bone tissues (Figures 1 and 2). Ensuring that the degradation rates are
synchronised with new tissue growth is crucial for maintaining structural integrity and
supporting the healing process [9,10]. This synchronisation minimises the inflammation
risk and mechanical failure while promoting natural and efficient tissue regeneration [11].
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Figure 2. (A–D) Implantation of a composite scaffold on a tibial bone defect region. (E) Bone remod-
elling in and out of the scaffold with white triangles denoting the external boundaries of the scaffold. 
Reproduced with permission from Ref. [13] CC BY 4.0. 

Figure 1. Illustration of scaffolds-based BTE. TGF-β: Transforming Growth Factor-β, BMP: Bone
Morphogenetic Proteins, IGF: Insulin-like Growth Factor, FGF: Fibroblast Growth Factor, MSCs:
Mesenchymal Stem Cells, EPC: Endothelial Progenitor Cell, iPSC: Induced Pluripotent Stem Cells.
Reproduced with permission from Ref. [12] CC BY 4.0.
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Figure 2. (A–D) Implantation of a composite scaffold on a tibial bone defect region. (E) Bone
remodelling in and out of the scaffold with white triangles denoting the external boundaries of the
scaffold. Reproduced with permission from Ref. [13] CC BY 4.0.
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Computational modelling utilises mathematical models to study the complex pro-
cesses of a physical system using high-end computational resources. This technique in-
volves modifying inputs and boundary conditions within computer simulations to facilitate
the exploration and analysis of different scenarios and outcomes in the models [14–16]. The
advantage of simulation is that one can evaluate the designed scaffolds before fabrication,
ex vivo testing and in vivo implantation to save time and cost while obtaining valuable
information about scaffold designs [17,18]. The other advantage is that one can virtually
evaluate many scaffolds without fabrication by changing the related geometry and material
properties [19,20]. The results from the computational simulation are usually validated
through comparison with experimental studies [21,22]. Computational methods have been
used to design scaffold architectures [23,24], to predict equivalent mechanical properties of
scaffolds under diverse loading conditions using the finite element method (FEM) [25–27],
and to predict their flow properties under different flow scenarios using computational
fluid dynamics (CFD) [28,29]. They are also applied to model the degradation profiles of
scaffolds in hydrolytic degradation and erosion environments [30,31], to simulate bone
ingrowth or bone remodelling within scaffolds [32] and to simulate the vascularisation of
blood vessels [33]. The advantage of such computational modelling lies in its capacity to
predict scenarios that cannot otherwise be monitored in real-time, contributing proactive
knowledge into potential outcomes; the key to successful prediction depends on choosing
suitable models for given problems. The research questions which are addressed in this
review article for computational modelling in BTE are:

1. How do a scaffold’s architecture and morphological parameters affect its equivalent
mechanical properties and permeability?

2. How do the scaffolds behave under different loading conditions and different fluid
flow conditions while transporting materials such as nutrients and waste materi-
als? How do their equivalent mechanical properties and flow properties vary in
such scenarios?

3. What kind of material models can be applied for FEM-based structural analysis
of scaffolds, and what kind of fluid flow models can be utilised for CFD-based
permeability analysis of scaffolds?

2. Computational Modelling of Mechanical Behaviour and Permeability of Scaffolds
2.1. Design of Scaffolds
2.1.1. Essentials of Scaffolds

Scaffolds for BTE are temporary porous biomaterial structures that act as supporting
frameworks for incoming cells to adhere to, multiply and finally differentiate into different
functional bone tissues. They must be: (i) nontoxic to host tissues (i.e., biocompatible),
(ii) able to degrade their structure to give space for the growing bone cells (i.e., biodegrad-
able) [34], (iii) able to permit the cells to stick and multiply on their surfaces to generate
extracellular matrix (i.e., osteoconductive) [35], (iv) able to induce neo-bone tissues through
mechanical stimulus (i.e., osteoinductive) [36], (v) able to form bone materials with the
help of bone-forming cells ‘osteoblasts’ (i.e., osteogenic), (vi) able to integrate existing
osseous tissues with their load-bearing surfaces (osteointegration) [37], (vii) exhibit ap-
propriate morphological characteristics like pore size, porosity, and pore connectivity [38],
and (viii) mirror the mechanical properties of the host tissues, including Young’s modulus
and compressive strength. These properties of scaffolds are influenced by their materi-
als, such as synthetic and natural polymers, bio-composites, metal alloys and ceramics
(Figures 3 and 4) [39–41].
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(FGS). Uniform scaffolds have the same porosity throughout their structure, whereas FGS 
have gradient porosities based on relative density or cell size variation [66,67]. The gradi-
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2.1.2. Types of Designs

