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Abstract: Antimicrobial resistance (AMR) among Escherichia coli from food animals is a rising problem,
and heavy antimicrobial use in poultry is a contributing factor. In Zambia, studies linking poultry-
associated AMR and antibiotic use (AMU) are rare. This study aimed to investigate commercial and
medium-/small-scale poultry farmers’ usage of antimicrobials based on a questionnaire survey in
ten districts of Zambia. In addition, the study characterized extended-spectrum β-lactamase (ESBL)-
producing E. coli isolates obtained from poultry in the same districts. Data regarding knowledge and
usage of antimicrobials were collected from commercial and medium-/small-scale poultry farmers
using a pre-tested structured questionnaire. At the same time, cloacal samples were collected and
analyzed. One hundred and fifty E. coli isolates were tested for antimicrobial susceptibility using
eight antibiotic classes. The isolates were further screened for ESBL production by streaking them
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on cefotaxime (CTX)-supplemented MacConkey agar, then subjecting them to sequencing on a
NextSeq. The questionnaire survey showed that more medium-/small-scale than commercial poultry
farmers used antimicrobials (OR = 7.70, 95% CI = 2.88–20.61) but less prescriptions (OR = 0.02,
95% CI = 0.00–0.08). Susceptibility testing revealed that resistance was highest to ampicillin (128/148,
86.5%) and tetracycline (101/136, 74.3%) and that the prevalence of multidrug resistance (MDR)
(28/30, 93.3%) was high. Whole-genome sequencing (WGS) of eight (8/30, 26.7%) isolates with
CTX Minimum Inhibitory Concentration (MIC) ≥ 4 µg/mL revealed the presence of ESBL-encoding
genes blaCTX-M-14, blaCTX-M-55, and blaTEM. WGS also detected other AMR genes for quinolones,
aminoglycosides, phenicols, tetracycline, macrolides, and folate-pathway antagonists. Altogether,
the questionnaire survey results showed a higher proportion of AMU and lower prescription usage
among medium-/small-scale farmers. In addition, our results emphasize the circulation of ESBL-
producing E. coli strains with associated MDR. It is critical to educate farmers about AMR risks and to
encourage responsible usage of antimicrobials. Furthermore, there is a need to strengthen regulations
limiting access to antimicrobials. Finally, there is a need to establish a one health system to guide
public health response.

Keywords: AMR; AMU; commercial; Escherichia coli; ESBL; medium-/small-scale; WGS; Zambia

1. Introduction

Antimicrobials play an essential role in human and food-animal health and represent
one of the main therapeutic tools for human and veterinary medicine [1]. As a result,
antimicrobial resistance (AMR) has emerged as a global public health concern. The Centers
for Disease Control and Prevention (CDC), in a 2019 report, summarized that humanity
would face increasingly resistant infections, potentially extending to all treatments available,
leading to what is coined the “post-antibiotic era” [2].

While AMR can take many forms, extended-spectrum β-lactamases (ESBLs) have
great clinical significance in medical bacteriology as they threaten both therapeutics from
antimicrobials and infection control in humans and animals [3]. ESBLs are a rapidly evolv-
ing group of β-lactamases that confer resistance to most β-lactam antibiotics, including
penicillin, third-generation cephalosporins, and the monobactam aztreonam by hydrolyz-
ing their β-lactam ring yet can be inhibited by clavulanic acid [4]. Typically, they derive
from the narrow spectrum β-lactamases, TEM-1, TEM-2, and SHV-1 that usually give rise
to ESBLs through point mutations. However, a relatively recent group, the CTX-M type,
has become more dominant. The most common β-lactamases in gram-negative bacteria are
TEM, SHV, OXA, CMY, and CTX-M, and these are encoded by the bla genes blaTEM blaSHV,
blaOXA, blaCMY, and blaCTX-M, respectively [5]. ESBLs are often plasmid-encoded, and
these plasmids frequently carry genes encoding resistance to other drug classes. Therefore,
antibiotic options in the treatment of ESBL-producing organisms are extremely limited [6].

