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Abstract: Van der Waals (vdW) heterostructures provide an effective strategy for exploring and
expanding the potential applications of two-dimensional materials. In this study, we employ first-
principles density functional theory (DFT) to investigate the geometric, electronic, and optical prop-
erties of MoGe2N4/AlN and MoSiGeN4/AlN vdW heterostructures. The stable MoGe2N4/AlN
heterostructure exhibits an indirect band gap semiconductor with a type-I band gap arrangement,
making it suitable for optoelectronic devices. Conversely, the stable MoSiGeN4/AlN heterostructure
demonstrates various band gap arrangements depending on stacking modes, rendering it suitable
for photocatalysis applications. Additionally, we analyze the effects of mechanical strain and vertical
electric field on the electronic properties of these heterostructures. Our results indicate that both
mechanical strain and vertical electric field can adjust the band gap. Notably, application of an
electric field or mechanical strain leads to the transformation of the MoGe2N4/AlN heterostructure
from a type-I to a type-II band alignment and from an indirect to a direct band transfer, while
MoSiGeN4/AlN can transition from a type-II to a type-I band alignment. Type-II band alignment is
considered a feasible scheme for photocatalysis, photocells, and photovoltaics. The discovery of these
characteristics suggests that MoGe2N4/AlN and MoSiGeN4/AlN vdW heterostructures, despite their
high lattice mismatch, hold promise as tunable optoelectronic materials with excellent performance
in optoelectronic devices and photocatalysis.

Keywords: van der Waals heterostructures; electronic structure; photocatalytic; first-principles
calculation

1. Introduction

Environmental pollution poses significant threats to human survival and development
as it continues to escalate. The depletion of carbon-based fossil fuels, along with their
increasing consumption, highlights the urgent need for renewable energy alternatives with
exceptional performance. Consequently, there is ongoing exploration of novel materials
and technologies to address these pressing needs [1]. Notably, since 2004, the successful
isolation of graphene from three-dimensional materials has marked the beginning of a
new era in two-dimensional nanomaterial research [2]. Building upon this breakthrough,
new two-dimensional materials have been continuously produced and studied, including
graphene, hexagonal boron nitride (h-BN), and transition metal dichalcogenides (TMDs),
among others [3–7]. Moreover, van der Waals (vdW) heterostructures, formed by vertically
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stacking two-dimensional layered materials, have been extensively explored in theory
and experiment [8]. Based on the alignment of the conduction and valence bands of two
materials, two-dimensional semiconductor van der Waals heterostructures can be cate-
gorized into three types: type-I (straddling gap) heterojunctions, where both the Valence
Band Maximum (VBM) and the Conduction Band Minimum (CBM) are located within the
same semiconductor material, type-II (staggered gap) heterojunctions, in which the VBM
and CBM originate from different semiconductors, and type-III (broken gap) heterojunc-
tions, where there is an energy crossover between the VBM and CBM [8–12]. Therefore,
combining different single-layer two-dimensional materials in a composite structure may
yield structural, electronic, and optical properties superior to those of isolated materials,
thus significantly expanding the design space and functionality of two-dimensional ma-
terials. These advancements play a crucial role in catalysis, optoelectronic detection, and
optoelectronic devices [13–18].

Additionally, two-dimensional AlN can be successfully prepared between graphene
and Si substrates using metal organic chemical vapor deposition (MOCVD) technology,
exhibiting a planar hexagonal structure similar to graphene [19–26]. Research indicates that
AlN holds enormous potential for application in optical devices owing to its ability to absorb
photons in the ultraviolet and visible light ranges [27]. However, its large indirect bandgap,
lower carrier mobility, and poor photoelectric response performance pose obstacles to its
broader utilization [28]. Fortunately, the construction of a vdW heterostructure offers the
possibility of breakthrough performance. For instance, studies have shown that AlN/MoSe2
and AlN/WS2 heterostructures all exhibit band gaps suitable for photocatalytic water
splitting [29].

