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Abstract: This paper presents a study focused on developing robust algorithms for cover factor
and porosity calculation through digital image analysis. Computational models based on machine
learning for efficient cover factor prediction based on fabric parameters have also been developed.
Five algorithms were devised and implemented in MATLAB: the single threshold algorithm (ST);
multiple linear threshold algorithms, ML-1 and ML-2; and algorithms with multiple thresholds
obtained by the Otzu method, MT-1 and MT-2. These algorithms were applied to knitted fabrics used
for football, swimming, and leisure. Algorithms ML-1 and MT-1, employing multiple thresholds,
outperformed the single threshold algorithm. The ML-1 variant yielded the highest average porosity
value at 95.24%, indicating the importance of adaptable thresholding in image analysis. Comparative
analysis revealed that algorithm variants ML-2 and MT-2 obtain lower cover factors compared to
ML-1 and MT-1 but can detect potential void areas in fabrics with higher reliability. Algorithm
MT-1 proved to be the most sensitive when it came to distinguishing between different fabric
samples. Computational models that were developed based on random tree, random forest, and
SMOreg machine learning algorithms predicted cover factor based on fabric parameters with up to
95% accuracy.

Keywords: knitted fabric; cover factor; porosity; digital image analysis; machine learning models;
regression; MATLAB; Weka

1. Introduction

Definition of porosity. Participating in sports is a daily routine for many individuals,
whether they are amateurs or professionals. The selection of suitable and comfortable
sportswear is a crucial element in achieving peak performance. Comfort, defined as the
psychological sensation experienced during physical activity in the current environmental
conditions, is paramount. Knitted fabrics are preferred in sportswear manufacturing due to
their comfortable properties, characterized by high stretchability and low stress. Given that
sports activities lead to the generation of heat and sweat through the contact of clothing
with the body, it becomes essential to dissipate heat and release water vapor into the
environment, influencing the wearer’s sense of comfort. This phenomenon is intricately
tied to the porosity of the garment [1].

The porosity of a fabric is defined as the ratio of the total void area of the fabric to
the total surface area of the fabric. Porosity responds to various parameters such as fabric
thickness, pore shape and size, and the distribution of space between threads.
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Importance of porosity in clothing comfort. Porosity plays a pivotal role in enhancing
clothing comfort through its multifaceted impact on various key factors. Primarily, the
relationship between porosity and air permeability is crucial, as higher porosity allows for
improved airflow through fabrics. This contributes significantly to heat dissipation and the
maintenance of a comfortable microclimate between the fabric and the wearer’s skin.

Air permeability is an important factor in fabric comfort as it plays a role in the
transport of moisture from the skin to the outside atmosphere, as water vapor travels
mainly through the interstitial spaces of the fabric by diffusing air from one side of the
fabric to the other [2]. Air permeability depends on the structural parameters of the fabric
and porosity, as described by Havlova and Špánková [3].

Moreover, porosity influences moisture management by facilitating efficient wicking
and evaporation of sweat, preventing the discomfort associated with damp or wet clothing.
Benltoufa et al. confirmed that the amount of liquid absorbed by the garment, as well as
the thermal comfort of clothing, are closely related to the pore size and distribution [4].

Beyond functional aspects, the flexibility and stretchability of knitted fabrics are
often heightened with higher porosity, enhancing ease of movement. Additionally, the
overall feel and texture of a fabric are influenced by the arrangement and distribution
of pores, creating a subjective sense of lightness and breathability. Ultimately, porosity
is instrumental in tailoring clothing to be adaptable to different activities, ensuring that
individuals experience optimal comfort across diverse settings and physical exertions.

Digital image analysis in porosity study. To delve deeper into exploration of porosity,
digital image analysis emerges as an invaluable tool, offering a nuanced perspective on
fabric structure. In the field of digital image analysis porosity is often investigated in terms
of a cover factor. If porosity represents the total void area of the fabric, cover factor is the
opposite measure, representing the proportion of the fabric’s surface covered by fibers
or yarns.

Since the 1980s, it has been an ongoing mission of scientists to use image analysis
for the evaluation of textile properties, including the porosity and description of pore
size [5]. The first attempts used to obtain images for textile evaluation were based on the
use of a scanner, a microscope with a CCD camera, or a digital camera with a lens. Further
attempts were focused towards calculated optical porosity by analyzing white and black
images [6,7].

In the most recent studies, Ramatan et al. used digital image analysis to measure pore
size. The study also included the investigation of the effect of pore size, pore volume, and
air permeability on fluid retention and air transfer [1].

The comparison of different algorithms that can be used to calculate the approximate
porosity value of the fabric, such as air permeability calculation, digital image analysis,
and geometric modeling, was a main topic of scientific interest of Bentoulfa et al. Their
investigation indicated that the air permeability method is best for stretched fabric struc-
tures, digital image analysis for fabrics with high porosity, and geometric modeling for
determining the shape of any structure’s conformation [4].

Fouda et al. presented a method of image analysis for the determination of pore size
distribution [8]. Another group of scientists developed a theoretical model to predict the
porosity and air permeability of the knitted fabric before production as a function of the
following geometrical parameters: cross-sectional area of each pore, depth of each pore or
fabric thickness, and number of pores per unit area [2]. It has been shown that the proposed
model can be used to predict porosity with high reliability.

Researchers also developed a computer program to calculate porosity based on the
threshold used to convert a digital image from a grayscale to a binary scale and calculate
pore size by counting pixels [9].

When conducting the image analysis, image processing is extremely important to
reduce the loss of data on the structure and size of individual pores. Owczarek described
the influence and importance of image pre-treatment methods for interstitial pore (ITP)
detection with the aim of accurately identifying each ITP tissue structure using an opti-
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mal pre-treatment algorithm for further quantitative morphometric structural analysis of
specialized fabrics [10]. As indicated, the main problem with ITP identification in image
analysis was the misclassification of pixels that were close to the edges of the yarn, resulting
in image noise among other problems.

Research focus. Against this backdrop, our research endeavors to contribute to this
evolving dialogue on textile comfort by contributing to the digital image analysis field with
application in knitted fabrics. We present five digital image analysis algorithms—the single
threshold algorithm (ST) and two multiple threshold algorithms (ML and MT, each with two
variants). The introduction of five new algorithms for calculating porosity is driven by the
need for precision and applicability to the specific context of knitted fabric used for football,
swimming, and outdoor wear. While existing algorithms may effectively calculate porosity
in general scenarios, the intricacies of knitted fabrics necessitate tailored approaches.

Moreover, traditional methods for calculating cover factor and porosity of knitted
fabrics can face difficulty when dealing with the inherent complexity of fabric images. This
complexity includes variations in color, texture, and structure. To overcome this, we have
developed multiple computational models, leveraging machine learning algorithms. These
algorithms can investigate the intricacies of the samples and uncover patterns that may not
be immediately apparent. Computational models developed in this research can predict
the cover factor value based on the parameter specific for each knitted fabric. Through this
approach, we aimed to improve the accuracy and efficiency of cover factor and porosity
calculation in the textile industry.

2. Materials and Methods
2.1. Fabrics

A set of representative knitted fabrics was carefully selected for use in the manufacture
of sportswear and casual clothing to be worn as a single layer against the skin. The
fabrics were chosen to cover various applications and were categorized based on their
primary purpose:

• Fabrics for football clothing: samples F1–F9, composed of 100% polyester, were se-
lected for this series.

• Fabrics for swimwear: samples S1–S9, made of a blend of polyamide and elastane,
were chosen.

• Fabrics for casual wear: samples I1–I4, consisting of various fiber compositions such
as viscose, cotton, and modal blended with elastane, were included.

Table 1 provides an overview of the selected fabrics, along with their assigned fabric
IDs and respective fiber compositions.

In the experimental part of this study, all fabrics were subjected to testing for mass
per unit area and fabric thickness. The mass per unit area was determined by weighing
a specimen sized 100 × 100 mm on an analytic scale. Fabric thickness was measured
according to the ISO 5084:2003 standard [11], using flat parallel metal plates with a thickness
gauge and applying a pressure of 1 kPa during the test. Ten measurements were performed
at different locations on each sample to ensure representative data.