The zoonotic potential of most ESBL-producing organisms is a significant public health
concern. While the selection of AMR is often associated with hospital antibiotic use, many
animal reservoirs now exist. There are several reports of drug-resistant Enterobacteriaceae in
various livestock, including poultry, sheep, cattle, and pigs [7–10]. Furthermore, despite the
lack of prior antibiotic exposure in wildlife, AMR has been reported in monkey [11], green
sea turtles [12], and black rhinoceros [13], probably due to exposure to antibiotic-resistant
organisms at the human–animal–environment interface. AMR is a threat to humans and
livestock because of the inappropriate use of antibiotics and the use of antibiotics as growth
promoters in food animals.

In food animal production, poultry is one of the most widespread types of meat
produced and consumed worldwide. Poultry product consumption trends generally show
greater demand and wider acceptance across socio-economic, cultural, religious, and other
barriers than any other meat of animal origin [14]. Its approval is also anchored on its
relative affordability, with prices ranging from USD2.0 to USD3.5 per kg. Furthermore,
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poultry production is attractive as it requires less financial capital and takes less time to
reach the point of sale. Zambia’s poultry sector has seen consistent growth due to the rising
human population and concomitant increased demand for chicken meat and eggs, with a
bird stock close to 15.5 million. This industry contributes 5% of the nation’s Gross Domestic
Product [15].

The increasing demand for poultry products has pressured farmers to enhance pro-
duction. In some cases, this has led to irrational use of antimicrobials, such as during the
treatment of infectious diseases, prophylaxis, meta-phylaxis, and growth promotion [16].
Furthermore, less than 20% of households engaged in poultry production have access to
veterinary services, a situation likely to promote the abuse of antimicrobials through self-
prescriptions and treatment [14]. Unlike antimicrobials for treatment, the use for growth
promotion is usually at subtherapeutic amounts, which may drive the development of
AMR [17]. Abuse of antimicrobials results in continuous exposure of an animal’s (the avian)
intestinal flora to antimicrobials, creating a selection pressure that leads to AMR [18,19].

In Zambia, poultry is one of the most studied sectors regarding ESBLs. Since the
first report by Chishimba et al., 2016 [20], many studies have been published with ESBL
prevalence ranging from 3.4% to 20.1%. The commonly isolated ESBL-producing organism
is E. coli [21–23], with sequence types (STs) 55 and 69 reported so far. Furthermore, Zambian
strains of poultry origin show that the blaCTX-M, gene is the commonest ESBL gene, but
blaTEM and blaSHV have also been reported. Importantly, a recent report in Zambia found
a link between multidrug resistance in (MDR) Escherichia coli (E. coli) from humans and
poultry [24], suggesting that poultry could be a reservoir. Still, despite these reports, the
extent of the problem in poultry remains unclear. Additionally, the relationship between
AMR and antibiotic usage in poultry has not been explored. This study reports ESBL
patterns in commercial and medium-/small-scale poultry farms of selected districts in
Zambia and relates this to antimicrobial use.

2. Results
2.1. Antibiotic Use (AMU) Differed between Commercial and Medium-/Small-Scale
Poultry Farmers

A total of 119 poultry farmers participated in this study, with 84 being medium-/small-
scale farmers and 35 being commercial farmers. Only 38.9% (42/108) of the respondents
indicated having acquired a prescription before accessing antibiotics. Further, while most
farmers acknowledged using antibiotics for treatment, 19.3% (23/119) and 12.6% (15/119)
used them for prevention and growth promotion, respectively. Meanwhile, 87.3% (103/118)
of the farmers expressed knowledge of the antibiotic withdrawal period. Nonetheless, 5.8%
(6/103) of the farmers who claimed to be knowledgeable farmers sold their meat and egg
products under treatment (Table 1).

Table 1. Comparison of antibiotic use among the commercial and medium-/small-scale farmers from
questionnaire survey results.