There are two types of scaffold designs based on the architecture: non-parametric and
parametric (Figure 5) [44]. Non-parametric designs are based on traditional lattice geome-
tries such as simple cubic, body-centred cubic (BCC), face-centred cubic (FCC) [45,46], octet,
truncated octahedron [47], diamond, truncated cube [48], fluorite, kelvin cell [49], iso truss,
re-entrant, Weaire–Phelan and honeycomb [50]. An advantage of non-parametric design
is that the scaffolds are more accessible to manufacture due to their simple geometries, as
they do not require specialised algorithms to generate. Parametric designs, on the other
hand, leverage more complex algorithms to create complicated structures, such as Triply
Periodic Minimal Surfaces (TPMS) [51] and Voronoi structures [52,53]. Modern additive
manufacturing technologies (AM) are capable of producing such complex designs [54,55].
Scaffolds based on TPMS can be generated through trigonometric equations and provide a
smooth surface devoid of sharp edges, zero mean curvature, a high surface-to-area ratio,
well-interconnected non-tortuous pores, and superior material permeability compared to
scaffolds based on non-parametric designs [56,57]. Voronoi scaffolds are designed based
on Voronoi tessellation using randomly distributed seeding points to create polyhedral
cells scaled to form pores and struts of structures similar to trabecular bones [58,59]. Apart
from TPMS and Voronoi structures, distinct research works are being performed to design
unique stochastical structures to mimic the bone structures using level set equations with
weight functions [60], an anisotropic spinodal phase decomposition with Gaussian random
fields (GRF) [61–63], and an iterative topological network optimisation based on a graph of
trabecular bone [64,65].

Further, the scaffolds can be classified into uniform and functionally graded scaf-
folds (FGS). Uniform scaffolds have the same porosity throughout their structure, whereas
FGS have gradient porosities based on relative density or cell size variation [66,67]. The
gradient in an FGS may be designed to imitate the characteristics of native tissues. Usu-
ally, scaffold design begins with obtaining anatomical shapes from imaging tools like
computer tomography (CT) [68,69] and magnetic resonance imaging (MRI), or modelling
cellular lattices using computer-aided design (CAD) software or specialised programs
(Supplementary Materials Table S1).
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2.1.3. Influence of Morphological Parameters on Mechanical Behaviour and Permeability

The morphological parameters of scaffolds, such as pore size, porosity, pore intercon-
nections and pore shape, all influence osteogenesis. A large pore size, for example, leads to
higher porosity and a larger surface area for the cells to live, multiply and differentiate into
specialised bone tissues. The morphology of scaffolds and their effective pore interconnec-
tions play a crucial role in facilitating oxygen exchange and nutrient delivery within the
scaffolds for cell growth, which is essential for successful tissue regeneration [70]. However,
increased porosity compromises mechanical strength, impacting the scaffold’s ability to
withstand applied loads [71].

2.2. Simulation of Mechanical Behaviour of BTE Scaffolds
FEM for Prediction of Mechanical Properties

The mechanical properties of the scaffolds, such as effective elastic modulus com-
pressive and tensile strengths, depend on their material properties and architectures [72].
Scaffolds are subjected to various types of loading, including shear, bending, torsion, ten-
sion, and compression, after they are implanted inside the body [73,74]. In load bearing
BTE applications, scaffolds must support loads ranging from hundreds to thousands of
newtons, making their mechanical properties crucial [75,76]. It is indispensable for the
scaffolds to withstand significant loads without collapsing to achieve the goal of bone
tissue generation. FEM is a numerical tool used to solve partial differential equations
(PDEs) in real-time engineering problems, enabling the prediction of mechanical properties.
This capability is valuable for optimising the scaffolds by modifying their morphological
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parameters [77,78]. In FEM, the scaffold geometry is partitioned into a finite number of
elements using the process of meshing. Generally, increasing the number of finite elements
improves the accuracy and fidelity of simulation results but also leads to an increase in
computation time [79]. An FE model combines FE meshes and material properties such as
Poisson’s ratio and Young’s modulus. The choice of model depends on scaffold materials,
which vary from elastic, plastic, hyperelastic, poor elastic, and elastoplastic to viscoelastic
models, which can express one or more linear, bilinear, multilinear, and non-linear be-
haviours (Figure 6) (Table 1). By applying boundary conditions such as force, acceleration
loads, pressure and displacement restraints to FE models, various mechanical properties,
including displacement, principal strain, component strain, principal stress, von Mises
stress and component stress are computed for different materials [80,81]. These calculations
are conducted through static, quasi-static, and buckling analyses. The workflow (Figure 7)
of an imaging-based FEM computational modelling process of TE scaffolds is given by
Imran et al. [82].
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One of the basic FEM-based material models for structural analysis is a linear model
which obeys Hooke’s Law. This linear model substantiates a linear association between
the applied force and the resulting displacement. In a linear isotropic material model,
the properties of materials do not change with direction. Musthafa et al. [84] designed
gyroid-based TPMS scaffolds of titanium alloys with different pore sizes using the signed
distance field method and applied compressive loading using linear elastic FEM-based
simulation to evaluate their effective elastic modulus for BTE applications. In this research,
methods to create surface/volume/FE meshes from a gyroid lattice were explained to
create FE models for the compressive loading simulation (Figure 8). The results revealed
that the predicted elastic moduli of the scaffolds were in the range of 0.05 to 1.93 GPa and
gave an insight into how the required mechanical properties can be achieved by tuning
the morphological parameters of the scaffold [84]. However, it is imperative to note that
this linearity holds only within the linear elastic region of a material. Linear elastic models
are suitable only for small deformations, while summations involving large deformations
necessitate the use of non-linear elastic models to predict yielding behaviour accurately [85].



