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Abstract: Surface passivation is a critical aspect of preventing surface oxidation and improving the
emission properties of nanocrystal quantum dots (QDs). Recent studies have demonstrated the
critical role of surface ligands in determining the performance of QD-based light-emitting diodes
(QD-LEDs). Herein, the underlying mechanism by which the capping ligands of InP/ZnSe/ZnS
QDs influence the brightness and lifetime of the QD-LEDs is investigated. The electrochemical
results demonstrate that highly luminescent InP/ZnSe/ZnS QDs exhibit modulated charge injection
depending on the length of the surface ligand chains: short alkyl chains on the ligands are favorable
for charge transport to the QDs. In addition, the correlation between the spectroscopic and XRD
analyses suggests that the length of the ligand chain tunes the ligand–ligand coupling strength,
thereby controlling the inter-QD energy transfer dynamics. The present findings shed new light on
the crucial role of surface ligands for InP/ZnSe/ZnS QD-LED applications.

Keywords: quantum dots; indium phosphide; organic ligands; photophysical properties; electrochemical
properties

1. Introduction

Environmentally benign indium phosphide (InP) quantum dots (QDs) have gained
significant attention as a promising platform for commercializing quantum dot light-
emitting diodes (QD-LEDs) due to their highly efficient, stable, and color-pure photolu-
minescence (PL) with a near-unity PL quantum yield and narrow-band emission [1–6].
However, the retention of these remarkable properties in electroluminescence (EL) remains
challenging [7–11]. The PL and EL each involve the recombination of non-equilibrium
charge carriers, but they differ in their charge generation processes. The PL occurs when a
material is excited by an external light source, thereby generating non-equilibrium charge
carriers that can recombine, resulting in the emission of light. However, EL occurs when a
voltage is applied to a material, thereby creating a flow of non-equilibrium charge carriers,
such as electrons and holes, that release energy in the form of light when they recom-
bine. Consequently, efficient charge injection and transfer within the device are critical to
achieving high EL efficiency in optoelectronic devices.

While organic capping ligands are generally used to enhance the colloidal stability
and protect the QD surfaces against oxidation, surface ligands have also been reported to
affect the performance of QD devices by modulating the charge carrier mobility, charge
injection, and balance in the spatial distribution of electrons and holes [8,12–18]. For
instance, the performance of the QD device is determined by the operando electrochemical
reactions of the organic ligands, and the conductivity and quantum efficiency can be
improved via chlorination of the QD surface, which engineers exciton confinement [17,18].
In addition, colloidal core–shell QDs have been shown to exhibit significantly improved
QD-LED performance as the surface ligand chain length is reduced [19]. Conversely, QDs
with ligands with long chains exhibit lower charge transfer rates due to the large surface
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transport barrier and the weakening of the charge coupling between QDs [20–23]. At the
same time, the fluorescence resonance energy transfer (FRET) between the QDs is a major
determinant of the QD-LED performance particularly the device lifetime [19,24,25]. Energy
transfer between QDs can lead to nonradiative recombination, which decreases the device
efficiency and shortens its lifetime. This effect is referred to as energy-transfer-induced
quenching and is particularly problematic when the QDs are closely packed together.
Therefore, controlling energy transfer processes in QD-LEDs is crucial to optimizing the
devices’ performance and enhancing their lifetimes.

Hence, the present study examines the synthesis and electrochemical characterization
of InP/ZnSe/ZnS QDs with various surface ligand lengths. Furthermore, the inter-QD
electronic energy transfer properties are thoroughly probed via the emerging technique of
fluorescence lifetime imaging microscopy (FLIM) by obtaining the PL lifetime and intensity
with a scan area of 5 × 5 µm2. Since the scanned image has an array of 512 by 512 pixels,
the dimensions of each pixel are about 10 × 10 nm2. The electrochemical results indicate
that decreasing the ligand chain length facilitates charge injection due to a smaller energy
barrier towards charge transport, thus highlighting the crucial role of the surface ligand
in determining the efficiency of charge injection in the nanoparticles and, in turn, their
performance in optoelectronic devices. Moreover, the FLIM results reveal that the energy
transfer population and efficiency between neighboring QDs are proportional to the surface
ligand chain lengths. In addition, the X-ray diffraction (XRD) patterns of InP/ZnSe/ZnS
QD solids prove that the alkyl-chain-length-controlled interligand coupling is a strong
driving force for FRET and that shorter alkyl ligands result in weaker interligand van der
Waals interactions. Therefore, reducing the surface ligand length of the InP-based QDs
improves the performance of the QD-LED by promoting effective charge injection and
reducing FRET.