Variable Overall Use Commercial
(Reference) Medium-/Small-Scale Odds Ratio (OR) 95% CI of OR

Use on sampled birds 57/118 (48.3%) 6/35 (17.1%) 51/83 (61.4%) 7.70 2.88–20.61
Prescription use 42/108 (38.9%) 27/29 (93.1%) 15/79 (19.0%) 0.02 0.00–0.08
Prophylaxis 23/119 (19.3%) 1/35 (2.9%) 22/84 (26.2%) 12.06 1.56–93.45
Growth promotion 15/119 (12.6%) 0/35 (0.0%) 15/84 (17.9%) 7.61 0.97–59.98
Knowledge of the
withdrawal period 103/118 (87.3%) 32/35 (91.4%) 71/83 (85.5%) 0.55 0.15–2.10

Sale of products under
treatment 14/116 (12.1%) 3/35 (8.6%) 11/81 (13.6%) 1.68 0.44–6.42

Note: Significant results in bold font.

We compared the questionnaire-based variables among different production categories
and farming scales to determine the factors associated with the practices mentioned above.
Compared to commercial farmers, more medium-/small-scale farmers used antibiotics on
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the sampled birds in general (Table 1) (OR = 7.70, 95% CI = 2.88–20.61) and for prophylaxis
(OR = 12.06, 95% CI = 1.56–93.45). However, medium-/small-scale farmers were less likely
to obtain prescriptions (OR = 0.02, 95% CI = 0.00–0.08). Furthermore, while there was no
antibiotic use for production among commercial farmers, 17.9% (15/84) of medium-/small-
scale farmers used antimicrobial growth promoters. Despite the observed differences in
practices towards antibiotic usage, there was no difference in knowledge of the antibiotic
withdrawal period between the two groups (OR = 0.55, 95% CI = 0.15–2.10). Likewise, there
was no difference in the proportion of farmers selling products from birds under antibiotic
treatment (OR = 1.68, 95% CI = 0.44–6.42).

According to respondent information, antimicrobial use among broiler and layer farmers
revealed that more layer farmers compared to broiler farmers used antibiotics on the sampled
birds (OR = 4.23, 95% CI = 1.54–11.63) for growth promotion (OR = 6.29, 95% CI = 2.00–19.77).
On the contrary, there was no difference between farmers who reared layers or broilers in
obtaining prescriptions to access antibiotics (OR = 1.23, 95% CI = 0.47–3.23). Additionally,
there was no difference in the usage of antibiotics for disease prevention between broiler and
layer farmers (OR = 2.67, 95% CI = 0.97–7.34) or those who were acquainted with the period
of withdrawal (OR = 0.96, 95% CI = 0.25–3.74) (Supplementary Materials Table S1). How-
ever, compared to broiler farmers, more layer farmers sold their products during treatment
(OR = 5.38, 95% CI = 1.66–17.42).

2.2. Antimicrobial Resistance of E. coli Isolates

In Zambia, all antibiotics are imported into the country. Tetracyclines and penicillins are
among the most imported antibiotics for animal administration [25]. To determine if the AMR
profiles of poultry-associated E. coli were related to the national veterinary antibiotic import
data, we subjected the strains to antimicrobial susceptibility testing (AST). Our results showed
the highest resistance to AMP (128/148, 86.5%) and TET (101/136, 74.3%) (Figure 1A). On the
other hand, imipenem revealed the lowest non-susceptibility (5/88, 5.7%). Third-generation
cephalosporin (3GC) resistance was detected in 20% (30/150) of the isolates, most of which
(28/30, 93.3%) exhibited resistance to three or more antibiotic classes.
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Figure 1. AMR patterns of E. coli isolates. (A). Percentage resistance by antibiotic. (B). AST
profiles by isolate. TET-tetracycline, AMP-ampicillin, GEN-gentamicin, CHL-chloramphenicol,
IMP-imipenem, SXT-sulfamethoxazole/trimethoprim, CIP-ciprofloxacin, CTX-cefotaxime, CRO-
ceftriaxone. R-Resistant, S-Susceptible, NT-Not tested.
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2.3. Phenotypic ESBL Prevalence Varied by Production Scale