The measurements of mass per unit area and fabric thickness were carried out us-
ing the Dino-lite AM7915MZT Edge microscope (Dino-Lite, Almere, The Netherlands),
which offers a resolution of 5 megapixels and a magnification range of 10–220 times. The
average values of mass per unit area m and fabric thickness t for the selected fabrics are
presented in Table 2, alongside their standard deviation SD. The obtained fabric images
were subsequently utilized in the experimental part of the study.
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Table 1. Overview of selected fabrics.

Nr. Fabric ID
Fibre Composition

Main Yarn Plating Yarn

1 F1 100% polyester -

2 F2 100% polyester -

3 F3 100% polyester -

4 F4 100% polyester -

5 F5 100% polyester -

6 F6 100% polyester -

7 F7 100% polyester -

8 F8 100% polyester -

9 F9 91% polyester 9% elastane

10 S1 80% polyamide 20% elastane

11 S2 80% polyamide 20% elastane

12 S3 78% polyamide 22% elastane

13 S4 78% polyamide 22% elastane

14 S5 59% polyamide 41% elastane

15 S6 73% polyamide 27% elastane

16 S7 80% polyamide 20% elastane

17 S8 72% polyamide 28% elastane

18 S9 71% polyamide 29% elastane

19 I1 93% viscose 7% elastane

20 I2 90% cotton 10% elastane

21 I3 89% modal 11% elastane

22 I4 91% cotton 9% elastane

Table 2. Mass per unit area and thickness of selected fabrics.

Nr. Fabric
ID Image m, g/m2

SD
t, mm

SD Nr. Fabric
ID Image m, g/m2

SD
t, mm

SD

1 F1
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Table 2. Cont.

Nr. Fabric
ID Image m, g/m2

SD
t, mm

SD Nr. Fabric
ID Image m, g/m2

SD
t, mm

SD

4 F4

Fibers 2024, 12, x FOR PEER REVIEW 4 of 28 
 

8 F8 100% polyester - 
9 F9 91% polyester 9% elastane 

10 S1 80% polyamide 20% elastane 
11 S2 80% polyamide 20% elastane 
12 S3 78% polyamide 22% elastane 
13 S4 78% polyamide 22% elastane 
14 S5 59% polyamide 41% elastane 
15 S6 73% polyamide 27% elastane 
16 S7 80% polyamide 20% elastane 
17 S8 72% polyamide 28% elastane 
18 S9 71% polyamide 29% elastane 
19 I1 93% viscose 7% elastane 
20 I2 90% cotton 10% elastane 
21 I3 89% modal 11% elastane 
22 I4 91% cotton 9% elastane 

In the experimental part of this study, all fabrics were subjected to testing for mass 
per unit area and fabric thickness. The mass per unit area was determined by weighing a 
specimen sized 100 × 100 mm on an analytic scale. Fabric thickness was measured 
according to the ISO 5084:2003 standard [11], using flat parallel metal plates with a 
thickness gauge and applying a pressure of 1 kPa during the test. Ten measurements were 
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the Dino-lite AM7915MZT Edge microscope (Dino-Lite, Almere, The Netherlands), which 
offers a resolution of 5 megapixels and a magnification range of 10–220 times. The average 
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in Table 2, alongside their standard deviation SD. The obtained fabric images were 
subsequently utilized in the experimental part of the study. 
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We selected these fabrics to represent the diverse range of fabrics commonly used in 
sportswear, swimwear, and casual wear. By including fabrics intended for different 
purposes, such as football clothing, swimwear, and casual wear, we aimed to capture the 
variations in fabric composition, structure, and performance that are relevant to these 
specific applications. This selection allows for a comprehensive evaluation of porosity 
characteristics and their impact on comfort across different fabric series. The use of a wide 
range of fabrics ensures that the research findings are applicable to various types of 
clothing and provides insights that can inform the design and manufacturing of optimized 
sportswear fabrics. 

2.2. Methods 
2.2.1. Measuring Porosity Using Cover Factor 

Porosity, in the context of knitted fabrics, refers to the extent of void spaces or gaps 
within a fabric structure. It is defined as the ratio of the total void area to the total surface 
area of the fabric: 

P = areavoid/areatotal (1)

Porosity is an important factor in determining the comfort and functionality of 
textiles, influencing characteristics such as breathability, moisture management, and 
thermal comfort. 
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We selected these fabrics to represent the diverse range of fabrics commonly used
in sportswear, swimwear, and casual wear. By including fabrics intended for different
purposes, such as football clothing, swimwear, and casual wear, we aimed to capture the
variations in fabric composition, structure, and performance that are relevant to these
specific applications. This selection allows for a comprehensive evaluation of porosity
characteristics and their impact on comfort across different fabric series. The use of a
wide range of fabrics ensures that the research findings are applicable to various types of
clothing and provides insights that can inform the design and manufacturing of optimized
sportswear fabrics.
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2.2. Methods
2.2.1. Measuring Porosity Using Cover Factor

Porosity, in the context of knitted fabrics, refers to the extent of void spaces or gaps
within a fabric structure. It is defined as the ratio of the total void area to the total surface
area of the fabric:

P = areavoid/areatotal (1)

Porosity is an important factor in determining the comfort and functionality of tex-
tiles, influencing characteristics such as breathability, moisture management, and thermal
comfort.

Cover factor is a measure used in textile engineering to quantify the amount of space
occupied by the fibers in a fabric. It represents the ratio of the area covered by fibers to
the total surface area of the fabric. A higher cover factor indicates that more of the fabric’s
surface is covered by fibers, implying less open space or voids.

The relationship between cover factor (CF) and porosity (P) is mathematically ex-
pressed as:

CF = 1 − P (2)

Fabrics with high porosity often have low cover factors, meaning there is more open-
ness or void space between fibers or yarns. Fabrics with low porosity have higher cover
factors, indicating that a larger proportion of the fabric is covered by fibers. Both CF and P
are expressed as percentage.

The results in this study are presented in terms of cover factor, a common metric used
in textile engineering and fabric analysis. Cover factor is a straightforward measure that
directly reflects the coverage of fibers on the fabric surface. It is used to provide a clear and
easily interpretable representation of the fabric structure.

2.2.2. Algorithms

This section outlines the five developed algorithms for calculating the porosity factor:
the simple threshold algorithm (ST) and two variations of multiple thresholds algorithm,
the multiple thresholds algorithm (ML) and the multiple thresholds algorithm with Otsu
(MT). Programs were implemented in MATLAB [12].

All the developed algorithms employ a series of steps to convert a microscope pho-
tograph into a grayscale representation and subsequently calculate the porosity factor,
presented in Figure 1. Each step serves a specific purpose and contributes to the overall
accuracy and reliability of the algorithm:
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1. Grayscale Conversion:

The conversion of the RGB color space to grayscale is necessary to simplify the subse-
quent porosity calculations. By transforming the image into grayscale, algorithms eliminate
color variations that may not directly correlate with the presence of porosity. The weighted
average expression used for grayscale conversion follows NTSC formula:

GP = 0.2989R + 0.5870G + 0.1140B (3)

with GP being the gray scale value of a pixel, and R, G, and B being the corresponding red,
green, and blue values of a pixel in the original image [13].

2. Contrast Enhancement:

Enhancing the contrast in the grayscale photograph is crucial for accurate porosity
analysis. By adjusting the gray levels to span the entire grayscale range (0–255 or 0–1),
the algorithm maximizes the distinction between different gray values. This adjustment
helps to reveal subtle variations in intensity, which may correspond to different degrees of
porosity in the sample. A wider range of gray levels provides a more detailed representation
of the image, allowing for more precise porosity calculations.

3. Thresholding:

The conversion from grayscale to a binary black-and-white image through threshold-
ing is a fundamental step in the simple threshold algorithm. It categorizes pixels as black
or white based on whether their grayscale values fall below or equal to a threshold value.
The thresholding operation simplifies the image by creating a clear differentiation between
the porous and non-porous regions, which is essential for subsequent pixel counting and
cover factor calculation.

4. Pixel Counting and Cover Factor Calculation:

Once the binary image is obtained, the number of black pixels (representing non-
porous regions) and white pixels (representing porous regions) are counted. The cover
factor is then calculated as the percentage of white pixels relative to the total number of
pixels in the image.

This calculation provides a quantitative measure of the porosity of the sample.
By following these steps, the developed algorithms effectively convert a microscope

photograph into a grayscale representation, enhance contrast, isolate porous regions
through thresholding, and quantify the porosity factor.