2. Materials and Methods

As shown in Scheme 1 and Figure 1A, QDs surrounded by oleic acid (OA), decanoic
acid (DA), or hexanoic acid (HA) moieties were synthesized using the procedure reported
by Hahm et al. with minor modifications [26]. The ligand-exchanged InP/ZnSe/ZnS QDs
were prepared via post-synthetic methods to eliminate any experimental errors originating
from batch-to-batch variations in the QD synthesis. The as-synthesized InP/ZnSe/ZnS
QDs from the same batch were then used to prepare OA-InP, DA-InP, and HA-InP. The full
details of starting materials, commercial sources, quantities and synthetic conditions used
are provided in the Supplementary Materials.
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Scheme 1. (A) The preparation of the InP cores and growth of the ZnSe/ZnS shell. (B) The ligand
exchange process.

In addition, the monodispersed QD-ordered OA-InP, DA-InP, and HA-InP films were
fabricated by using an established procedure [27–29]. The details are provided in the
Supplementary Materials. The effects of ligand length upon the energy transfer dynamics
of the InP/ZnSe/ZnS QDs were further validated by using a lab-built FLIM setup to
investigate the FRET phenomenon. In this setup, a pump beam was focused through a
100× oil-immersion objective onto a small spot of the sample, and an image was obtained
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based on the difference in the PL decay rate and intensity of the emitting sample. For the
FLIM measurements, a 470 nm pulsed laser beam with a repetition frequency of 10 MHz
was used as the excitation source, and the highly-ordered QD films were photoexcited
under the condition of 〈NX〉 >> 1.
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Figure 1. (A) A schematic representation of the InP/ZnSe/ZnS QDs with varying lengths of
surface-ligands; (B) the thermogravimetric analysis and (C) the steady-state absorption and photo-
luminescence spectra of the InP/ZnSe/ZnS QDs before and after the ligand substitution reactions.
The values above the spectra indicate the relative quantum yields relative to that of coumarin 153
in ethanol.

Thermogravimetric analysis (TGA) revealed that 31% of the OA was replaced by DA in
DA-InP, and 54% of the OA was replaced by HA in HA-InP (Figure 1B). Although previous
studies have shown that the ligand chain length can impact the overlap of the electron–hole
wavefunction [30–32], the three InP/ZnSe/ZnS QDs fabricated herein exhibited similar
excitonic peak positions, emission energies, and PL quantum yields (Figure 1C). The
successful ligand substitution is further demonstrated by the quantitative analysis of the
decay curves of the excitonic bleach signal extracted from the transient absorption spectra
(Figure S1), in which a fast decay component of a few tens of picoseconds can be attributed
to charge transfer into the QD surface. These decay time constants are seen to increase as
the ligand chain length of the QDs is extended.

3. Results and Discussion
3.1. Chronoamperometry

Considering that charge carriers are electrically generated in the QD-LEDs, the intrinsic
charge injection properties of the various InP/Znse/ZnS QDs are examined and compared
via chronoamperometry, an electrochemical technique that monitors the current from Faradaic
processes occurring at the electrode as a function of time. Because electron migration is poorly
modulated, and redox reactions proceed unevenly within QD films [33,34], electrochemical
charge injection is performed in the QD solution. A schematic diagram of the charging
process is shown in Figure 2A; redox reactions occur in the near-electrode region depending
on the external potential. First, the QD energy levels obtained from the onset redox
potentials are estimated from the cyclic voltammogram in Figure S3, and the measurement
results are summarized in Table S1. The evolution of the current density with time in
response to an applied potential is then measured via chronoamperometry, and the results
are presented in Figure 2B. Next, the effects of the type of surface ligand on the current
density near the onset potential (i.e., −1 and +1.5 V) are revealed in Figure 2C,D. A high
current density implies effective charge injection into the corresponding QDs, as it is
dependent on the concentration of the charged dots. Thus, the effect of the ligand chain
length upon charge injection is seen to be more significant when there are fewer than
10 carbon atoms in the capping ligand (Figure 2E). Decreasing the number of carbon atoms
in the ligand from 18 to 6 is seen to increase the integrated current density by a factor



Nanomaterials 2023, 13, 1159 4 of 11

of 1.5. In addition, a decrease in ligand length is found to increase the current density
at high applied voltages (Figure S4), thereby indicating that short ligands improve the
charge injection efficiency by reducing the energy barrier toward charge transport in the
InP/ZnSe/ZnS QDs.
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Figure 2. (A) A schematic diagram of the electrochemical charging in the QD solution (QD diluted
in dichloromethane with 0.05 M TBAPF6); (B) chronoamperometric measurements, including the
potential vs. time profile (top), where EI is the initial potential and ES is the set applied potential, and
the corresponding response (bottom); (C,D) the chronoamperometric results close to the reduction
(C) and oxidation (D) potential. (E) The integrated current density as a function of the number of
carbon atoms in the capping ligand.