Computation 2024, 12, 74 8 of 29

A similar linear isotropic elastic trend was found in Ti6Al4V scaffolds based dental implants
for periodontal diseases (Figure 9).
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Figure 8. (a) An FE volume mesh for an FE model from an implicit body of a cuboid gyroid scaffold
(conversion of the given implicit body to a surface mesh, to a volume mesh with tetrahedral elements
and a FE volume mesh with quadratic order), (b) structural analysis of an FE model under compressive
loading. (c) von Mises contour of PS550 (Pore size 500 µm and Strut size 300 µm) gyroid scaffold, and
(d) displacement contour of PS550. Reproduced with permission from Ref. [84] CC BY 4.0.
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In bilinear isotropic (BISO) hardening models, the stress and strain vary even after at-
taining maximum plastic deformation. A bilinear isotropic hardening model was applied
with quasi-static compressive loading-based simulation using FEM by Zhang et al. [87] to
predict local strain distributions, effective Young’s modulus, and compressive strength of poly
(ε-caprolactone)/nanohydroxyapatite scaffolds for osteochondral bone defects. The objective of
this work was to evaluate the effects of pore shape on scaffolds’ mechanical properties. A mesh
size of 0.125 mm was utilised for linear tetrahedral elements to create FE meshes of scaffolds,
ensuring convergence in FE modelling. The FE outcomes displayed a linear correlation between
the porosities and Young’s moduli of the scaffolds, similar to that of osteochondral bone [87].

In elastoplastic materials models, the non-linear performance of the materials is
described as bilinear [88] or multilinear [89] following the onset of plastic deformation,
during which they endure permanent deformation after the loads are applied. A linear
elastic FEM must be initially performed to determine whether the predicted stress is larger
than the yield strength of the material. Then, a non-linear static FEM can be performed to
predict its behaviour in the plastic regime [90]. A series of static analyses are conducted to
analyse time-dependent non-linear behaviours of materials like plasticity and viscoelasticity.
In each successive time step within the series, boundary conditions are adjusted without
consideration of inertial forces, frequency, or damping effects [91].

Rezapourian et al. [92] designed TPMS-based Split-P scaffolds of porosities in a range from
75% to 90% and applied a multilinear isotropic elastoplastic model to predict the behaviour
of Ti6Al4V scaffolds under compressive loading. Linear tetrahedral meshes (with an element
size of 0.2 mm) of the scaffolds were placed between a fixed bottom plate and a movable top
plate, subject to a velocity of 2 ms−1, to simulate the compressive behaviour at different strains.
The assessment of the simulation results disclosed that the Split-P scaffolds exhibited adequate
stress transfer necessary for enhanced load-supporting capability in trabecular and cortical bone
applications, displaying fracture characteristics capable of sustaining normal biomechanical
loads [92].

Verma et al. [93] utilised a non-linear isotropic hardening elastoplastic model for FE
simulations involving diverse compressive loading scenarios. These simulations focused on
a Ti6Al4V primitive (P) TPMS scaffold with 80% porosity fixed within a segmental bone
defect region of a femur. The authors compared its performance against scaffolds placed within
femoral defects (Figure 10). The simulation results indicated that the porous P scaffolds provided
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beneficial mechanical stimuli to the neighbouring bone tissues and transferred more stress to
these tissues due to the matching effective elastic modulus [93].
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(c,d) stress distribution contours on the bone, (e,f) von Mises stress contours of P and solid scaffolds,
(g,h) stress distribution contours for P and solid scaffolds at 50 MPa. Reproduced with permission
from Ref. [93] CC BY 4.0.