A total of 150 E. coli isolates were screened for cefotaxime resistance by broth microdi-
lution. Thirty isolates met the Minimum Inhibitory Concentration (MIC) breakpoint for
cefotaxime resistance (≥2 µg/mL). The results showed a higher proportion of phenotypic
ESBL positives among medium-/small-scale farmers, 73% (22/30) compared to 27% (8/30)
commercial farms. Chilanga district had the highest number of isolates with phenotypic
ESBL positives at 2/3 (66.7%), followed by Chongwe districts at 6/12 (50%) and Petauke
at 3/10 (30.0%). On the other hand, no ESBLs were detected in Rufunsa and Chibombo
(Supplementary Materials Table S2).

2.4. Whole-Genome Sequence Characteristics of ESBL

Eight out of nine strains were successfully assembled into nearly complete genomes
with the exception of one strain that had poor quality reads. These eight isolates carried a
total of 27 different types of AMR genes that encode resistance to eight classes of antimi-
crobials (Table 2). The eight sequenced isolates belonged to six different sequence types
(ST); ST770 (3/8, 37.5%) was detected three times (2/8, 25%) in Chisamba and (1/8, 12.5%)
in Petauke, while 5 STs were assigned as singletons (Table 3). In addition, a diversity of
plasmid replicons was observed across the strains, with incompatibility group F dominating
(Table 3).

Table 2. Detected AMR genes by percentage proportion in E. coli isolates.

Antibiotic Class Detected AMR Genes Gene Percent Proportion

Aminoglycosides
aac(3)-Iia, aac(3)-Iid, aac(3)-Via

aadA1, aadA5
aph(3′)-Ia, aph(3′′)-Ib, aph(6)-Id

(3/8, 37.5%)
(2/8, 25%)

(3/8, 37.5%)

β-lactams

blaCTX-M-14
blaCTX-M-55

blaTEM
blaCMY-2

(2/12, 16.7%)
(2/12, 16.7%)
(5/12, 41.7%)
(3/12, 25%)

Folate-pathway antagonists dfrA7, dfrA14, dfrA17
sul1, sul2

(3/5, 60%)
(2/5, 40%)

Phenicols floR (1/1, 100%)

Macrolide mph(A) (1/1, 100%)

Fosfomycin fosA3, fosA7 (2/2, 100%)

(Fluoro)quinolones qnrB19, qnrS1
OqxA, OqxB

(2/4, 50%)
(2/4, 50%)

Tetracycline tet(A)
tet(B)

(1/2, 50%)
(1/2, 50%)

Table 3. Distribution and genetic characteristics of sequenced E. coli isolates.

S/No Isolate ID Location Farm Type Sequence
Type

OH
Serotype AMR Genes Plasmids

1 L4F65S1 Petauke medium-/
small-scale ST770 O25H16 aph(3′′)-Ib, aph(6)-Id,

blaCMY-2, floR, sul2, tet(A)

IncFIB(AP001918),
IncFII,
IncB/O/K/Z,
p0111

2 L5F6S1 Mongu medium-/
small-scale ST117 O45H4

aadA5, aph(3′′)-Ib,
aph(6)-Id, blaCTX-M-55,
blaTEM, dfrA14, dfrA17,
tet(A)

ColpVC,
IncFII(pHN7A8),
IncI2
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Table 3. Cont.

S/No Isolate ID Location Farm Type Sequence
Type

OH
Serotype AMR Genes Plasmids

3 L1F154S9 Chisamba Commercial ST7938 O32H35

aac(3)-IIa, aadA5,
aph(3′′)-Ib, aph(6)-Id,
blaCTX-M-14, dfrA17, floR,
fosA3, mph(A), OqxB,
OqxA, qnrS1, sul1, sul2,
tet(A), tet(B)

IncFIB(AP001918),
IncFIC(FII),
IncFII(pHN7A8)

4 L1F8S1 Lusaka medium-/
small-scale ST155 O154H51

aph(3
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sul2, tet(A), tet(B)