Moreover, recent advancements in materials synthesis have led to the production
of a novel centimeter-level single-layer MoSi2N4 thin film with excellent performance
via chemical vapor deposition [27,30,31]. This development holds significant promise
for future nanodevices and catalysis applications. Additionally, the exploration of the
two-dimensional MA2X4 material family—where M = Mo, W, V, Nb, Ta, Ti, Zr, Hf, or Cr,
A = Si or Ge, and X = N, P, or As—has sparked considerable research interest [32,33]. No-
tably, the prediction of a new Janus MoSiGeN4 monolayer film with good stability, a suitable
band edge position, and excellent light absorption ability suggests potential applications in
various fields [34–39]. Nguyen et al. reported the use of graphene and MoSiGeN4 to form
heterostructures to prepare high-performance nanoelectronic devices [40]. Lv et al. studied
the structural and electronic properties of different stacking configurations of double-layer
MoSiGeN4 and achieved a type-II alignment electronic structure through the built-in elec-
tric field [41]. Wang et al. reported the use of the MoGe2N4/MoSTe heterostructure as a
promising tunable optoelectronic material [42]. Inspired by the above content, we decided
to combine MoSiGeN4/MoGe2N4 with AlN to construct heterostructures and study the
changes in their electronic properties through biaxial strain and a vertical electric field.

Therefore, for the purpose of this paper, MoGe2N4/AlN and MoSiGeN4/AlN vdW
heterostructures were constructed. Each heterostructure adopts six different high-symmetry
stacking modes. The geometric structure and electronic properties of AlN, MoSiGeN4,
and MoGe2N4 monolayers were verified by density functional theory (DFT). It was found
that MoGe2N4/AlN exhibits different band gap arrangements in different stacking modes,
while MoSiGeN4/AlN was identified as a type-I heterostructure, suitable for optoelec-
tronic devices. Subsequently, we tuned the electronic properties of the heterostructure
through biaxial strain and electric field. The results demonstrate that the band gap energy
can be effectively adjusted under the influence of plane biaxial strain and electric field
while maintaining the intrinsic type-II band alignment. This work contributes to further
advancements in the research of MA2Z4 family materials and showcases their potential
applications in optoelectronic and nanoelectronic devices, offering significant value for
practical applications.
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2. Computational Methodology

The first-principles calculations based on density functional theory (DFT) were per-
formed using the Vienna ab initio simulation package (VASP) [43–45]. The Perdew–Burke–
Ernzerhof (PBE) generalized gradient approximation (GGA) was used to describe the
electron exchange and related information. The projection enhanced wave method of plane
wave basis set was used to describe the interaction between electrons and ions [46,47]. The
weak vdW force between layers was corrected using the empirical correction method of
grimme (DFT-D3) [48]. We also solve the problem of band gap underestimation by com-
paring the more accurate electronic properties of the 2006 HSE06 hybrid functional with
the PBE method [49]. The energy cut-off value was set to 500 eV. The Brillouin zone was
calculated using the Monkhorst–Pack k point grid 9 × 9 × 1. The structural relaxation was
calculated using the joint gradient method. The convergence accuracy of ion motion was set
to 0.01 eV/Å, and the self-consistent convergence accuracy of electron force calculation was
set to 10−8 eV [50]. A 25 Å vacuum space was used along the z direction to solve possible
periodic interactions. Visualization of all structures was attained using VESTA [51].

3. Results and Discussion

Firstly, the geometric and electronic structures of AlN, MoGe2N4, and MoSiGeN4
monolayers were studied. The construction of AlN, MoGe2N4, and MoSiGeN4 monolayers
was based on previously reported experimental and calculated lattice parameters [52–54].
Figure 1a presents the top and side views of the geometric structure of the AlN monolayer,
revealing its hexagonal structure. The band gap, calculated as 3.78 eV using the HSE06
method, aligns with the value of 2.93 eV obtained by the PBE method, consistent with
existing literature [52]. For the MoGe2N4 monolayer depicted in Figure 1b, its geometric
configuration is illustrated, with its original cell comprising 1 Mo, 2 Ge, and 4 N atoms.
The MoGe2N4 monolayer is characterized as an indirect semiconductor with a band gap of
1.27 eV (PBE calculated value of 0.94 eV) [47]. Figure 1c,f display the geometric configura-
tion and band structure of MoSiGeN4, with a band gap of 1.75 eV (PBE calculated value of
1.37 eV) [55]. Additionally, Figure 1d–f present the band diagrams obtained from HSE06
functional calculations for AlN, MoGe2N4, and MoSiGeN4 monolayers, showcasing their
indirect band gaps of 3.78 eV, 1.27 eV, and 1.75 eV, respectively. These values are consistent
with previous experimental and theoretical studies [43,56,57]. In summary, while some
properties of these three monolayers exhibit potential for improvement, several stacked
structures were constructed using quantum methods, with strain distributed between the
MoGe2N4/AlN and MoSiGeN4/AlN layers.