A BISO model with Maxwell’s criterion was used by Vance et al. [94] to predict the
elastoplastic mechanical behaviour of customised Ti6Al4V (Ti64) sheathed scaffold implants
obtained from X-ray CT for segmental bone defect repair. The simulation results predicted
the Young’s modulus of the implant at 11.94 GPa, comparable with that of experimental
testing (14.58 GPa). Given that its stiffness is lower than Young’s modulus of the tibia bone
(18.01 GPa), this suggests that the bone implant is a potential candidate with the requisite
lower stiffness required for osseointegration and bone regeneration (Figure 11) [94].
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Huang et al. [95] comprehensively reviewed several biomaterial scaffolds for ap-
plications of maxillofacial BTE. They explained the technical considerations of physical
properties (shape, porous structure, microarchitecture and mechanical), biological proper-
ties and biomaterials (metals, polymers, ceramics, and composites) required for essential
cell proliferation, angiogenesis, and osteogenesis [95]. Polymeric materials give more
control over morphological parameters, biocompatibility, and biodegradation [96]. In quasi-
static compressive loading, polymer-based scaffolds undergo viscoelastic deformation after
yielding. This viscoelastic behaviour can be simulated using the Prony series relaxation
model, in which the shear and bulk moduli are described via the Prony series with the
help of volumetric and deviatoric viscosities of materials [97,98]. The polymer-based scaf-
folds with increasing porosity lack sufficient mechanical strength for loadbearing bone
applications [99].

Table 1. Computational modelling of mechanical behaviour using FEM.

Model Predicted Mechanical Properties Material * Remarks

Linear isotropic
elastic model

Young’s modulus
(2D and 3D compressive responses) PCL

Relationship between compressive modulus and
porosities of uniform and gradient diamond

pored scaffolds for tissue-engineered meniscus
applications [100]

BISO model Effective plastic strain
Twinning-
induced

plasticity steel

Evaluation of morphological properties on
quasi-static behaviour of hallow walled lattice

structures under compressive loading [101]
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Table 1. Cont.

Model Predicted Mechanical Properties Material * Remarks

Linear isotropic
Reuss model

Equivalent Young’s modulus,
compression Stiffness PCL-ACP

Prediction of compressive stiffness of
non-parametric scaffolds under linear

compressive loading for BTE applications [102]

Multilinear isotropic,
elastoplastic model

von Mises stress, equivalent plastic
strain distributions Ti6Al4V

Prediction of elastoplastic nature of Split-P
TPMS scaffolds for cortical and trabecular bone

applications [92]

Non-linear
elastoplastic model Plastic deformation 316L SS

Evaluating the influence of gradient properties
of TPMS and circular loading scaffolds on their
elastoplastic properties under static compressive

loading [103]

Raghava–Hill
Plasticity Model Compressive stiffness and strength Ti-42Nb alloy

Evaluation of effects of unit cells of gyroid and
I-WP-based bone scaffolds on their mechanical
properties under quasi-static compression [104]

Bilinear plasticity
model with isotropic

hardening
(Li–Guo–Shim

Model)

Plastic deformation SS316 Stainless
Steel

Prediction of plastic behaviour of Voronoi-based
honeycomb scaffolds [105]

One term Ogden
hyper elastic model

Effective compressive modulus,
shear modulus AG hydrogels

Prediction of non-linear mechanical properties of
mesostructure-based hydrogel scaffolds using

inverse FE simulations for TE applications [106]

5-term
Mooney–Rivlin and

2-term Ogden
models

Stress relaxation AG hydrogels
Evaluation of the hyper-viscoelastic response of
hydrogels in compression and tension loading

for human articular cartilage [107]

5-term
Mooney–Rivlin

model, Prony series
relaxation model and
Generalised Maxwell

Model (GMM)

Tensile strength and storage
modulus PLA

Prediction of elastic and viscoelastic behaviours
of dog bone-shaped structures under tensile

loading [108]

Burgers and
Maxwell viscoelastic

models

Linear viscoelastic behaviour (creep
and recovery) Polypropylene Prediction of viscoelastic deformation at

different pressure levels [109]

Riemann–Liouville-
based fractional

viscoelastic model

Viscoelastic (creep recovery and
cyclic response) deformations POM

Development of a non-linear multiaxial
viscoelastic model to evaluate time-dependent

responses of isotropic materials under small
deformation gradients [110]

Maxwell, Kelvin,
and Burger models Storage and loss moduli PLA

Prediction of time-dependent viscoelastic
behaviour of orthotropic viscoelastic materials

[111]

Mori–Tanaka model Effective elastic moduli (Young’s
modulus) and Poisson’s ratio

Acrylic-based
photopolymers

Prediction of mechanical properties of
mix-materials composites based foams with

different porosities [112]

Crushable foam
plasticity model

Elastic modulus under quasi-static
compression VeroClear

Prediction of damage behaviour of polymer
bone scaffolds with cubic and hexagonal

architecture [113]
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Table 1. Cont.