2.2.3. Simple Threshold Algorithm

Following the earlier described procedure, the simple threshold algorithm (ST) aims
to convert a microscope photograph into a grayscale representation, which is essential for
subsequent porosity calculations. The RGB color space is transformed into grayscale using
a weighted average expression (1), whose (R, G, B) weights values of (0.2989, 0.5870, 0.1140)
are derived from the standard formula for converting color images to grayscale.

To enhance the contrast in the grayscale photograph, the gray levels are adjusted to
span the entire range from 0 to 255. Subsequently, the grayscale image is further converted
into a binary black-and-white image using a fixed threshold value T = 200. The value of the
hyper parameter T = 200 has been determined after thorough empirical analysis described
in Section 4.4.

This thresholding operation categorizes pixels as black or white based on whether
their grayscale values are lower or equal to T. The number of black pixels (B) and white
pixels (W) are then counted in the resulting binary image. Finally, the cover factor (CF) is
calculated as a percentage using Equation (1), which considers the ratio of white pixels to
the total number of pixels.

However, we have recognized the potential limitations of a fixed threshold and ad-
dressed them by developing algorithms that employ an adaptive thresholding technique to
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further expand on the ST algorithm. In this context, the simple threshold algorithm with
T = 200 serves as a baseline for comparative purposes. By comparing the performance of
the adaptive thresholding version (using Otsu’s method) to the fixed threshold version, the
effectiveness of the adaptive approach can be assessed and it can be determined whether
superior segmentation results are provided.

2.2.4. Multiple Threshold Algorithms

To address the issues arising when using the single threshold algorithm, we have
experimented with algorithms using multiple threshold values. We developed the ML
(Multiple Threshold) and MT (Multiple Threshold with Otsu) algorithms as alternative
approaches to calculate porosity. These algorithms offer additional flexibility and potential
improvements over the simple threshold algorithm (ST) by introducing multiple thresholds
and more refined pseudo-grayscale transformations.

The purpose of the ML and MT algorithms is to provide a more nuanced analysis of
porosity by incorporating multiple thresholds instead of a single threshold value. This al-
lows for a more detailed characterization of porosity within the sample, capturing variations
in intensity that may correspond to different levels of porosity. The ML and MT algorithms
aim to enhance the accuracy and precision of porosity calculations by introducing more
sophisticated image processing techniques.

In the ML algorithm, the grayscale image is first linearly divided into eight equal parts
to obtain multiple thresholds. This division allows for a more detailed differentiation of
grayscale values. Each pixel is assigned a pseudo-grayscale value between 1 and 8 based
on its corresponding threshold range T1 to T8.

To convert the pseudo-grayscale image into a binary black-and-white image, pixels
with values from 1 to 7 are set to black, while pixels with a value of 8 are set to white. The
number of black pixels (B) and white pixels (W) are then counted, and the cover factor is
calculated using Equation (1).

A second version of the ML algorithm, ML-2, was created to further refine the porosity
calculation. In this variation, pixels with pseudo-grayscale values from 1 to 6 are categorized
as black, while those with a value of 7 or 8 are set to white to further experiment with
enhancing segmentation accuracy. The remaining steps, including pixel counting and cover
factor calculation, remain the same as in the previous version. Pixels with values of 7 and 8
represent the porosity in the knit, where pixels with a value of 8 indicate complete absence
of porosity and those with a value of 7 denote potentially porous areas.

To further address the limitations that arise from using a fixed threshold set of ML
algorithms, we have incorporated an adaptive thresholding technique that dynamically
adjusts the threshold based on the image’s characteristics, hence creating the MT algorithm.
An adaptive thresholding technique, such as Otsu’s, can automatically determine the
optimal threshold value for each image, considering its specific features and reducing the
reliance on a fixed threshold. This adaptability can enhance the algorithm’s robustness and
segmentation accuracy across a wider range of images and conditions.

The MT algorithm employs multiple thresholds to convert the grayscale image into a
pseudo-grayscale image. Instead of linearly dividing the grayscale range, the Otsu method
is utilized to dynamically determine the thresholds. The Otsu method, described in [14]
and implemented in MATLAB, calculates optimal threshold values (T1 to T8) specific to
each photograph by maximizing the between-class variance of pixel intensities, effectively
separating the foreground and background regions. By applying Otsu’s method, the
algorithm can dynamically determine a threshold value that is better-suited to the image
characteristics, improving the segmentation accuracy compared to using a fixed threshold.

The subsequent steps of assigning pseudo-grayscale values, converting to a binary
black-and-white image, pixel counting, and cover factor calculation follow the same prin-
ciples as in the ML algorithm. A second version of the MT algorithm was developed, in
which the photograph is converted to black-and-white, so that all pseudo-grayscale values
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with a value of 1 to 6 become black, and all pseudo-grayscale values with a value of 7 to 8
become white.

Figure 2 depicts the procedural steps and histograms of the grayscale and pseudo-
grayscale images for the ML and MT algorithms and the differences on the original image
each step produces. These visual representations aid in understanding the transformations
and highlight the differences between the algorithms.
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Figure 2. The figure depicts a digital image as it passes through the different stages of the ML and
MT algorithms. The figure presents the original photo (A), grayscale photos (B), grayscale photos
with enhanced contrast (C), pseudo-grayscale photos (D), black-and-white photos obtained by ML-1
and MT-1 algorithms (V1), and by ML-2 and MT-2 algorithm (V2), grayscale photos histogram (H1),
and pseudo-grayscale photo histogram (H2).

The key difference between the ML and MT algorithms lies in the determination
of threshold values and the subsequent pseudo-grayscale transformations. In the ML
algorithm, the grayscale range is divided into eight equal parts, and threshold values
(T1 to T8) are linearly distributed. These thresholds are empirically chosen to create a
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pseudo-grayscale image with values ranging from 1 to 8, while in the MT algorithm the
grayscale range is divided into eight parts using the Otsu method. The Otsu method auto-
matically calculates threshold values (T1 to T8) based on the image’s statistical properties,
optimizing the separation of porous and non-porous regions.

The pseudocode for all algorithms is provided in Figure 3. It encompasses the proce-
dures for obtaining the microscope photograph, enhancing image contrast, converting the
photo to grayscale, and determining the cover factor using the appropriate formula based
on the algorithm.
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Moreover, Figure 4 presents the pseudocode for the “OBTAIN PSEUDO IMAGE”
function, an essential component of the ML and MT algorithms. This function calculates
the thresholds and assigns pseudo-grayscale values according to the specific requirements
of each algorithm.
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2.3. Machine Learning

In recent years, machine learning has emerged as a powerful tool in the field of
computer science. It involves the development of data-driven models that can automatically
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identify and recognize patterns from large sets of data. This unique ability has made
machine learning an indispensable tool in fields such as image recognition, natural language
processing, and financial forecasting [15].

One area where machine learning has shown great potential is in the analysis of digital
images and for prediction models. The complexities and unique structures present in
knitted fabrics can make it challenging for traditional computer algorithms to accurately an-
alyze and classify them. However, with the adaptability and advanced pattern recognition
abilities of machine learning models, these challenges can be overcome [16,17].

Through the utilization of machine learning algorithms, we have produced computa-
tional models that possess the ability to accurately predict the porosity values of knitted
fabrics, without the necessity for complex digital image analysis. To achieve this, we
utilized fabric parameters such as the mass per unit and thickness of the fabric as input
values for the models, and the cover factor of the fabric as the output.

To create these models, we utilized the WEKA suite developed by the machine learning
group at the University of Waikato, New Zealand. This suite offers a vast collection of
algorithms and tools that enable researchers to build highly accurate and efficient predictive
models [18].

For this study, we focused on regression models as they are best suited for numeric
results and exclusively deal with numeric attributes. Some of the regression models used
in this study include trees, such as alternating random tree and random forest, which
utilize a decision tree algorithm to make predictions based on input data. Functions like
linear regression, multilayer perceptron, and support vector machine (SMOReg) were also
utilized to construct predictive models. In addition to these algorithms, we also employed
lazy methods such as K-nearest neighbor classifier (Ibk) and K* (KStar), which use nearest
neighbor matching to make predictions. Lastly, we incorporated meta techniques like
additive regression, which combines multiple models to achieve a more accurate prediction.

2.4. Research Hypothesis

Based on the proposed algorithms and obtained material, the following research
hypotheses have been posed:

H1. Algorithms ML-1 and MT-1 that use adaptive thresholding will obtain higher cover factor
than the basic algorithm with a fixed threshold ST-1.