As shown in Table 1, the fully relaxed bond lengths of AlN and MoGe2N4 monolayers
were 1.78 Å for Al-N and 2.121 Å for Mo-N, respectively. Considering MoSiGeN4 as a
Janus two-dimensional material, the bond lengths of Mo-N1 and Mo-N2 were 2.101 Å
and 2.104 Å, respectively, consistent with previous research results [58,59]. Furthermore,
the relaxed lattice constants of AlN, MoGe2N4, and MoSiGeN4 were estimated at 3.120 Å,
3.021 Å, and 2.956 Å, respectively [40,43,56].

Table 1. The optimized lattice constant a (Å), interlayer distance d (Å), interlayer binding energy
Eb (eV), and band gap with HSE06 function, EHSE06 (eV).

Structure a (Å) d (Å) Eb (eV) EHSE06 (eV)

AlN 3.120 - - 3.783
MoGe2N4 3.021 - - 1.273
MoSiGeN4 2.956 - - 1.753

AB5 (MoGe2N4/AlN) 3.006 2.852 −0.016 1.382
AC5 (MoSiGeN4/AlN) 3.055 2.637 −0.196 0.886
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Figure 1. The geometric structure of (a) AlN, (b) MoGe2N4, and (c) MoSiGeN4 monolayers. The cal-
culated band structure and its DOS and PDOS of (d) AlN, (e) MoGe2N4, and (f) MoSiGeN4 mono-
layers. The Fermi level was set to zero. 
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and MoSiGeN4/AlN (Figure 2b) heterostructures, a comparative approach was employed, 
such as utilizing the same stacking method for AB1 and AC1. As two-dimensional mate-
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criterion, all structures underwent geometric optimization concerning energy and force. 
The results revealed that the MoGe2N4/AlN heterostructure exhibits a band gap ranging 
from 1.64 eV to 1.76 eV (Figure 3a). Notably, the fifth stacking mode (AB5) demonstrated 
a type-II heterostructure with a direct band gap of 0.89 eV. Under solar illumination, elec-
trons in the VBM of the AlN or MoGe2N4 layer were excited and transitioned to their CBM, 
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tween layers, electrons in the CBM of MoGe2N4 layer transferred and accumulated toward 
the CBM of the AlN layer. Similarly, holes accumulated in the VBM of the MoGe2N4 layer. 

Figure 1. The geometric structure of (a) AlN, (b) MoGe2N4, and (c) MoSiGeN4 monolayers. The
calculated band structure and its DOS and PDOS of (d) AlN, (e) MoGe2N4, and (f) MoSiGeN4

monolayers. The Fermi level was set to zero.

The binding energy is one of the effective methods to evaluate the stability of het-
erostructures. Through this approach, we calculate the binding energy (Eb) of heterostruc-
tures using the following formula:

Eb= EvdW − EAlN − Eeither (1)

Here, EvdW is the energy of the MoGe2N4/AlN or MoSiGeN4/AlN heterostructure,
EAlN is the energy of the AlN monolayer, and Eeither is the energy of the MoGe2N4 or
MoSiGeN4 monolayer. According to the equation, the negative Eb value indicates that
the energy of the heterostructure is stable, with a more negative value suggesting greater
stability. Therefore, the stacking method with a negative binding energy and relatively low
interfacial adhesion energy was selected.

Given the similarity in lattice constants among these three monolayers, a lattice mis-
match rate of less than 5% can be achieved without the establishment of a supercell. The
chosen vdWs heterostructures consist of the AlN cell, MoGe2N4 cell, and MoSiGeN4 cell.
Additionally, considering the differences in structural stacking, we investigated six high-
symmetry stacking methods for research purposes. For these MoGe2N4/AlN (Figure 2a)
and MoSiGeN4/AlN (Figure 2b) heterostructures, a comparative approach was employed,
such as utilizing the same stacking method for AB1 and AC1. As two-dimensional materials
extend infinitely on the plane, we examined the top view and side view of these six geomet-
ric structures, detailing each structure comprehensively. Under the convergence criterion,
all structures underwent geometric optimization concerning energy and force. The results
revealed that the MoGe2N4/AlN heterostructure exhibits a band gap ranging from 1.64 eV
to 1.76 eV (Figure 3a). Notably, the fifth stacking mode (AB5) demonstrated a type-II
heterostructure with a direct band gap of 0.89 eV. Under solar illumination, electrons in the
VBM of the AlN or MoGe2N4 layer were excited and transitioned to their CBM, leaving
behind holes in their VBM. Subsequently, driven by the built-in electric field between layers,
electrons in the CBM of MoGe2N4 layer transferred and accumulated toward the CBM of
the AlN layer. Similarly, holes accumulated in the VBM of the MoGe2N4 layer. Electrons
and holes accumulated in different layers, effectively suppressing the recombination of
photo-generated electrons and holes, enhancing its photocatalytic activity. On the other
hand, the MoSiGeN4/AlN heterostructure displays an indirect band gap ranging from
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1.26 eV to 1.42 eV (Figure 3b), smaller than the band gaps of 1.75 eV and 3.78 eV of the
MoSiGeN4 and AlN monolayers, respectively. Due to the relatively small lattice mismatch
rate of the heterostructure and the negative interface adhesion energy corresponding to the
weak vdW bonding between the constituent layers, successful experimental preparation
is feasible. The fifth stacking method was adopted for both the MoGe2N4/AlN and the
MoSiGeN4/AlN heterostructures to study the impact of applied strain and electric field on
their electronic structures.
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and (b) MoSiGeN4/AlN. The Fermi level was set to zero.