3.2. Time-Resolved Photoluminescence of Quantum Dot Solids

The performance of the QD-LED is influenced by the interplay between the QDs;
hence, it is important to understand the physics of the inter-QD electronic coupling during
photoinduced energy conversion, as shown in Figure 3A [35–38]. Figure 3B–D show the
steady-state PL spectra of the OA-InP, DA-InP, and HA-InP, respectively. The single QD
emission was recorded with an exposure time of 1 s per frame (see the Supplementary
Materials for details on single QD PL microscopy). Zero-dimensional QDs are characterized
by the confinement of the electronic wavefunctions in all directions, producing a non-zero
electronic density of states only at discrete energies. Thus, narrow PL spectral lines similar
to those observed in atomic gases are expected [39]. However, even the spectra of a single
QD show significant line broadening due to exciton–phonon coupling, spectral shifts,
and exciton fine-structure splitting [40]. The PL spectral linewidth of an ensemble is
also affected by inhomogeneous broadening due to particle-to-particle inhomogeneity. In
OA-InP, DA-InP, and HA-InP, the slightly increased linewidth of the film compared to the
solution suggests an interaction between the QDs. For the QD films, the spectral signature
of energy transfer dynamics is revealed by a continuous red-shift of the emission peaks
in the two-dimensional (2D) contour maps of the time-resolved PL spectra (Figure 3E–G),
accompanied by a decrease in PL intensity [41,42]. Compared to the QD solution and
disordered films, a fast-decaying component with a ~2.5 ns time constant appeared in the
PL decay kinetics of the QD-ordered films, demonstrating the occurrence of FRET processes
(Figures S6 and S7). Additionally, the PL lifetime of each QD array is seen to increase as the
emission energy decreases (Figure S8), thereby indicating exciton flow [43]. In particular,
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the PL lifetime of the OA-InP is seen to increase steeply with the decrease in detection
energy, whereas that of the DA-InP and HA-InP varies only modestly with emission energy
(Figure S9). Meanwhile, the emission peaks of the OA-InP, DA-InP, and HA-InP arrays
exhibit shifts of 30, 24, and 17 meV, respectively, toward low energy (Figure 3H−J). Based
on these spectroscopic results, the energy transfer efficiency was expected to vary with
ligand length. In general, energy transfer dynamics depend on the donor-to-acceptor
separation distance based on the theoretical basis of FRET. However, the transmission
electron microscopy (TEM) images reveal similar distances between adjacent QDs of 6.4,
6.3, and 6.2 nm for the OA-InP, DA-InP, and HA-InP arrays, respectively (Figure S5). In
addition, the size dispersion is not responsible for the correlation between the FRET kinetics
and the ligand chain length given that the QD size distributions were similar regardless of
ligand length due to the post-synthetic methods.
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Figure 3. (A) A schematic diagram showing the photoinduced energy conversion in QD solids;
(B–D) the photoluminescence (PL) spectra of the OA-InP (B), the DA-InP (C), and the HA-InP (D)
in the form of a single QD, a QD solution, and a QD film; (E–G) the two-dimensional map of time-
resolved photoluminescence of the OA-InP (E), the DA-InP (F), and the HA-InP (G) arrays; (H) the
dynamics of emission peak shifts of the OA-InP, the DA-InP, and the HA-InP arrays.