Model Predicted Mechanical Properties Material * Remarks

Johnson–Cook (JC)
damage deformation

model
Compressive stress distribution Ti6Al4V-PCL

Performance evaluation of failure and
mechanical strength mechanisms of

interpenetrating phase composites (IPCs) under
compressive loading for orthopaedic

implants [114]

Arruda–Boyce (AB)
Model

Compressive uniaxial modulus and
strength PA-12

Prediction of viscoelastic behaviour of polymeric
gyroid scaffolds of sheet network architecture

with non-identical relative densities [115]

* PCL-ACP: Polycaprolactone and amorphous calcium phosphate, PCL: Polycaprolactone, PLA: Polylactic Acid,
LSCF: Lanthanum strontium cobalt ferrite, PHBV: Poly(3-hydroxybutyrate-co-3-hydroxy valerate), ABS: Acryloni-
trile Butadiene Styrene, ITO: Indium Tin Oxide, Ti6Al4V: Titanium–Aluminium–Vanadium alloy, PEEK: Polyether
ether ketone, Ti-4Nb: Titanium–Niobium alloy, N/A: Not Applicable; PA: Polyamide; AG: Alginate–Gelatin;
POM: Polyoxymethylene; SS: Stainless Steel.

2.3. Simulation of Permeability of BTE Scaffolds
Need for Permeability Simulation

Scaffolds permit the transport of nutrients from nearby tissues and provide a pathway
to eliminate waste products from the cells. Permeability refers to the ability of materials to
flow through the scaffolds and is primarily dependent on the architecture of the scaffolds.
When scaffolds possess high permeabilities and well-interconnected pore networks, a more
significant number of cells and nutrients can infiltrate the scaffolds, leading to enhanced
tissue growth [116,117]. Shear flow refers to the movement of a fluid induced by forces
within it. Wall shear stress (WSS) is a specific type of shear stress that occurs due to
varying fluid velocities along the inner surfaces of scaffold walls. WSS provides mechanical
stimuli that encourage cells to grow and differentiate into functional tissues [118,119].
Therefore, altering design parameters like pore size, architecture, and pore interconnectivity
in scaffolds can result in a different average WSS, which is instrumental in guiding cell
differentiation within these structures [120,121].

CFD is a numerical approach applied to simulate the nature of fluid flow inside
scaffolds and their related fluidic environments. CFD simulation solves the governing
mathematical equations that characterise the physical nature of fluids (e.g., pressure and
velocity) using an in silico depiction of fluidic nature in different flow situations. This
technique can be used to optimise the design of scaffolds and improve their permeability
for successful bone tissue regeneration [122,123]. For CFD simulations, two types of fluids
are considered: Newtonian and non-Newtonian fluids [124,125]. Newtonian fluids such as
water, alcohol, and glycerol have constant viscosity at constant temperatures and obey the
Newtonian law of viscosity. This law states that their shear stress is directly proportional to
the rate of change in fluid velocity. Non-Newtonian fluids such as blood and cell culture
media, which do not obey Newton’s law of viscosity, have variable viscosities dependent
on shear rate (Tables 2 and 3).

Table 2. Flow parameters in BTE from the literature.

Parameters Authors Reference

Blood flow rate in tibia = 60 mL/100 g/min Iversen et al. [126]
Blood density in bone = 1810 kg/m3 Pal et al. [127]

Blood velocity in bone marrow = 0.5 to 0.8 mm/s Bixel et al. [128]

Newtonian fluids, with their constant viscosity at a constant temperature, flow more
readily through permeable networks, while non-Newtonian fluids, owing to their variable
viscosity, exhibit higher levels of WSS. CFD simulations based on non-Newtonian fluids
give more realistic fluid flow behaviour predictions, especially in biomedical applications,
due to their more realistic representation of the variable viscosity characteristics of biological
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fluids [129]. Values of WSS greater than 30 mPa have been shown to be beneficial for the
growth of cells [130].