To delve deeper into the electronic properties of the MoGe2N4/AlN and MoSiGeN4/AlN
heterostructures, we generated three-dimensional charge density difference plots for
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these two heterostructures, as illustrated in Figure 4. The calculation formula is defined
as follows:

∆ρ = ρvdW − ρAlN − ρeither (2)
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Here, ρvdW and ρAlN denote the total charge density of the heterostructure and the
charge density of the AlN monolayer, respectively, and ρeither denotes the charge density of
the MoGe2N4 or MoSiGeN4 monolayer. The resulting three-dimensional charge density
difference is depicted in Figure 4, where the green region signifies charge depletion and the
orange region signifies charge accumulation. As depicted in Figure 4, charge transfer is
evident at the interfaces of the MoGe2N4/AlN and MoSiGeN4/AlN heterojunctions.

Furthermore, we conducted the Bader charge analysis of the heterostructure to quan-
tify the charge transfer, as shown in Table 2. The results indicate that 0.0486 electrons were
transferred from the MoGe2N4 layer to the AlN layer in the MoGe2N4/AlN heterostructure,
while 0.0187 electrons were transferred from the MoSiGeN4 layer to the AlN layer in the
MoSiGeN4/AlN heterostructure. This electron transfer led to the formation of a built-in
electric field at the interface of the heterostructure.

Table 2. The Bader charge analysis of AB5(MoGe2N4/AlN) and AC5(MoSiGeN4/AlN) vdW heterostruc-
tures. The gain and loss electrons are represented by negative and positive values, respectively.

Structure AB5(MoGe2N4/AlN) AC5(MoSiGeN4/AlN)

charge (e)