IncFIB(K), p0111

7 L1F151S3 Chisamba Commercial ST770 O102H51 blaCMY-2
IncI1-I(Alpha),
IncX4

8 L1F152S5 Chisamba Commercial ST770 O102H51
aac(3)-Via, aadA1,
blaCTX-M-55, blaTEM, fosA3,
qnrB19, sul1, sul2

IncFIB(AP001918),
IncFII, IncN

3. Discussion

Antimicrobial resistance is fueled by the misuse and abuse of antimicrobial drugs [26].
In this study, we report questionnaire survey information on AMU, and phenotypic and
genotypic characterization of isolated E. coli strains. The survey results showed that broiler
and layer poultry farmers in Zambia use antimicrobials, with nearly 50% of the sampled
birds being treated with antibiotics. The results also show that more medium-/small-scale
than commercial poultry farmers used antimicrobials for prophylaxis. Additionally, the
study demonstrated that farmers utilized antimicrobials to promote growth more frequently
in layers than in broiler poultry. Finally, the laboratory results showed 20% of the isolates
were resistant to 3GCs, associated with blaCMY, blaCTX-M, and blaTEM genes.

While some countries report higher than 90% AMU [27,28], our questionnaire survey
highlighted an overall 48.3% (57/118) AMU among poultry farmers, similar to another
Zambian survey report by Caudell et al. (2020) [29]. However, Caudell et al. (2020) also
reported 80% (158/198) lack of obtaining a prescription when purchasing antimicrobials
compared to nearly 60% reported (66/108) (OR = 2.51, 95% CI = 1.49–4.23) in our study.
This discrepancy could be attributed to our study covering three more provinces and five
more districts [29] and possible temporal variations. Although this study shows lower
AMU than other nations, the need to use antimicrobials among these farmers could be
exacerbated by poor implementation of biosecurity measures, leading to increased AMU
for disease prevention [30]. Therefore, it is necessary to improve farm-level infection
management practices, including vaccines [31], phytogenic feed additives, and bioactive
phenolic extracts [32], among other available solutions.

Questionnaire data analysis reported no difference in AMU for growth promotion
between commercial and medium-/small-scale farmers (OR = 7.61, CI = 0.97–59.98), sug-
gesting that any difference in the overall usage could be related to infection manage-
ment. Considering that commercial farmers have more established systems in terms of
biosecurity [33] and thus experience fewer infections, AMU under these conditions is
expected to be lower. Consistently, we observed a significant difference in AMU between
commercial and medium-/small-scale farmers; more medium-/small-scale farmers used
antibiotics on the sampled birds (OR = 7.70, 95% CI = 2.88–20.61). Furthermore, medium-
/small-scale farmers were comparatively less likely to obtain prescriptions (OR = 0.02,
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95% CI = 0.00–0.08). This implies that more medium-/small-scale farmers access antibiotics
over the counter, promoting abuse and overuse of antimicrobials. This finding indicates a
gap in the antimicrobial monitoring of agrovet shops [20].

Nevertheless, there was no difference reported between commercial and medium-
/small-scale farmers in their being acquainted with the period of withdrawal (OR = 0.96,
95% CI = 0.25–3.74). Generally, 87.3% (103/118) of the farmers had knowledge of the
withdrawal period. However, despite this knowledge, 5.8% (6/103) of the knowledgeable
farmers admitted to having sold their meat/egg products under treatment. In conformity
with studies elsewhere [28,34], our survey showed that more layer farmers sold their
products during treatment (OR = 5.38, 95% CI = 1.66–17.42) than broiler farmers. While
both broiler and layer farmers have an option to observe the withdrawal period then sell
the meat/eggs products, we speculate that layer farmers are tempted to sell their eggs
rather than discard them while treating their chickens [35]. This assumption is supported
by our data, which showed that most (5/6, 83.3%) of the farmers who knowingly sold
products under treatment were layer farmers. Furthermore, more layer farmers than broiler
farmers used antibiotics on the sampled birds (OR = 4.23, 95% CI = 1.54–11.63) and for
growth promotion (OR = 6.29, 95% CI = 2.00–19.77), probably due to the increasing egg
demand [28].