Suffo et al. discussed the differences between various turbulent flow modelling
methods (Figure 12) [131]. These methods include Reynolds averaged Navier–Stokes
(RANS) such as k-ε, k-ω (Wilcox model) and k-ω SST (shear stress transport), Reynolds
stress models (RSM), large eddy simulation (LES), direct numerical simulation (DNS), the
scale adaptive simulation (SAS), and detached eddy simulation (DES) models. The authors
applied these models to different turbulent flows and utilised the knowledge of CFD
simulation with Fluid–Structural Interaction (FSI) techniques [132,133]. This integration
was specifically employed for turbulence flow modelling of PLA scaffolds, facilitating the
study of their flow properties.
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Pires et al. [134] provided a review of the challenges encountered in designing CFD
applications for BTE. Notably, they explained how scaffold design parameters affect both
mechanical and permeability properties, as well as how CFD and FEM simulation studies
optimise scaffold designs to achieve the goal of bone tissue regeneration [134].

In BTE, bioreactors are employed to grow functional tissues from MSCs in controlled
in vitro conditions. This process provides a continuous supply of nutrients and the removal
of waste products prior to in vivo implantation at bone defect sites [135,136]. Implementing
a mathematical model of the process in a CFD simulation involves four key steps: designing
the geometries of scaffolds and complimentary bioreactors, selecting the appropriate flow
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equations, and determining the boundary and initial conditions (Figure 13) [137,138]. Thus,
the fundamentals of CFD simulations can be described in three modules:

(i) Preprocessing: This initial phase involves designing the scaffold geometry and setting
up the bioreactor geometry. Then, the fluid domain or volume is extracted using
Boolean differentiation of scaffold geometry with the bioreactor geometry (Figure 14).
The flow of either Newtonian or non-Newtonian fluids must be represented in terms
of boundary conditions, including the inlet flow velocity, the outlet pressure, and
the viscosity of the given fluid. These boundary conditions describe the given fluid’s
interaction with the scaffold’s surface [139,140].

(ii) Solver: This module focuses on applying numerical methods within CFD to solve
the governing equations, such as the Navier–Stokes (NS) equations [141] for con-
tinuous flow modelling or the Lattice Boltzmann Method (LBM) for discrete flow
modelling [142]. Traditionally, finite difference methods (FDM) using grids for the
discretisation of a given geometry were applied to solve the governing equations,
but they were inefficient for complex geometries [143]. The methods of FEM and
the finite volume method (FVM) have since gained popularity in CFD simulations
for complex and curved geometries. In FEM, geometry is divided into more minor
finite elements, primarily using mesh nodes. At the same time, FVM discretises the
problem into small control volumes centred around mesh points, focusing on the
conservation of physical quantities across each volume [144]. FEM is highly versatile
and is particularly effective for problems involving complex geometries and irregular
shapes. However, it becomes very computationally expensive for models with a large
number of elements. Comparatively, FVM is often considered more efficient for prob-
lems involving fluid dynamics and heat transfer, mainly because it directly applies
the conservation laws of mass, momentum, and energy over control volumes [145].
This type makes it naturally suited for the analysis of flow problems and can lead to
more accurate results in these cases with less computational effort.

(iii) Post Processing: After the CFD simulation, a post-processing module is used to anal-
yse the results, including the velocity streamlines, the average WSS, and pressure and
velocity contours. This analysis provides insights into how a scaffold’s architecture
affects fluid flow, offering valuable information about permeability, fluid velocity, and
WSS [146,147].

In fluid dynamics, a laminar flow occurs when the fluid flows smoothly without any
disturbance or deviation from its path. This type of flow typically happens at low velocities
or with high-viscosity fluids. Usually, the laminar occurs when a Reynolds number is lower
than a critical value of 2300. In contrast, fluid flows with a Reynolds number larger than
4000 are considered turbulent flow and generally involve swirling motions (eddies) and
deviations from the standard flow pattern. Fluid flow with a Reynolds number between
2300 and 3000 is considered transitional, indicating a shift from laminar to turbulent flow
characteristics [148,149].

Wang et al. [150] conducted a study using water as an incompressible fluid with
an inlet velocity of 1 mm/s and a zero-outlet pressure in their laminar CFD model to
predict permeability and the WSS of honeycomb structures in the context of cancellous
bone repair applications. This study concluded that the permeability of scaffolds between
15 and 48 µm2 has a positive influence on cancellous bone tissue regeneration. At the same
time, a WSS value between 2.8 and 42.8 mPa can simulate cell growth inside scaffolds
(Figure 15) [150].