3.3. Photoluminescence Lifetime Imaging Microscopic Measurements

To further validate the ligand length dependence of energy transfer dynamics in
InP/ZnSe/ZnS QDs, FRET was thoroughly investigated using our lab-built FLIM setup.
The FLIM technique provides an image based on the differences in the PL decay rates and
intensities from an emitting sample. The 2D digital imaging process is shown schematically
in Figure 4A, in which the outcome is an array of pixels defined by the PL decay distribu-
tion [44]. Here, each pixel contains lifetime data indicating the number of photons collected
at various times after pulsed light excitation. In addition, the pixel-by-pixel PL decay
curves provide a sensitive approach to measuring the FRET by quantifying the decrease in
the PL lifetime even when the distance between the donor and acceptor QDs is less than
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10 nm. The FLIM images of the OA-InP, DA-InP, and HA-InP (scan area: 5.5 × 5.5 µm2) are
presented in Figure 4B, in which an increase in the PL lifetime is observed with the decrease
in ligand length. Meanwhile, the PL decay traces, which represent the total number of
photons collected at various times over the entire pixels, exhibit double-exponential decay
with a fast-decaying component (τ1) reflecting the inter-QD energy transfer processes and
a slow-decaying component (τ2) reflecting charge recombination (Figure 4C). We further
analyzed the FLIM images with an array of 512 by 512 pixels by treating each pixel inde-
pendently. Figure 4D shows the distribution of PL lifetimes for each pixel. The distribution
of the energy transfer rates (τFRET) appears within a time window of 0–5 ns (the orange-
shaded areas on the left-hand side of Figure 4D). Given that the FRET efficiency (Ef) is
proportional to the FRET rate constant (kFRET) [45], the FRET efficiency can be compared
using τFRET. The average τFRET is seen to increase with the decrease in ligand chain length
from 1.3 for the OA-InP to 1.6 and 2.3 ns for the DA-InP and HA-InP, respectively. These
experimental results, along with the calculated FRET efficiencies in Table S2, demonstrate
that reducing the length of the capping ligand suppresses FRET processes. In addition, the
energy transfer populations could be estimated by A1, where A1 and A2 are the amplitude
of the fast- (τ1) and slow- (τ2) decaying components. Figure S10 depicts A1 and A2 for 512
by 512 pixels, from which we extracted the numerical results of A1 over A2 and visualized
them with images in Figure 4E. From these results, the average A1/A2 ratios of the OA-InP,
DA-InP, and HA-InP are found to be 26.0, 3.33, and 1.03, respectively, thereby indicating
that the energy transfer population is significantly decreased as the ligand chain length
decreases. Taken together, the spatiotemporal spectroscopic results confirm that the FRET
efficiency and population are tuned by the ligand chain length of InP/ZnSe/ZnS QDs.
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Figure 4. (A) A schematic diagram of the fluorescence lifetime imaging microscopy setup; (B–E) the
PL lifetime–intensity images (B), the measured (open circles) and double-exponential-fitted (solid
lines) cumulative PL decay profiles over the entire scan area (512 by 512 pixels) (C), the PL lifetime
distributions at each pixel (D), and the extracted energy transfer populations from the PL decay
curves (E) for the OA-InP, DA-InP, and HA-InP. The scale bar corresponds to 1 µm.
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3.4. X-ray Diffraction Spectra and Ligand Ordering

The surface characteristics of the QD samples were investigated using XRD to un-
derstand the mechanism by which the ligand length influences inter-QD energy transfer
dynamics. The XRD patterns of OA-InP, DA-InP, and HA-InP were experimentally mea-
sured and compared with the predicted peaks of zinc-blended InP, represented by blue bars
(reference pattern: ISCD 1600543) in Figure 5A–C [46–48]. Here, Gaussian peaks were used
as an approximation to deconvolute the XRD patterns. In addition to the peaks attributed
to InP, an additional unassigned peak was observed around 2θ = 20◦, indicated by the red
arrow. Alivisatos et al. recently reported that this XRD peak around 2θ = 20◦ is attributed
to aliphatic ligands [46].
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Figure 5. The X-ray diffraction (XRD) patterns of the InP QDs capped with (A) OA, (B) DA, and
(C) HA ligands; (D) schematic diagrams of the corresponding ligand structures; and (E) a schematic
illustration of the ligand chain length-controlled inter-QD energy transfer dynamics in InP/ZnSe/ZnS
QD-ordered films.

Interestingly, as the number of carbon atoms in the capping ligand (i.e., the chain length)
decrease, the intensity of the ligand peak relative to that of the (111) diffraction peak is seen to
decrease, and the ligand peak is seen to shift toward a lower 2θ value (Figure S11). This indi-
cates an increase in the interligand distance—corresponding to weakening van der Waals
interactions—as the chain length increases, as shown schematically in Figure 5D. Taken
together, these XRD results, along with the qualitative and quantitative interpretations
of the spectroscopic features, reveal that the interligand interactions between neighbor-
ing QDs significantly affect the FRET efficiency and populations in the InP/ZnSe/ZnS
QD films (Figure 5E). The comprehensive results suggest that ligand-length-controlled
interligand coupling is an important factor in controlling the FRET process of the col-
loidal InP/ZnSe/ZnS QDs, which ultimately influences the performance of the QD-LEDs.
Notably, previous research on InP/ZnSe/ZnS QD-LEDs has achieved the overall best
performance (i.e., excellent EQE and the best lifetime) via ligand displacement from native
OA to HA [19].
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4. Conclusions