Our study revealed high AMR rates against commonly used antimicrobials such as
AMP (128/148, 86.5%) and TET (101/136, 74.3%), similar to findings in other Zambian
studies [36,37]. The AMR findings in this study correspond with the Zambian report on
AMU by the Ministry of Fisheries and Livestock that cited tetracyclines and penicillins as
the most imported antibiotics for administration in animals between 2015 and 2020 [25].
The observed high TET and AMP resistance coincides with the genotypic profile of the
representative strains subjected to whole-genome sequencing (WGS), which possessed tet
and bla genes.

While tetracyclines and penicillins are the most used antibiotics in poultry [38], 93.3%
(28/30) of the isolates exhibited resistance to three or more drug classes [39]. This could
be due to the existence of multiple AMR genes on the same plasmid, which could be
co-selected by a single or few drug classes. The observed MDR could be explained by
the several identified genes encoding AMR to eight drug classes (Table 2). Importantly,
7.1% (2/28) of MDR strains were resistant to imipenem, a drug of last resort in clinical
medicine. However, we found no known carbapenemase-encoding genes, suggesting that
the observed resistance could be related to point mutations or novel carbapenemases.

Nonetheless, phenotypic resistance to carbapenems has serious clinical implications
as it limits the possible treatment alternatives, especially since colistin is not yet available
in Zambian hospitals. The two carbapenem-resistant strains in this study were susceptible
to GEN, suggesting that aminoglycosides could be potential treatment options. However,
the sample size was too low for a conclusive inference.

In addition to carbapenems, 3GCs have an essential role in clinical practice. This study
reported a 20% (30/150) 3GC resistance. Considering the close association between 3GC
resistance and ESBLs, we screened our WGS data for various bla genes. Previous studies
have found the blaCTX-M gene in nearly all 3GC-resistant isolates [23,24]. However, only half
of the strains in this study harbored the blaCTX-M gene (i.e., blaCTX-M-14, n = 2; blaCTX-M-55,
n = 2). Meanwhile, the blaTEM gene was more prevalent (n = 5), while the blaCMY existed in
three isolates. The presence of blaCMY-2 genes in 3/8 (37.5%) isolates can be a concern for
public health since AmpC β-lactamases cause broad-spectrum resistance to β-lactamase
inhibitors like clavulanic acid [40]. Multi-locus Sequence Type (MLST) identified ST155,
among other Sequence Types, similar to (Shawa, et al., 2021) [23], who also found ST155,
although their serotypes differed. The presence of AMR genes and plasmids in E. coli
isolates from poultry may contaminate the environment and food, creating the danger of
exposure for humans and animals.

While our study covered five provinces and ten districts, not all samples had epidemi-
ological data. Furthermore, there was no way to verify the questionnaire data as we could
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not test for antimicrobial residues or physically examine antibiotic sachets or packaging.
Also, AMU information could not be verified as we did not have access to prescriptions
or antibiotic sales statistics. Having sequenced eight strains, sufficient information was
gathered upon which future studies should consider incorporating more samples for a
more inclusive picture. Finally, from our short reads data, we could not determine the
location of the AMR genes. We therefore implore future studies to consider using a hybrid
assembly of short and long reads to provide better accuracy in sequence data quality.

4. Materials and Methods
4.1. Study Area, Sampling Techniques, Sample Size, and Design

This study was conducted as part of the National Integrated Antimicrobial Resistance
Surveillance Strategy (NIAMRSS) [41]. The NIAMRSS is a nationwide human and livestock
sector-based cross-sectional study aimed to provide a coherent framework for combating
AMR using the “One Health” approach. From this framework, the Protocol on Antimicro-
bial Resistance Surveillance in Poultry Populations in Zambia 2020–2027 was developed.
The nationwide surveillance collects samples from all administrative regions (provinces)
through a multistage stratified cluster sampling technique down to districts and farms
within the province.