Using blood as the fluid material in simulations, rather than water, offers more realistic
predictions of permeability and WSS within scaffolds. This simulation type is particularly
relevant as turbulence flow is a crucial characteristic of blood circulation [151]. Omar
et al. [130] utilised a k-ω SST turbulence CFD model to predict flow velocities, pressure
drops and WSS in anatomically shaped bone scaffolds. In their model, they varied inlet
blood flow velocities from 1 to 9 mm/s and employed a convergence criterion of 10−4

for residual monitoring. Their findings indicated that for blood velocities ranging from



Computation 2024, 12, 74 17 of 29

1 to 5 mm/s, the predicted WSS value was lower than 30 mPa. In contrast, for velocities
exceeding 5 mm/s, the predicted WSS value was higher than 30 mPa. The study also
observed that the value of WSS was generally lower in the centre of scaffolds and increased
near the wall of scaffolds (Figure 16) [130].

Blood is composed of plasma, ‘thrombocytes (platelets), leukocytes (white blood cells),
and erythrocytes (red blood cells)’ [152]. As previously mentioned, blood exhibits non-
Newtonian flow characteristics due to well-deformed high clusters of erythrocytes [153].
Various non-Newtonian blood viscosity models have been employed, such as the power
law, generalised power law, Casson, Carreau, and Carreau–Yasuda models to model blood
flow and WSS distributions in blood vessels [154,155].
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Seehanam et al. [156] applied the Carreau–Yasuda viscosity model on sheet-based
gyroid scaffolds to predict pressure drops, velocity profiles and fluid-induced WSS in
comparison with a Newtonian flow model. This model was performed to study the influ-
ence of shear rate on blood viscosity. The findings revealed that the predicted parameters
from the non-Newtonian model were twice those predicted using the Newtonian model.
Additionally, both models predicted shear stress in the range between 0.05 and 10 mPa,
which is considered beneficial for the promotion of bone cell proliferation (Figure 17) [156].

A significant challenge in CFD simulation is generating clean meshes for complex
geometry structures such as TPMS structures and Voronoi lattices when computational
power is limited [157]. To overcome this limitation, Reduan et al. developed a new



Computation 2024, 12, 74 18 of 29

analytical model based on Hagen–Poiseuille’s law for permeability prediction of TPMS-
based bone scaffolds, which relies on morphological parameters. This model utilises
pressure drop values derived from CFD analysis to calibrate and refine the analytical
model, thus offering an effective workaround for computational limitations in the analysis
of complex scaffolds (Figure 18) [158].
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Figure 16. (A) Pressure drops, (B) WSS and (C) velocity contours of anatomically shaped BTE
scaffolds for inlet blood velocities: (a) 1 mm/s, (b) 3 mm/s, (c) 5 mm/s, (d) 7 mm/s and (e) 9 mm/s.
Reproduced with permission from Ref. [130] CC BY 4.0.
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Table 3. CFD modelling of fluid behaviour.

Model Predicted Fluid and
Other Properties Fluid Material * Remarks

Steady-state Laminar
fluid flow model

Permeability and
WSS

Blood
(Density: 1050 kg/m3,

viscosity: 0.004 kg/(m.s), inlet
velocity: 0.3 mL/min)

Evaluation of the influence of
morphological parameters of uniform

and graded Schwartz-Primitive
scaffolds on their permeability
properties for trabecular bone

applications [159]

Pressure drops,
permeability, and

WSS

Blood
(Viscosity: 3.2 × 10−3 Pa.s,
density: 1060 kg/m3, inlet

velocity: 1 mm/s)

Evaluation of fluid transport properties
of Tra-PLA/PDA/COS@EU scaffolds

for trabecular bone repair [116]

Laminar fluid flow model
with Wang–Tarbell formula

for permeability

WSS, flow rate,
permeability, and

mass flow

α-MEM
(Density: 1000 kg/m3,

viscosity: 1.45 × 10−3 Pa.s,
inlet velocity: 1 mm/s)

Prediction of hydrodynamic responses
for osteogenesis inside titanium
alloy-based TPMS and Voronoi

scaffolds [160]

Incompressible Laminar
Newtonian fluid model and
Discrete phase model (DPM)

Permeability, FSS,
and distribution of

stem cells

Blood
(Density: 1060 kg/cm3,

viscosity: 0.003 kg/m/s)
MSCs (Diameter: 12.7 µm,
and density: 1140 kg(m3)

Prediction of fluid shear stress on
Voronoi scaffold surface, MSCs
attachment on the scaffold and
mechano-regulation osteoblast

differentiation (MrOD) [161]

Incompressible Newtonian
fluid model and Machine

Learning (ML)

Permeability,
pressure drop and

specific surface area

Body Fluid
(Density: 1056 kg/m3,
viscosity: 0.0045 Pa.s)

Prediction of WSS using support vector
machines and eXtreme Gradient

Boosting ML models to minimise the
computational cost of CFD

simulations [162]

Power law models for
incompressible

non-Newtonian fluid

Permeability and
WSS

Blood
(Density: 1050 kg/m3,

minimum and maximum
dynamic viscosities: 0.001 and

0.708 kg/m/s, consistency
index: 0.017 kg.sn−2/m,

power law exponent: 0.708)