AlN −0.0486
Al −2.3120 AlN −0.0187 Al −2.3095

N +2.2634 N +2.2908

MoGe2N4 +0.0486 Mo −1.5126 MoSiGeN4 +0.0187 Mo −1.5062

Ge −1.8670 Si −2.9019

N +1.3238 Ge −1.8054

N +1.5580

Next, we proceeded by investigating the impact of biaxial strain on the electronic
characteristics of the MoGe2N4/AlN and MoSiGeN4/AlN vdW heterostructures. Biaxial
strains ranging from −5% to 5%, incremented by 1%, were applied to the heterostructures.
Figure 5 illustrates the band gap profiles of the heterostructures under varying biaxial
strains. It is evident that the electronic properties of the MoGe2N4/AlN heterostructures
are sensitive to biaxial strain. With an increment in biaxial strain from 0 to 5%, the band
gap of the heterostructure was found to exhibit a diminishing trend, transitioning from
a type-II direct band gap to a type-I indirect band gap at a strain of 4%. Conversely, as
the biaxial strain decreased incrementally, the band gap value displayed an increasing
trend. The heterostructure maintained a type-II direct band gap as the strain diminished,
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leading to an augmentation in the band gap value. Similarly, the band gap behavior
of the MoSiGeN4/AlN heterostructure was found to align with that of MoGe2N4/AlN,
demonstrating a linearly decreasing trend with increasing biaxial strain. Conversely,
as the biaxial strain decreased incrementally, the band gap value exhibited a linearly
increasing trend. Notably, under a −4% biaxial strain, the heterostructure transitioned
from a type-I indirect band gap to a type-II direct band gap. Additionally, it can be
inferred from Figure 5 that when the direct band gap was of type-II, the valence band
maximum (VBM) of both the MoGe2N4/AlN and the MoSiGeN4/AlN heterostructures was
contributed to by AlN. Conversely, when it was a type-I indirect band gap, the VBM and
conduction band minimum (CBM) of these two heterostructures originated from MoGe2N4
and MoSiGeN4, respectively.
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To tailor the band gap of heterostructures to nanoelectronic devices, we explored the
effect of an electric field on their electronic properties. The electric field applied to the
heterostructures ranged from −0.3 V/Å to 0.3 V/Å, incremented by 0.1 V/Å. Figure 6
illustrates the band gap variation of the heterostructures under the influence of the electric
field. The band gap of the MoGe2N4/AlN heterostructure was found to exhibit a linear
increase in the range of −0.3 V/Å to 0.3 V/Å. Notably, the heterostructure transitioned from
a type II direct band gap to a type-I indirect band gap at +0.1% V/Å. Conversely, the band
gap value of the MoSiGeN4/AlN heterostructure initially increased and then decreased
with the application of the electric field. Specifically, a change in the band gap type occurred
when the electric field was set to −1% V/Å. In the range of −0.3% V/Å to −0.1% V/Å, the
heterostructure demonstrated a type-II direct band gap. Remarkably, the band gap types
of these two heterostructures can be modulated by the applied electric field, offering the
possibility of adjusting both the MoGe2N4/AlN and the MoSiGeN4/AlN heterostructures.
The band gap characteristics of the heterojunctions provide valuable theoretical insights for
experimentalists to effectively engineer photocatalytic hydrogen production heterojunctions
of two-dimensional materials and integrate them into optoelectronic devices.

Expanding beyond band gap considerations, the optical absorption spectra of AlN,
MoGe2N4, and MoSiGeN4 monolayers, along with MoGe2N4/AlN and MoSiGeN4/AlN
heterostructures, were analyzed as important indicators for photovoltaic device materials,
as depicted in Figure 7. Different colors represent various two-dimensional materials.
Dashed lines illustrate the optical absorption spectra of individual monolayers, while solid
lines depict the optical absorption spectra of the constructed heterostructures. Notably,
both the MoGe2N4/AlN and the MoSiGeN4/AlN heterostructures were found to exhibit
significantly stronger absorption of the visible light compared to the single-layer AlN,
MoGe2N4, and MoSiGeN4, effectively compensating for the deficiencies in visible light
absorption of the AlN monolayer. Moreover, the peak absorption coefficients of these
two heterostructures were both close to 30 × 105 cm−1. This enhancement also renders
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these heterostructures superior with respect to optical properties compared to certain
other photovoltaic materials [60]. This heightened absorption capability suggests that
these heterostructures possess enhanced potential for efficiently utilizing solar energy,
rendering them promising candidates for photovoltaic applications. The observed optical
characteristics provide valuable insights for experimentalists, facilitating the effective
engineering of photocatalytic hydrogen production heterojunctions using two-dimensional
materials and their integration into advanced optoelectronic devices.
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4. Conclusions

In summary, we investigated the electronic properties of the MoGe2N4/AlN and
MoSiGeN4/AlN van der Waals heterostructures through density functional theory simula-
tions, examining their responses to biaxial strain and vertical electric fields. Our findings
reveal that different stacking methods significantly impact the electronic properties of
these heterostructures. While all six high-symmetry structures of the MoSiGeN4/AlN het-
erostructures exhibit type-I indirect band gaps, the situation differs for the MoGe2N4/AlN
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heterostructures, among which the AB5 configuration manifests a type-II direct band gap.
Notably, for a given heterostructure, the band gap exhibits fluctuations within a certain
range. Under the influence of biaxial strain and electric fields, the band gap type of the
heterostructure undergoes effective transformation. Particularly, the band gap value of the
MoSiGeN4/AlN heterostructure exhibits relatively significant changes under biaxial strain.
In the presence of an electric field ranging from −0.3 V/Å to −0.1 V/Å, the MoSiGeN4/AlN
heterostructures transition from a type-I indirect band gap to a type-II direct band gap.
These findings underscore the potential for effectively adjusting the electronic properties
of the MoGe2N4/AlN and MoSiGeN4/AlN heterostructures through strain and applied
electric fields, enabling modifications of the band gap type. Such insights offer valuable
theoretical guidance for the efficient preparation and utilization of these heterostructures,
indicating promising applications in optoelectronic devices and photocatalysis.
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