Based on the strong premise of poultry population, five provinces were purposively
selected from which ten districts with at least 5 farms were randomly selected for inclusion
in our study districts (Figure 2). Further, the poultry farms within the district were stratified
according to the production categories adapted from the Food and Agricultural Organiza-
tion [42], which divides sectors into classes based on the number of birds per sector. In our
study, sector class 1 (≥50,000 birds) and sector class 2 (10,000–49,999 birds) were classified
as commercial, while sector class 3 (1000–9999 birds) and sector class 4 (below 1000 birds)
were categorized as medium-/small-scale/backyard farming.
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The primary sampling unit was a farm, and each poultry house on the farm was
considered an independent epidemiological unit. The farms were randomly selected for
sample collection and administration of the structured questionnaires between 2019 and
2021. At least five cloacal swabs were collected from each poultry unit and then pooled
into a single sample. Samples were collected from poultry units with apparently healthy
market-ready birds (four weeks and above for broilers) and at the point of lay for layers.
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A total of 269 farms were sampled comprising commercial farms (n = 35) and medium-
/small-scale farms (n = 234). Altogether, the sampled farms included 219 broiler farms and
50 layer farms (Table 4).

Table 4. Sample distribution by district, production scale, and type.

S/No District Samples Commercial Medium/Small Broiler Layer

1 Chibombo 10 0 10 9 1

2 Chilanga 44 0 44 30 14

3 Chisamba 81 32 49 75 6

4 Choma 13 0 13 9 4

5 Chongwe 43 0 43 37 6

6 Kaoma 12 0 12 12 0

7 Lusaka 30 3 27 16 14

8 Mongu 13 0 13 12 1

9 Petauke 18 0 18 14 4

10 Rufunsa 5 0 5 5 0

Total 269 35 234 219 50

Bacterial isolation and phenotypic characterization were performed at the Central
Veterinary Research Institute, while molecular analysis was conducted at the University of
Zambia, School of Veterinary Medicine. Whole-genome sequencing of ESBL isolates was
performed at Noguchi Memorial Institute for Medical Research, University of Ghana.

A total of 119 out of the 269 randomly selected farms consented to participate in
the questionnaire survey. A pre-tested structured questionnaire was utilized to collect
epidemiological data and information on knowledge, practices, and attitudes on antibiotic
use from 35 commercial and 84 medium-/small-scale farmers; 94 of these were broiler
farmers and 25 were layer farmers. The questionnaire was pre-tested on 22 poultry farms of
Lusaka (n = 6), Chilanga (n = 8), and Chongwe (n = 8) districts by epidemiology and public
health specialists from the University of Zambia and the Ministry of Fisheries and Livestock.
The study did not incorporate the pilot’s results. The questionnaire had three sections:
sample collection and submission, epidemiological, and antimicrobial use sections.

4.2. Ethical Approval and Informed Consent

The study was approved by the Excellence in Research Ethics and Science, ERES
Converge Ethics Committee (Reference number. 2023-Feb-002). Permission to use the
archived isolates was sought from the Ministry of Fisheries and Livestock. Further, the
study was cleared by the University of Zambia, School of Veterinary Medicine Board of
Graduate Studies Committee. Participants gave their written consent to participate in
the study.

4.3. Identification and Antimicrobial Susceptibility Testing of E. coli

Well-labelled sterile swab sticks in a Cary-Blair transport medium (Oxoid, Basingstoke,
Hampshire, UK) and biohazard bags were used for the aseptic collection of cloacal swabs.
The swabs were processed, and E. coli was identified as described by Mwaba et al. [22].
The AST was carried out using the Kirby-Bauer disk diffusion method [43] and interpreted
using the Clinical and Laboratory Standards Institute (CLSI) guidelines [44].

4.4. Phenotypic and Genotypic Detection of ESBL

To determine cefotaxime resistance of the E. coli isolates, a total of 150 E. coli isolates
from December 2019 to August 2021 were inoculated on MacConkey agar (Oxoid, Bas-
ingstoke, Hampshire, UK), supplemented with 1 µg/mL of cefotaxime and incubated at
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37 ◦C for 18 h. Next, the broth microdilution method was used to determine the Minimum
Inhibitory Concentration (MIC) of these E. coli isolates. A single colony was transferred to
cefotaxime-supplemented Luria–Bertani broth, incubated for 18 h. The overnight growth
cultures were diluted 104-fold and added in triplicates of a serial dilution of cefotaxime in
a 96-well plate before incubation at 37 ◦C for 18 h [45,46].