Prediction of transport properties
inside open cell Neovius TPMS

scaffolds for BTE [163]

Carreau–Yasuda
non-Newtonian flow model

and DPM

Pressure drops,
specific surface area,

and cell seeding
efficiency

Blood
(Density: 1050 kg/m3, inlet

velocity: 0.1 mm/s, lower and
upper viscosities: 0.25 and

0.0035 Pa.s)
MSCs (density: 1130 kg/m3,
diameter: 10 µm and initial

cell number: 3600)

Influence of pore size of TPMS scaffolds
on cell seeding [164]

FEM-based CFD model with
Brinkmann equation for shear

stress in scaffold medium

Flow velocity and
shear stress

Culture medium
(Inlet flow rate: 2 mL/min)

Development of CFD models for
evaluation of perfusion bioreactor

systems to predict flow parameters of
β-Tricalcium phosphate scaffolds in

BTE [165]

RANS K-Turbulence model
and Transport of diluted

specimen model

Shear stress, flow
distribution and
glucose diffusion

Water
(Mass inflow: 1.5 g/min),

Glucose in tissues (Diffusion
coefficient: 6 × 10–10 m2/s,
elimination rate: −1.157 +

10−4 mol/(m3.s))

Prediction of shear stress and nutrient
distribution into tissues in a perfusion

bioreactor [166]
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Table 3. Cont.

Model Predicted Fluid and
Other Properties Fluid Material * Remarks

SST K-ω Turbulence Model
Pressure drops, Flow
velocity distribution

and WSS

DMEM
(Density: 1 g/cm3, dynamic
viscosity: 1.45 mPa.s, inlet
velocity: 0.1, 1 to 10 mm/s,

Thermal conductivity:
91 W/(mK), Specific Heat:
1050 J/(kg K), Electrical

resistivity: 6.20 × 10−8 Ω m)

Prediction of permeability of
Magnesium-based trabecular bone

implants [167]

Vertex hydrodynamics (VH)
model

Elastic energy (Cell
distribution),
Total/specific

number of cells,
intracellular

pressure, and
normalised shear

stress

Water Simulation of tissue growth at FGS in
perfusion bioreactors [168]

LBM-based mesoscopic model
Cell attachment rate

and seeding
efficiency

MSCs (Stiffness: 50 to 150 µN,
bond strength: 0.025 to

0.125 pN/nm, Binding force:
10 to 50 pN)

Simulation of MSCs seeding on
uniform pore scaffold to evaluate cell

deformation and attachment [169]

Two-relaxation time (TRT)
LBM with

Michaelis–Menten-like kinetic
model

Fluid flow and
oxygen transport

α-MEM (Density: 993 kg/m3,
viscosity: 10−3 Pa.s,

inlet velocity: 1.47 mm/s,
oxygen diffusion coefficient:

3 × 10−9 m2/s)

Prediction of oxygen consumption to
the cells (MC3T3E1 Preosteoblasts) for

optimal in vitro BTE methods of
polysaccharide hydrogel scaffolds [170]

* α-MEM: α-Modified Eagle’s Minimum cell culture medium with less vitamins, amino acids, and glucose; MEM:
Modified Eagle’s Minimum cell culture medium with more vitamins, amino acids, and glucose; DMEM: Dulbecco’s
Modified Eagle’s Medium; Tra-PLA/PDA/COS@EU: PLA with polydopamine and Chito Oligosaccharide-based
europium (III) organic ligands.

3. Conclusions

This review article has given an extensive analysis of the studies in FEM/CFD com-
putational modelling of scaffolds in BTE. It also gives introductory details about different
scaffold types based on parametric, non-parametric and stochastic designs to achieve sim-
ple to complex structures. The main challenge for computational engineers in BTE is to
select the appropriate material models for different mechanical loading in the case of FEM
modelling and to choose the suitable flow models for both Newtonian and non-Newtonian
fluids in the case of CFD modelling. Knowing the suitable models for the given problems
helps to accurately predict the equivalent mechanical properties and flow properties to
enhance scaffold designs, as well as to improve the bioreactor environment. Thus, the
prediction of these properties using computational modelling may be helpful in reducing
the cost of in vivo and in vitro examinations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/computation12040074/s1, Figure S1: non-parametric designs
of scaffolds; Figure S2: parametric designs of scaffolds—TPMS; Figure S3: parametric designs of
scaffolds—Voronoi; Table S1: software tools to design TPMS/lattice-based scaffolds; Table S2: list of
FEM software; Table S3: list of CFD software.
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