H2. Algorithms with higher threshold segmentation, i.e., ML-2 and MT-2, will recognize the
underlying knitted fabric structure and will obtain lower cover factor than their counterparts ML-1
and MT-1.

H3. MT-1 algorithm, which uses Otzu adaptive thresholding, will be the most sensitive algorithm
to different fabric structures.

H4. A machine learning model can predict cover factor based on knitted fabric parameters with
high accuracy.

3. Results
3.1. Cover Factor Results per Sample in a Dataset

Multiple samples of knitted fabrics in the F, S, and I series were analyzed using five
algorithms: ML-1, ML-2, MT-1, MT-1, and ST. The results, specifically cover factors, are
summarized in Table 3, Table 4, and Table 5, respectively. The cover factor was calculated
for a total of 22 knitted samples, each identified by a specific code (F1–F9, S1–S9, I1–I4).
Multiple pictures of each sample were taken. Samples F1–F9 consisted of five photos each,
as did samples S1, S3, S6, S8, and I1–I3. Samples S2, S4, S5, and S9 consisted of eight photos.
Sample S7 consisted of ten photos and sample I4 consisted of four photos.
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Table 3. Cover factors for samples in the F series.

Algorithm for Cover Factor Calculation

Sample ML-1 [%] ML-2 [%] MT-1 [%] MT-2 [%] ST [%]

F1-1 86.30 83.13 86.63 82.04 84.77

F1-2 85.68 83.05 85.94 82.15 84.39

F1-3 84.79 82.67 85.45 83.03 83.76

F1-4 86.29 83.37 86.58 82.33 84.85

F1-5 85.10 82.73 85.52 82.55 83.93

F2-1 92.33 89.20 92.40 87.21 90.93

F2-2 94.01 91.40 93.90 88.65 92.86

F2-3 94.72 92.44 94.58 89.52 93.71

F2-4 97.92 95.96 97.59 92.89 97.02

F2-5 94.89 92.54 94.79 89.67 93.86

F3-1 91.51 90.56 91.71 89.55 91.09

F3-2 88.20 86.62 88.64 86.97 87.49

F3-3 88.96 87.66 89.30 87.37 88.35

F3-4 90.43 89.27 90.35 87.80 89.85

F3-5 88.04 86.57 88.10 85.50 87.37

F4-1 98.04 96.18 98.04 95.21 97.08

F4-2 98.22 96.63 97.99 94.11 97.61

F4-3 98.04 94.93 97.88 92.27 96.68

F4-4 98.17 96.57 98.31 95.46 97.58

F4-5 98.31 96.60 98.15 93.96 97.61

F5-1 97.27 93.79 97.06 91.40 95.84

F5-2 96.92 93.15 96.15 90.06 95.22

F5-3 97.54 93.96 97.24 91.40 95.90

F5-4 97.66 94.31 96.96 90.86 96.32

F5-5 97.32 93.72 96.57 89.96 95.69

F6-1 98.31 97.54 98.73 97.75 97.89

F6-2 98.09 96.86 97.77 94.56 97.45

F6-3 98.27 97.20 97.78 94.72 97.69

F6-4 98.27 96.89 98.42 96.79 97.67

F6-5 98.17 97.10 98.03 96.09 97.63

F7-1 97.94 95.61 97.60 93.37 96.86

F7-2 97.74 94.85 97.43 92.86 96.44

F7-3 97.95 95.96 97.83 94.54 97.02

F7-4 97.70 95.00 98.01 94.38 96.30

F7-5 97.93 95.75 98.04 95.06 97.03

F8-1 98.51 97.51 98.27 95.58 98.09

F8-2 98.40 97.61 98.86 97.82 97.99

F8-3 98.44 97.63 98.11 94.98 98.08
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Table 3. Cont.

Algorithm for Cover Factor Calculation

Sample ML-1 [%] ML-2 [%] MT-1 [%] MT-2 [%] ST [%]

F8-4 98.14 96.89 97.59 94.92 97.45

F8-5 98.34 97.43 98.18 95.60 97.91

F9-1 98.36 97.10 98.14 95.14 97.78

F9-2 98.48 97.05 98.70 95.80 97.90

F9-3 97.56 92.15 96.94 88.81 95.67

F9-4 98.01 94.38 97.39 89.45 96.82

F9-5 97.99 94.42 97.79 92.92 96.76

Table 4. Cover factors for samples in the S series.

Algorithm for Cover Factor Calculation

Sample ML-1 [%] ML-2 [%] MT-1 [%] MT-2 [%] ST [%]

S1-1 98.36 97.14 98.41 96.86 97.80

S1-2 98.24 95.28 98.24 93.57 97.05

S1-3 98.04 95.07 97.62 92.31 96.69

S1-4 98.06 95.40 97.80 92.21 96.95

S1-5 98.19 96.83 98.19 95.37 97.62

S2-1 94.09 85.30 93.42 84.13 89.71

S2-2 94.28 86.89 93.75 84.86 90.52

S2-3 93.98 85.84 92.90 84.26 89.62

S2-4 93.54 85.17 93.22 84.47 88.98

S2-5 92.66 85.40 91.94 83.63 88.81

S2-6 93.15 84.63 93.15 84.63 88.48

S2-7 92.35 83.26 92.35 82.42 87.33

S2-8 92.82 85.19 91.66 83.74 88.72

S3-1 96.40 92.13 96.07 90.39 94.30

S3-2 96.33 92.28 96.00 90.70 94.28

S3-3 96.38 92.29 96.05 91.00 94.40

S3-4 96.47 92.52 96.15 90.89 94.52

S3-5 96.63 92.73 96.78 91.75 94.66

S4-1 95.54 85.00 94.70 80.88 91.44

S4-2 96.35 87.78 95.20 81.96 92.84

S4-3 95.75 84.20 94.18 77.19 90.93

S4-4 95.00 83.39 93.05 78.68 90.50

S4-5 95.77 82.14 94.05 76.98 90.22

S4-6 96.21 81.54 94.49 79.14 90.67

S4-7 95.60 82.73 94.01 77.49 90.41

S4-8 95.86 83.24 94.07 78.88 90.35

S5-1 86.86 56.04 83.29 57.36 72.00

S5-2 88.13 58.48 88.13 64.95 73.86
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Table 4. Cont.

Algorithm for Cover Factor Calculation

Sample ML-1 [%] ML-2 [%] MT-1 [%] MT-2 [%] ST [%]

S5-3 83.06 50.54 84.95 60.59 66.19

S5-4 83.53 54.27 81.53 56.96 68.81

S5-5 86.04 52.01 81.31 53.20 68.22

S5-6 88.05 56.39 84.55 57.80 73.18

S5-7 87.74 56.10 85.23 58.77 73.35

S5-8 87.57 53.04 85.79 55.58 70.44

S6-1 96.36 92.75 96.59 91.05 94.63

S6-2 96.04 91.28 95.16 88.47 93.79

S6-3 96.37 92.54 95.67 89.93 94.58

S6-4 96.54 92.68 96.02 90.08 94.72

S6-5 95.81 90.98 95.19 88.30 93.39

S7-1 78.30 61.32 78.30 61.32 69.14

S7-2 94.50 84.08 92.55 79.42 89.63

S7-3 78.13 60.57 79.67 60.57 68.71

S7-4 80.68 61.63 82.19 63.26 71.36

S7-5 78.05 58.52 79.67 60.12 68.21

S7-6 80.93 64.52 80.93 64.52 72.21

S7-7 94.27 84.97 92.64 80.64 89.75

S7-8 94.23 83.75 91.78 78.16 89.33

S7-9 93.61 83.03 92.33 79.88 88.81

S7-10 94.34 82.96 93.13 81.34 89.09

S8-1 98.14 96.40 98.68 96.72 97.27

S8-2 97.98 96.16 98.25 95.83 97.05

S8-3 98.07 96.66 98.36 96.06 97.36

S8-4 97.83 96.01 98.48 96.30 96.85

S8-5 97.95 96.08 98.35 96.25 97.04

S9-1 95.83 87.07 94.23 78.48 92.71

S9-2 95.31 86.10 93.51 78.86 91.87

S9-3 95.28 87.16 93.99 80.27 92.09

S9-4 95.78 88.21 94.72 83.04 92.75

S9-5 95.50 87.32 94.28 80.11 92.39

S9-6 94.16 78.01 92.30 73.04 88.04

S9-7 95.29 85.57 93.91 79.71 91.70

S9-8 95.61 88.67 94.10 83.37 92.54
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Table 5. Cover factors for samples in the I series.