For detailed characterization of the strains, WGS of ESBL isolates with a MIC ≥ 4 µg/mL
was performed using the Illumina NextSeq platform (Illumina Inc., San Diego, CA, USA).
Genomic DNA was extracted from 24 h cultured isolates using the QIAamp DNA Mini
Kit (QIAGEN Inc. GmbH, Holden, Germany) following the manufacturer’s instructions.
The Qubit 4.0 fluorometer assay kit (Thermo Fisher Scientific, Boston, MA, USA) was
used to quantify the concentrations of the extracted DNA. Subsequently, the DNA was
diluted to achieve concentrations ranging between 10 and 60 ng/µL in a final volume
of 30 uL. Libraries of the DNA were prepared using the Illumina DNA library prep–(M)
Tagmentation kit (Illumina Inc. San Diego, CA, USA). Using the Agilent 2100 bioanalyzer
system (Santa Clara, CA, USA) and the qPCR kappa library quantification kit (Roche,
Porterville, CA, USA), respectively, the quality and concentration of fragmented libraries
were assessed. The libraries were pooled together and sequenced using a 2 × 150 paired-
end method on an Illumina NextSeq platform (Illumina Inc., San Diego, CA, USA). The
raw sequencing reads (fastq files) obtained were quality-filtered to a Phred score ≥ 20 and
adaptor-trimmed using Trimmomatic (http://www.usadellab.org/cms/index.php?page=
trimmomatic, accessed on 17 August 2023 ) [47,48]. The FastQC tool was used to assess the
quality of reads (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed
on 17 August 2023). Using the Unicycler assembler v0.5.0, the resulting high-quality reads
were de novo assembled into contigs. The quality of the assembled genomes was assessed
with Quast v5.2.0. Genomes with coverage exceeding 30X and contigs fewer than 300 bases
were selected for post-sequencing analysis. The sequences have been deposited in the
Genbank under the BioProject identifier accession number PRJDB17552.

4.5. Data Analysis

The collected data were entered into Microsoft Excel MS Office 2019 (Microsoft, Red-
mond, Washington, DC, USA) for antimicrobial use and WHOnet for antimicrobial sus-
ceptibility testing, respectively. These data sets were statistically analyzed using the epiR
statistical package in R version 4.2.1. The tools on the Center for Genomic Epidemiology
platform were used for post-WGS sequencing analysis to identify resistance genes using
Resfinder (https://cge.cbs.dtu.dk/services/ResFinder/, accessed on 23 September 2023),
plasmids using Plasmidfinder (https://cge.cbs.dtu.dk/services/PlasmidFinder/, accessed
on 23 September 2023), and sequence types using MLSTFinder (https://cge.cbs.dtu.dk/
services/MLST/, accessed on 23 September 2023).

5. Conclusions

The questionnaire survey results from this study indicate that medium/small-scale
farmers used more antibiotics but fewer prescriptions than commercial farmers. The
laboratory results showed higher phenotypic ESBL prevalence among medium/small-scale
farmers compared to commercial farms. Most E. coli isolates obtained from both commercial
and medium/small-scale farms exhibited MDR, and WGS revealed β-lactamase (blaCMY-2,
blaCTX-M-14, blaCTX-M-55, and blaTEM) and several other AMR genes. These AMR genes pose
a health risk as they can potentially be transferred from poultry to the environment and
bacterial groups in humans. There is a need to promote the establishment of initiatives
that encourage prudent antimicrobial use like farmer field schools in the poultry industry
alongside continued AMR/AMU surveillance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics13050467/s1. Table S1. Questionnaire survey results on
use of antibiotics among Layer and broiler the farmers in the study population; Table S2 Antibiotic
Susceptibility Pattern of suspected ESBL-Producing E. coli on cefotaxime screening by district.
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