The present study investigated the effects of surface ligand upon the optoelectronic
properties of InP/ZnSe/ZnS quantum dots (QDs) via electrochemical and time- and space-
resolved spectroscopic methods. The results indicated that the surface ligands play crucial
roles in both the charge injection and energy transfer processes, which are critical factors for
the performance of the QD-based light-emitting diode (LED). Shorter ligands were shown
to reduce the barrier towards charge injection, thus leading to an enhanced current flow.
Additionally, the spatiotemporal spectroscopic results showed that the rate of inter-QD
energy transfer decreased with the decrease in ligand length. From the XRD patterns, we
suggested that the interligand van der Waals interactions became weaker with the decrease
in the chain length, thus indicating that ligand-length-controlled interligand coupling
is a key factor influencing the FRET process in the InP/ZnSe/ZnS QDs. These findings
emphasize the importance of surface ligand engineering in optimizing the performance and
stability of the QD-LEDs. By tuning the FRET suppression and charge transport promotion
in the surface-engineered InP-based QDs, QD-LEDs can achieve high performance and
prolonged operational stability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13071159/s1. Figure S1. (A–C) Temporal evolution of the
femtosecond transient absorption spectra of OAInP, DA-InP and HA-InP. (D–F) Decay dynamics of
bleach signal at 515 nm extracted from (A–C); Figure S2. The photoluminescence intensity monitored
at t = 1.5 ns, which is when Auger recombination is completed. Data were fitted with the Poisson
statistics. After the lifetime of initial decay of multiexciton, the black solid line indicates fits to
(1−p0) calculated for the Poisson distribution of initial QD occupancies. These fitted lines were
used to determine the absorption cross-section (σ). Obtained absorption cross sections at 2.76 eV
are provided as an inset of the Figure (unit: cm2); Figure S3. Cyclic voltammograms recorded on
OA-InP, DA-InP and HA-InP QDs/dichloromethane containing 0.05 M TBAPF6. Scan rates were
200 mVs−1; Figure S4. Chronoamperometry measurement at (A) −1.3 V and (B) +1.7 V; Figure
S5. Transmission electron microscopy (TEM) images and corresponding histogram of inter QD
spacing of (A) OA-InP, (B) DA-InP and (C) HA-InP packing on a TEM grid (Scale bars: 20 nm). (D)
Measurements of the inter QD spacing from TEM images using Image J Software; Figure S6. The
photoluminescence decay curves of OA-InP, DA-InP and HA-InP solution and solids; Figure S7.
(A–C, top) Photoluminescence lifetime-intensity images of disordered InP/ZnSe/ZnS films (Scale
bar: 1 µm). (A–C, bottom) Corresponding averaged photoluminescence lifetimes of disordered
InP/ZnSe/ZnS films; Figure S8. The photoluminescence decay curves of InP/ZnSe/ZnS QD solids
at the wavelengths corresponding to the colored bar in the inset; Figure S9. The photoluminescence
lifetimes as a function of detection energy (Inset: fitting parameters representing the rate of increase of
the PL lifetime with the detection energy); Figure S10. (A) The images of A1 and (B) A2 in OA-InP, DA-
InP and HA-InP (Scale bar: 1 µm), where photoluminescence decay profiles in FLIM images of OA-InP,
DA-InP and HA-InP ordered arrays are fitted using the relation I(t) = A1exp(−t/τ1) + A2exp(−t/τ2).
I(t) is the time-dependent photoluminescence intensity, A1 and A2 the amplitudes, and τ1 and τ2 the
fitted photoluminescence lifetimes; Figure S11. (A) Aliphatic ligand peak of XRD spectra of OA-InP,
DA-InP, and HA-InP. (B) Relative intensity of ligand peak to the (111) peak and ligand diffraction
peak position of InP/ZnSe/ZnS QDs; Figure S12. (A) Deposition of InP/ZnSe/ZnS QDs on the TEM
grid by vacuum assisted evaporation of colloidal QD solution (QD dispersed in octane:octanol = 9:1
volume ratio). (B) Growing InP/ZnSe/ZnS QD array on glass substrate by gentle destabilization of
the colloidal solution; Table S1. Electrochemical bandgap energies obtained by cyclic voltammogram
and optical bandgap energies obtained by absorption spectra; Table S2. FRET efficiency for OA-InP,
DA-InP and HA-InP. References [27,35,49,50] are cited in the Supplementary Materials.
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