Algorithm for Cover Factor Calculation

Sample ML-1 [%] ML-2 [%] MT-1 [%] MT-2 [%] ST [%]

I1-1 98.84 98.60 98.91 98.65 98.73

I1-2 98.75 98.39 98.99 98.75 98.57

I1-3 98.77 98.46 98.94 98.62 98.62

I1-4 98.70 98.19 98.77 98.19 98.43

I1-5 98.76 98.43 98.90 98.68 98.60

I4-1 96.58 95.91 96.96 96.50 96.24

I4-2 97.95 97.50 98.17 97.92 97.72

I4-3 94.76 93.96 94.61 92.65 94.36

I4-4 98.53 97.94 98.98 98.46 98.22

I4-5 97.87 97.24 98.50 97.84 97.55

I2-1 98.23 96.63 98.14 95.41 97.51

I2-2 98.05 95.77 97.53 92.85 97.02

I2-3 98.19 96.08 98.19 95.32 97.08

I2-4 98.22 96.70 98.51 96.37 97.48

I2-5 97.99 95.96 98.20 95.16 97.11

I3-1 96.88 88.68 95.57 82.83 93.82

I3-2 97.19 89.14 96.09 83.18 94.53

I3-3 96.82 88.73 95.54 83.12 93.81

I3-4 97.06 92.56 96.44 87.34 95.52

I3-5 97.64 93.11 97.24 89.26 96.05

Table 3 features results for nine knitted samples in series F, labeled F1, F2, . . ., F9. Each
row in the table corresponds to a specific sample from knitted samples, identified as F1-1,
F1-2, . . ., F9-5, depending on how many photos of a knitted sample were obtained. The
columns represent different algorithms for cover factor calculation. In each field a cover
factor obtained for a sample using one of the five algorithms is noted. The value of a cover
factor is expressed as a percentage. For example, for sample F1-1, the cover factor values
obtained using the ML-1, ML-2, MT-1, MT-2, and ST algorithms are 86.30%, 83.13%, 86.63%,
82.04%, and 84.77%, respectively.

We can generalize that higher cover factors are preferable since they indicate lower
porosity (although this generalization will be discussed and analyzed later in the paper).

Tables 4 and 5 consist of cover factors for the knitted samples in the S and I series,
respectively. The structure of these tables is similar to Table 3, with rows representing
different samples and columns representing different algorithms.

Additional insights are provided by averaging the cover factors for all photos in each
of the samples. Table 6 presents the resulting cover factors obtained from all algorithms,
accompanied by descriptive statistical parameters:

• Arithmetic mean (AVG): the average cover factor value for each algorithm and sample.
• Standard deviation (STDEV): the measure of the dispersion or variability of the cover

factor values for each algorithm and sample.
• Relative standard deviation (REL STDEV): the standard deviation expressed as a

percentage of the arithmetic mean.
• Minimum (MIN): the lowest cover factor value observed for each algorithm across

all samples.
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• Maximum (MAX): the highest cover factor value observed for each algorithm across
all samples.

• Range (RANGE): the difference between the maximum and minimum values for
each algorithm.

Table 6. Descriptive statistics for cover factor values for all samples.

Sample ML-1
[%]

ML-2
[%]

MT-1
[%]

MT-2
[%] ST [%] AVG STDEV REL

STDEV MIN MAX RANGE

F1 85.63 82.99 86.02 82.42 84.34 84.28 1.60 1.89% 82.35 86.02 3.68

F2 94.77 92.31 94.65 89.59 93.68 93.00 2.16 2.32% 89.59 94.79 5.20

F3 89.43 88.14 89.62 87.44 88.83 88.69 0.94 1.06% 87.37 89.64 2.27

F4 98.16 96.18 98.08 94.20 97.31 96.79 1.66 1.72% 94.20 98.18 3.98

F5 97.34 93.79 96.79 90.74 95.80 94.89 2.69 2.84% 90.74 97.34 6.61

F6 98.22 97.12 98.14 95.98 97.67 97.43 0.98 1.00% 95.94 98.34 2.40

F7 97.85 95.43 97.78 94.04 96.73 96.37 1.65 1.71% 94.04 97.93 3.89

F8 98.36 97.41 98.20 95.78 97.90 97.53 1.09 1.12% 95.74 98.46 2.72

F9 98.08 95.02 97.79 92.42 96.99 96.06 2.38 2.49% 92.42 98.12 5.70

S1 98.18 95.94 98.05 94.06 97.22 96.69 1.73 1.79% 94.06 98.19 4.12

S2 93.36 85.21 92.80 84.02 89.02 88.88 4.27 4.81% 84.02 93.36 9.34

S3 96.44 92.39 96.21 90.95 94.43 94.08 2.40 2.55% 90.95 96.47 5.53

S4 95.76 83.75 94.22 78.90 90.92 88.71 7.19 8.11% 78.90 95.76 16.86

S5 86.37 54.61 84.35 58.15 70.76 70.85 14.63 20.69% 54.61 86.61 32.00

S6 96.22 92.05 95.73 89.56 94.22 93.56 2.77 2.96% 89.56 96.27 6.71

S7 86.71 72.54 86.32 70.92 79.62 79.22 7.53 9.85% 70.60 87.17 16.57

S8 97.99 96.26 98.42 96.23 97.12 97.20 1.01 1.03% 96.07 98.42 2.35

S9 95.35 86.01 93.88 79.61 91.76 89.32 6.51 7.32% 79.61 95.35 15.73

I1 98.76 98.41 98.90 98.58 98.59 98.65 0.20 0.20% 98.41 98.90 0.49

I4 97.14 96.51 97.44 96.67 96.82 96.92 0.47 0.49% 96.25 97.47 1.23

I2 98.14 96.23 98.11 95.02 97.24 96.95 1.35 1.40% 95.02 98.24 3.21

I3 97.12 90.44 96.18 85.14 94.75 92.73 4.95 5.36% 85.14 97.12 11.98

MIN 85.63 54.61 84.35 58.15 70.76

AVG 95.24 89.94 94.90 88.20 92.80

MAX 98.76 98.41 98.90 98.58 98.59

The table presents cover factor values (%) obtained by five algorithms (ML-1, ML-2,
MT-1, MT-2, and ST) for different samples within three fabric series (F, S, and I).

Detailed analysis of parameters including the average, standard deviation, vari-
ance, minimum, maximum and range of each sample per each method is presented in
Supplementary Table S1.

Based on the results displayed in Table 6, we observed that ML-1 generally has higher
cover factor values compared to ML-2, MT-1, MT-2, and ST, across most samples. There is
considerable variability in cover factor values within each fabric series and algorithm.

In the examination of fabric series, distinct trends emerge. In the football clothing
(F series), ML-1 consistently exhibits elevated cover factor values, surpassing other al-
gorithms. Notably, Sample F5 stands out with the highest range of cover factor values,
reaching 6.61%. The swimwear (S series) also showcases ML-1’s tendency towards higher
cover factor values, with Sample S5 demonstrating the most considerable variability, boast-
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ing a wide cover factor range of 32.00%. The differences are larger for samples S2, S4, S5,
S7, S9, and I3. It should be noted that for these samples we encountered difficulties in
determining cover factor. The fabric in sample S7 was dark. In samples S5 and S9, the
fabric was two-colored, dark blue and white, which further complicated the calculation
of porosity factor. Other challenges included the fact that the contrast algorithm greatly
altered the photo (sample S4), the fabric was relatively porous (sample S2), or the structure
of the fabric was irregular (sample I3), all of which made it very difficult to determine what
was knitted and what was not (i.e., holes in the mesh). A more reliable cover factor could
be calculated with the simple threshold algorithm, but with a higher threshold value than
T = 200.

In contrast, the casual wear (I series) reveals a nuanced picture. While ML-1, ML-2,
and ST exhibit comparable cover factor values, Sample I3 within this series displays a
noteworthy range of cover factor values, indicating substantial variability at 11.98%. These
fabric series analyses underscore the algorithmic nuances in capturing porosity, offering
valuable insights into the distinctive characteristics of each series.

In algorithmic comparison, ML-1 consistently exhibits the highest average cover factor
values, followed by ML-2, MT-1, MT-2, and ST. ML-2, MT-1, MT-2, and ST generally show
lower variability (lower STDEV and REL STDEV) compared to ML-1.

To sum up, ML-1 tends to yield higher cover factor values compared to other algo-
rithms. Variability in cover factor values suggests algorithmic sensitivity to the fabric
structure or characteristics. Further statistical tests will be conducted to assess significant
differences between algorithms. The observed differences may have implications for the
choice of algorithm depending on the specific requirements of the application.

In Figure 5, box-and-whisker plots have been made, representing obtained data for
five algorithms across all samples.
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3.2. Computational Models Based on Machine Learning for Cover Factor Prediction Based on
Parameters of Knitted Fabric

In this section, we present computational models based on machine learning devel-
oped for predicting porosity in knitted fabrics using the knitted fabric parameters mass
per unit area and thickness of knitted fabric. The regression model was implemented
using WEKA 3.9.6 [18] on a dataset with 127 instances of two attributes, mass per unit
and thickness of the fabric, taken from Table 2, and a class value for algorithm taken from
Tables 3–5.

A comprehensive comparative analysis of nine regression models created in Weka
was conducted. The developed models were: (1) random tree, (2) random forest, (3) lin-
ear regression, (4) multilayer perceptron, (5) support vector machine (SMOreg in Weka),
(6) k-nearest neighbor classifier (IbK in Weka), (7) K* (KStar in Weka), (8) additive regres-
sion, and (9) regression by discretization.

These models were employed with their default parameter as set in WEKA. Model
evaluation was conducted using 10-fold cross-validation, wherein the dataset was randomly
divided into 10 equal-sized subsamples. One subsample was utilized for model validation,
while the remaining nine were employed for training the model, following the principles
outlined in [19]. Each experiment was iterated 10 times, each iteration employing a distinct
random seed, resulting in a total of 100 results per model.

The results of the obtained correlation coefficients are presented in Table 7. Correlation
coefficients close to 1 indicate a strong linear relationship between the predicted and
actual values. The asterisk sign (*) in the superscript indicates the base model obtained
a statistically higher result than the model it is compared to. The base model in this
research is the random tree model. Similarly, the v sign in the superscript indicates the base
model obtained a statistically lower result than the model it is compared to. For example,
a correlation coefficient value of 0.95 obtained by the random tree model is statistically
significantly higher than the one obtained by the linear regression model at 0.51, with
significance α = 0.05.

Table 7. Correlation coefficient obtained by machine learning models created in Weka across all
samples. The superscript asterisk (*) serves as an indicator, denoting that the baseline model,
specifically the random tree model, as shown in column (1), achieved a significantly higher outcome
when compared to the model with the presence of an asterisk.

Trees Functions Lazy Meta

Algorithm (1) (2) (3) (4) (5) (6) (7) (8) (9)

ML-1 0.90 0.90 0.23 * 0.23 * 0.90 0.21 * 0.89 0.82 0.88

ML-2 0.94 0.94 0.52 * 0.82 * 0.94 0.53 * 0.93 0.87 * 0.91

MT-1 0.92 0.92 0.26 * 0.49 * 0.92 0.30 * 0.92 0.84 * 0.91

MT-2 0.95 0.94 0.55 * 0.82 * 0.95 0.55 * 0.94 0.85 * 0.92 *

ST 0.93 0.93 0.42 * 0.74 * 0.93 0.42 * 0.92 0.85 * 0.88 *

Linear regression and k-nearest neighbor classifier have comparatively lower corre-
lations, while random tree, random forest, support vector machine, and K* show strong
correlations. Although the latter four models might obtain results with similar accuracy
and can be used for porosity prediction, the random tree model is shown in Figure 6 due to
its simplicity and error analysis in Section 4.5.
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4. Discussion

In this research, five algorithms were developed for cover factor calculation: ST and
improvement algorithms MT-1, MT-2, ML-1, and ML-2. In this section, we delve into the
development and comparison of cover factor calculation algorithms. Notably, ML and
MT differ in threshold determination and subsequent pseudo-grayscale transformations.
In ML-1, the grayscale range is evenly divided into eight parts, employing empirically
chosen thresholds (T1 to T8) for creating a pseudo-grayscale image. Contrastingly, MT-1
utilizes the Otsu method for threshold calculation, optimizing the separation of porous
and non-porous regions. Both algorithms then undergo a pseudo-grayscale to binary
conversion, enhancing segmentation accuracy and accounting for image variations. This
refinement allows for a more precise differentiation between the background and the fabric
regions, leading to better identification and calculation of the cover factor.

An additional attempt to account for image variations was made with ML-2 and
MT-2 algorithms. Fabric images can exhibit variations in color, texture, and complexity.
By defining additional threshold ranges (1–6 as black and 7–8 as white), we account for such
variations and adapt the segmentation algorithm to better handle the specific characteristics
of their fabric images. These improvements, grounded in empirical observations, fine-tune
the segmentation process, enabling more precise porosity calculation than the ST algorithm.
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4.1. Assessing the Influence of Multiple and Adaptive Thresholding: Comparative Analysis of
ML-1 and MT-1 with ST

In this part of the study, the influence of the adaptive thresholding processing steps
on the performance of ML-1, MT-1, and ST algorithms is investigated across all samples.
The goal was to assess hypothesis H1 that algorithms ML-1 and MT-1 will obtain higher
cover factors than the basic algorithm with a fixed threshold ST. Visual comparison is
presented in Figure 5.

The statistical significance of the results was evaluated using the Wilcoxon signed-
rank test, a non-parametric test for paired samples [20]. Like other non-parametric tests,
the Wilcoxon signed-rank test does not make any assumptions about the distribution of
the differences, specifically the absence of a normal distribution assumption. This test
is typically used when analyzing pairs of measurements from the same subjects under
two different conditions, or when there exists a one-to-one relationship between the two
samples, with each value in one group corresponding to one value in the other group. The
Wilcoxon signed-rank test calculates the comparison between the positive and negative
ranks of the differences [21].

Null hypothesis of Wilcoxon signed-rank test claims there is no difference between the
variables ML-1 [%] and ST [%]. Results indicated that there is a significant large difference
between ST (median = 94.4, n = 127) and ML-1 (median = 96.4, n = 127), Z = 9.8, p < 0.001,
r = 0.9, with significance level 0.95. The null hypothesis is thus rejected.

Results of the two-tailed Wilcoxon signed-rank test also indicated that there is a
significant medium difference between MT-1 (median = 96, n = 127) and ST (median = 94.4,
n = 127), Z = 9.8, p < 0.001, r = 0.9, with significance level 0.95. Null hypothesis that there is
no difference between the variables MT-1 [%] and ST [%] is thus rejected.

Additionally, results of the Wilcoxon signed-rank test indicated that there is a signifi-
cant medium difference between ML-1 (median = 96.4, n = 127) and MT-1 (median = 96,
n = 127), Z = −4.8, p < 0.001, r = −0.4.

These findings suggest that utilizing the adaptive thresholding processing steps was
effective in improving the performance of the algorithms for calculating porosity, thus
making hypothesis H1 valid. Overall, the results underscore the importance of the adap-
tive thresholding processing steps in enhancing the accuracy and reliability of porosity
calculations. The superiority of both ML-1 and MT-1 over ST highlights the potential of
advanced algorithms and the validity of incorporating adaptive thresholding processing
steps in porosity analysis.

4.2. Assessing the Impact of a Higher Threshold in ML-2 and MT-2 on Porosity Calculation:
Comparison of ML-1 vs. ML-2 and MT-1 vs. MT-2 Algorithms

Accurately determining the cover factor of digital knitted fabric images presents its
own set of challenges. One significant hurdle is the presence of stray yarns or fibers,
posing difficulties in their distinction and introducing noise that can distort image analysis.
These irregularities have the potential to impact cover factor precision, as the algorithm
might misinterpret these stray elements. Additionally, variations in lighting conditions
can cast shadows or shading, disrupting the perceived darkness or lightness of certain
areas and significantly affecting the thresholding process. Recognizing these challenges, we
pinpointed the selection of an appropriate threshold as a pivotal step in overcoming these
issues. To tackle this, a larger threshold was integrated into the ML-1 and MT-1 algorithms,
enhancing the accuracy of cover factor calculations.

As stated in Section 2, algorithm versions indicated with “−2” were created to further
refine the porosity calculation by transforming pixels with pseudo-grayscale values from 1
to 6 and categorizing them as black, while those with a value of 7 or 8 were set to white. By
categorizing pixels with specific pseudo-grayscale values as black or white, we aimed to
better differentiate between the regions representing porous and non-porous areas in the
image. This simplification of the pixel values could help create a clearer boundary between
porosity and non-porosity, thereby improving the accuracy of the porosity calculation by
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not including stray yarns that are present in the porosity holes due to their structure. In
addressing these considerations and implementing necessary measures, our goal was to
minimize the margin of error in determining the cover factor from digital yarn images.

In this section, we present the results of the statistical analysis of cover factor calcula-
tion algorithms: ML-1 vs. ML-2, and MT-1 vs. MT-2. The aim was to assess the validity
of hypothesis H2. We test whether ML-2 and MT-2 will recognize the underlying knitted
fabric structure and will obtain better results than their counterparts ML-1 and MT-1. Visual
comparison is presented in Figure 5.

To determine whether there were significant differences between the paired samples,
the non-parametric Wilcoxon signed-rank test was employed [20,22]. The null hypothesis
assumed no difference between the first and second version of each ML or MT model, while
the alternative hypothesis suggested a significant difference between them.

Results of the two-tailed Wilcoxon signed-rank test indicated that there is a significant
large difference between ML-1 (median = 96.4, n = 127) and ML-2 (median = 92.4, n = 127),
Z = −9.8, p < 0.001, r = −0.9 at α = 0.05. Results also indicate that there is a significant
large difference between MT-1 (median = 96, n = 127) and MT-2 (median = 89.5, n = 127),
Z = −9.8, p < 0.001, r = −0.9, at α = 0.05.

The comparison between ML2 and MT2 and the results of the Wilcoxon signed-rank
test indicated that there is a significant large difference between ML-2 (median = 92.4,
n = 127) and MT-2 (median = 89.5, n = 127), Z = −7.3, p < 0.001, r = −0.7, with significance
level 0.95.

Additionally, since the ML-1 [%] group had higher values than the ML-2 [%] group, we
performed a one-tailed Wilcoxon signed rank. The null hypothesis that the variable ML-1
[%] has a smaller or equal value compared to the variable ML-2 [%] was tested using a
one-tailed t-test for paired samples. The result was statistically significant, W = 0, p ≤ 0.001.
The null hypothesis was rejected.

Lastly, the MT-1 [%] group had higher values than the MT-2 [%] group. The null
hypothesis that the variable MT-1 [%] has a smaller or equal value compared to the variable
MT-2 [%] was tested using a one-tailed t-test for paired samples. The result was statistically
significant, at α = 0.05, W = 0, p ≤ 0.001. The null hypothesis is thus rejected, and hypothesis
H2 has been confirmed.

When comparing the performance of two algorithms for porosity prediction, it is
generally better to have a smaller porosity value, i.e., higher cover factor. A smaller
porosity value indicates that there is less empty space and more solid fabric, which is often
desired in various applications. However, despite the conventional preference for smaller
porosity values, our research introduces a nuanced perspective. We believe that ML-2 and
MT-2, despite yielding lower cover factor values (indicative of higher porosity) than ML-1
and MT-1, are anticipated to perform more effectively in capturing the true essence of
fabric structure and to provide a more accurate representation of the actual fabric porosity,
e.g., avoiding capturing stray yarns.

4.3. Analysis of Algorithmic Sensitivity to Cover Factor Calculations for Different Knitted
Fabric Types

Fabrics designed for different purposes (football clothing—F, swimwear—S, and
casual wear—I) inherently possess distinct structural features. These differences manifest
in terms of cover factor and porosity, and algorithms capture these variations differently.
Understanding the variations in cover factor across different fabric series is crucial for
application-specific design, moisture management, and performance optimization. For
example, certain sports demand specific fabric properties: swimwear benefits from quick-
drying fabrics with high porosity while football clothing may require a balance between
breathability and stretchability.

The primary objective of this study is to determine how sensitive each of the developed
algorithms is to the specific fabric structure, by systematically comparing the cover factor
values among distinct fabric series (Figure 7). By doing so, we will assess H3 that assumes
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MT-1 algorithm, that uses Otzu adaptive thresholding method, will be the most sensitive
algorithm in recognizing different fabric structures.
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Since F, S, and I are three distinct knitted fabrics series, the cover factor value should
also be statistically significantly different, and a sufficiently sensitive algorithm should be
able to distinguish the groups. Due to the distinct distribution for ML-2 and MT-2 observed
in Figure 7, the hypothesis will be tested on the ML-1, MT-1, and ST algorithms.

To confirm this assumption, a non-parametric Kruskal–Wallis test was employed to
assess the statistical difference of three fabric groups, F, S, and I, based on the cover factor
results obtained by ML-1, MT-1, and ST [20,23]. Null hypothesis of the Kruskal–Wallis test
is there is no difference between the three categories of the independent variable in terms
of the dependent variable. The alternative hypothesis is there is a difference between the
three categories of the independent variable in terms of the dependent variable.

For ML-1, the Kruskal–Wallis H test indicated that there is a significant difference in
the dependent variable between the different groups, χ2(2) = 29.82, p < 0.001, with a mean
rank score of 73.31 for F, 47.27 for S, 94.92 for I. The post-hoc Dunn’s test using a Bonferroni
corrected at α = 0.017 indicated that the mean ranks of the following pairs are significantly
different: F-S and S-I.

For MT-1, the Kruskal–Wallis H test indicated that there is a significant difference
in the dependent variable between the different groups, χ2(2) = 30.16, p < 0.001, with a
mean rank score of 71.82 for F, 47.71 for S, and 96.9 for I. The post-hoc Dunn’s test using
a Bonferroni corrected α = 0.017 indicated that the mean ranks of the following pairs are
significantly different: F-S, F-I and S-I.
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For ST, the Kruskal–Wallis H test indicated that there is a significant difference in
the dependent variable between the different groups, χ2(2) = 37.8, p < 0.001, with a mean
rank score of 76.29 for F, 44.6 for S, 96.47 for I. The post-hoc Dunn’s test using a Bonferroni
corrected α = 0.017 indicated that the mean ranks of the following pairs are significantly
different: F-S and S-I.

The results of this study indicate that only the MT-1 algorithm can distinct the nuanced
differences among knitted samples by recognizing series F, S, and I as statistically signifi-
cantly different series, while ML-1 and ST recognize F-S and S-I as statistically significantly
different series, therefore confirming H3.

Additional conclusions of this study are: (i) different algorithms interpret or quantify
porosity in unique ways since they emphasize different aspects of the fabric structure,
leading to variations in porosity calculations, (ii) some algorithms might be more sensitive
to certain types of fabric structures or variations in porosity, and (iii) the yarn structure has
an influence on the porosity levels observed in the fabric.

4.4. Comparison of Fixed Threshold vs. Adaptive Threshold Methods and Selection of Hyperparameter T

The choice of the threshold value T can significantly impact the performance of the
algorithms. Using fixed threshold value for image segmentation has its benefits and
drawbacks. One benefit of using a fixed threshold value, such as T = 200 in ST algorithm, is
the simplicity it brings to the implementation. By choosing a specific threshold, the need
for complex adaptive thresholding techniques is eliminated. This simplification makes the
algorithms easier to understand and implement, reducing the complexity of the overall
process.

Another advantage is the stability and reproducibility it offers in the results. When the
same fixed threshold value is used across different datasets or experiments, the algorithms
can produce consistent outcomes. This consistency facilitates easier comparison and
analysis of the results, as researchers can rely on the stability of the threshold value.

However, there are also drawbacks to using fixed threshold values. One major draw-
back is the lack of adaptability. Fixed thresholds may not be optimal for all images or
datasets. Different images can possess varying characteristics, such as differences in light-
ing, contrast, or noise levels. These variations can significantly affect the effectiveness
of a fixed threshold. Consequently, a single threshold value may not be suitable for all
situations, potentially leading to suboptimal segmentation results.

Furthermore, using a fixed threshold can make the algorithm sensitive to image
variations. If the image quality changes or the characteristics of the objects being segmented
vary, the chosen fixed threshold value may no longer be appropriate. This sensitivity
to image variations can result in either over-segmentation (where objects are split into
smaller regions) or under-segmentation (where objects are merged together), ultimately
compromising the accuracy of the algorithm’s segmentation results.

We have chosen the value of T = 200 based on empirical observations and experimen-
tation. In Table 8, the results of the analysis of the samples using the simple threshold
algorithm with threshold values other than 200 are listed for samples S4, S5, S7, and S9.
In the case of sample S4, the contrast was not corrected and the threshold was set to T = 140.
As for sample S5, the contrast was corrected but the threshold was set to T = 240. In the
case of sample S7, the contrast was corrected and the threshold was set to T = 245. It is
worth noting that photos 1 to 5 were taken before contrast enhancement, while photos 6 to
10 were taken after contrast enhancement, resulting in significant differences between these
two subgroups. For the photos in sample S9, the contrast was corrected and the threshold
was set to T = 240. The algorithm’s performance with different threshold values for specific
samples was subsequently investigated, and the results of the obtained cover factors using
ST algorithm are presented in Table 8.
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Table 8. Revised analysis for samples S4, S5, S7, and S9 for simple threshold algorithm with value
threshold values different than T = 200.

Sample ST [%] Sample ST [%] Sample ST [%] Sample ST [%]

S4-1 99.93 S5-1 95.39 S7-1 89.23 S9-1 97.92

S4-2 99.89 S5-2 96.16 S7-2 89.49 S9-2 97.69

S4-3 99.82 S5-3 93.96 S7-3 92.12 S9-3 97.67

S4-4 99.86 S5-4 93.69 S7-4 89.58 S9-4 97.78

S4-5 99.84 S5-5 95.44 S7-5 90.85 S9-5 97.70

S4-6 99.94 S5-6 96.05 S7-6 97.98 S9-6 97.40

S4-7 99.95 S5-7 95.90 S7-7 97.84 S9-7 97.63

S4-8 99.98 S5-8 96.19 S7-8 97.75 S9-8 97.61

S7-9 97.91

S7-10 97.94

In the case of sample S4, a lower threshold value of T = 140 was experimented with,
due to the uncorrected contrast in the photographs of sample S4. By reducing the threshold,
an attempt was made to compensate for the lower contrast and potentially improve the
segmentation results. For sample S5, although the contrast was corrected, the threshold
was increased to T = 240. The higher threshold was chosen based on the specific image
characteristics of sample S5, which required a higher threshold to accurately distinguish
between foreground and background regions. Similarly, for sample S7, the contrast was
corrected, and the threshold was set to T = 245. The threshold value was chosen based
on the image characteristics of sample S7, requiring a higher threshold due to the specific
properties of the objects in the image. In contrast, for sample S9, with corrected contrast,
the threshold value of T = 240 was reverted to. Threshold T = 240 was found suitable for
achieving satisfactory segmentation results for this sample.

After evaluating the algorithm’s performance on a representative set of images, it was
determined that T = 200 yielded satisfactory results in terms of segmentation accuracy,
computational efficiency, and ease of implementation.

However, we recognized the potential limitations of a fixed threshold and addressed
that by developing algorithms that employ an adaptive thresholding technique (the Otsu
method) to further expand on the ST algorithm. In this context, the simple threshold
algorithm with T = 200 serves as a baseline for comparative purposes. By comparing
the performance of the adaptive thresholding version (using Otsu’s method) to the fixed
threshold version, the effectiveness of the adaptive approach can be assessed and it can be
determined whether it provides superior segmentation results.

4.5. Error Analysis and Comparative Performance Evaluation of Machine Learning Models

This section presents an in-depth error analysis of the computational models presented
in Section 3.2. Since the primary focus is on understanding the correlation between various
models and the actual porosity values of the knitted fabrics, the following metrics have
been observed: the correlation coefficient across all models in Table 7, mean absolute error
(MAE), root mean square error (RMSE), relative absolute error (RAE), and root relative
squared error (RRSE) in Table 9.

Error analysis for algorithm MT-1 is presented in Table 9 because it has been proven
to be the most sensitive in Section 4.3. Error analysis, however, has been performed on all
5 algorithms and they all support the conclusion in this section.
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Table 9. Error analysis for algorithm MT-1. The superscript v sign (v) serves as an indicator, denoting
that the baseline model, specifically the random tree model, as shown in column (1), achieved a
significantly lower outcome when compared to the model with the presence of a v sign.

Trees Functions Lazy Meta

Factors (1) (2) (3) (4) (5) (6) (7) (8) (9)

Mean absolute error 1.20 1.21 3.68 v 3.67 v 1.20 3.31 v 1.37 v 1.99 v 1.34 v

Root mean square error 2.05 2.06 4.79 v 4.74 v 2.05 4.77 v 2.15 2.67 v 2.15

Relative absolute error 31.87 32.38 97.57 v 97.46 v 31.87 86.20 v 36.63 v 53.38 v 35.88 v

Root relative squared error 42.58 42.85 99.46 v 98.30 v 42.58 97.47 v 44.88 55.52 v 45.05

To determine the significance of differences between the predictive capabilities of the
algorithms, a paired t-test was employed in Weka, with significance α = 0.05. The random
tree model served as a base model for statistical comparison shown in Table 9. The asterisk
sign (*) in the superscript indicates the base model obtains statistically higher result than
the model it is compared to. Similarly, the (v) sign in the superscript indicates the base
model obtains statistically lower result than the model it is compared to.

Mean absolute error (MAE) represents the average absolute difference between pre-
dicted and actual values. Lower MAE values indicate better model performance. Random
tree, random forest, and support vector machine have low MAE, suggesting better accuracy.

Root mean square error (RMSE) provides a measure of the average magnitude of
errors. Lower values are desirable. Random tree, random forest, support vector machine,
and K* show lower RMSE, indicating better predictive performance.

Similar to MAE and RMSE, lower values are better for both relative metrics. Random
tree, random forest, k-nearest neighbor classifier, and K* exhibit lower relative errors.

In conclusion, random tree, random forest, and support vector machine models exhibit
strong performance across multiple metrics with non-significantly different results, hence
confirming hypothesis H4.

5. Conclusions

In this research we introduced and explored five algorithms—ST, MT-1, MT-2, ML-1,
and ML-2—to study cover factor and porosity in knitted fabrics, with focus on knitted
fabrics for sportswear, swimwear, and casual wear. We have also created computational
models based on machine learning algorithms for cover factor prediction based on knitted
fabric structural parameters.

The common steps for all the developed algorithms include grayscale conversion,
contrast enhancement, thresholding, pixel counting, and cover factor calculation. The key
difference between them is threshold selection. The single threshold algorithm (ST) relies
on a fixed threshold, offering simplicity in its approach. In contrast, the multiple linear
threshold algorithms (ML-1 and ML-2) and multiple threshold algorithms with the Otzu
method (MT-1 and MT-2) introduce additional threshold ranges to account for variations
in color, texture, and complexity in the pseudo-grayscale image conversion step. In ML
algorithms, the grayscale range is divided linearly to perform pseudo-grayscale transfor-
mations with empirically chosen thresholds, while in the MT algorithms the Otsu method
is used for threshold calculation, optimizing porous and non-porous region separation.

In algorithmic comparison, ML-1 consistently exhibits the highest average cover factor
values. Comparing fixed (ST) and adaptive threshold (ML and MT) algorithms highlighted
the advantages of the simplicity and stability of a fixed threshold. Yet, exploring alternative
adaptive algorithms like Otsu’s method suggests room for further refinement, acknowl-
edging the limitations of fixed thresholds in adapting to diverse image characteristics. Our
investigation into the impact of adaptive thresholding (ML-1 and MT-1) validated our
hypothesis (H1) that these algorithms outperform the fixed threshold algorithm (ST). This
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emphasizes the pivotal role of adaptive steps in beefing up the accuracy and reliability of
porosity calculations.

Tackling challenges related to stray yarns and lighting variations, the use of a higher
threshold in ML-2 and MT-2 demonstrated superior recognition of fabric structure, support-
ing H2. Despite these algorithms yielding lower cover factors, they proved more effective in
capturing the true essence of fabric porosity by minimizing errors linked to stray elements.

Our sensitivity analysis across different fabric types (F, S, and I) affirmed H3, with
MT-1 showing sensitivity and recognizing distinct fabric series as statistically significant.
Sensitivity to fabric variations makes MT-1 a valuable tool for considering specific design
aspects in textile manufacturing.

Lastly, computational regression models based on machine learning have been de-
veloped that are able to predict cover factor based on knitted fabric parameters with high
accuracy. Random tree, random forest, and SMOreg models exhibit strong performance
across multiple statistical metrics.
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per each method.
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