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Abstract: Multiplication is a fundamental arithmetic operation in electronic processing units such
as microprocessors and digital signal processors as it plays an important role in various computa-
tional tasks and applications. There exist many designs of synchronous multipliers in the literature.
However, in the domain of Input–Output Mode (IOM) asynchronous design, there is relatively less
published research on multipliers. Some existing works have considered quasi-delay-insensitive (QDI)
asynchronous implementations of multipliers. However, the QDI asynchronous design paradigm, in
general, is not area- and speed-efficient. This article presents an efficient alternative implementation
of IOM asynchronous multipliers based on the concept of monotonic Boolean networks. The array
multiplier architecture has been considered for demonstrating the usefulness of our proposition.
The building blocks of the multiplier, such as the partial product generator, half adder, and full
adder, were implemented monotonically. The popular dual-rail encoding scheme was considered
for encoding the multiplier inputs and outputs, and four-phase return-to-zero handshaking (RZH)
and return-to-one handshaking (ROH) were separately considered for communication. Compared to
the best of the existing QDI asynchronous array multipliers, the proposed monotonic asynchronous
array multiplier achieves the following reductions in design metrics: (i) a 40.1% (44.3%) reduction
in cycle time (which is the asynchronous equivalent of synchronous clock timing), a 37.7% (37.7%)
reduction in area, and a 4% (4.5%) reduction in power for 4 × 4 multiplication corresponding to RZH
(ROH), and (ii) a 58.1% (60.2%) reduction in cycle time, a 45.2% (45.2%) reduction in area, and a 10.3%
(11%) reduction in power for 8 × 8 multiplication corresponding to RZH (ROH). The multipliers
were implemented using a 28 nm CMOS process technology.

Keywords: digital circuits; asynchronous design; arithmetic circuits; high-speed; low-power; CMOS

1. Introduction

Computer arithmetic is ubiquitous in general-purpose and application-specific digital
processing, and arithmetic circuits such as adders and multipliers etc. are predominantly
present in the data path of a processing unit. Moreover, arithmetic operations tend to be
responsible for most of the power consumption. For example, about 70% of the power
consumed by a graphics processing unit is attributed to arithmetic operations [1], and
about 80% of the power consumed by a fast Fourier transform processor is attributed
to adders and multipliers [2]. Multiplication is a fundamental arithmetic operation in
electronic processing units such as microprocessors and digital signal processors as it plays
a crucial role in various computational tasks and applications. For example, digital signal
processing algorithms, used in image and audio processing applications, frequently involve
multiplication for tasks such as filtering, Fourier transforms, convolution, and modulation.
Conventionally, multiplication is realized in a synchronous design style, and there are many
synchronous multipliers reported in the literature. However, the Input–Output Mode (IOM)
asynchronous design style is an appealing alternative to the synchronous design style,
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since IOM asynchronous circuits possess inherent modularity and resilience due to their
insensitivity to delays [3,4]. Moreover, unlike synchronous circuits, IOM asynchronous
circuits can adapt to variations in process, voltage, and temperature [5], exhibit reduced
vulnerability to electromagnetic interference [6], offer enhanced security against attacks
when compared to synchronous circuits [7], and self-checking [8].

In the domain of IOM asynchronous design, there is relatively less research work
on multipliers. This may be because IOM asynchronous design is unorthodox and very
different from conventional synchronous design [9]. Among the existing works, [10,11] pre-
sented some full-custom (transistor-level) designs based on the concept of null convention
logic [12] while refs. [13–15] presented some semi-custom (gate-level) designs. Compared
to full-custom designs, which require extensive manual characterization, semi-custom
designs are preferable as they can use the available gates from a standard cell library, which
are pre-characterized. However, the Muller C-element [16], which is widely used in an IOM
asynchronous design, is not usually available in a commercial or open-source standard
digital cell library, so that should be separately implemented and incorporated into an IOM
asynchronous design. Compared to full-custom designs of the C-element [17,18], a semi-
custom C-element design is rather convenient to implement by incorporating feedback into
an AO222 complex gate, as shown in [19]. For this work, we considered the same static
CMOS complex gate-based C-element design given in [19].

IOM asynchronous design, in general, is classified into two types viz. quasi-delay-
insensitive (QDI) and non-QDI, as depicted in Figure 1. The QDI design style is typically
more robust than the non-QDI design style, as it offers delay insensitivity internally and
externally to a circuit and involves the full completion of internal processing before pro-
ducing all the primary outputs, but is inferior in terms of the design metrics. The non-QDI
design style may offer delay insensitivity only externally to a circuit and so it does not
require the full completion of internal processing to produce all the primary outputs. This
characteristic enables it to achieve significant reductions in design metrics compared to the
QDI design style. Nevertheless, both these design styles generally encode the inputs and
outputs and adopt a four-phase handshake protocol for communication in each circuit stage.
The next section provides information about data encoding and four-phase handshaking.
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As seen from Figure 1, there are three categories under the QDI design style, namely
strong-indication [20,21], weak-indication [20,22], and (safe) early-output/early-output
QDI [23]. Strong indication implies that a circuit only after receiving all the primary
inputs would process them to produce all the primary outputs. Weak indication implies
that a circuit, after receiving some primary inputs, can process them and produce some
primary outputs. However, only after receiving all the primary inputs would a weak-
indication circuit complete the processing to produce the last primary output. Early-
output QDI implies that a circuit, after receiving some primary inputs, can process them
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and produce all the primary outputs—however, this scenario generally occurs for the
application of the spacer and not for data. Information about the data and spacer shall
also be provided in the next section. The processing of the spacer is sped up in an early-
output circuit, unlike strong-indication and (some) weak-indication circuits. In general,
the QDI design style, encompassing strong-indication, weak-indication, and early-output,
mandates the completion of internal processing before producing all the primary outputs.
This requirement tends to result in exacerbated design metrics for the QDI design style.
On the other hand, the non-QDI design style comprises two categories viz. relative-timed
circuits [24] and monotonous/monotonic circuits [25,26], which are relaxed compared to
the QDI design style.

Relative-timed circuits incorporate sophisticated timing assumptions to sequence
the arrival of inputs and process them to produce the outputs. Monotonic/monotonous
circuits are also early-output circuits, as they can produce all the primary outputs after
receiving just a subset of the primary inputs (which usually occurs for the application of
the spacer), but they are distinguished from early-output QDI circuits in that the internal
processing is not required to be completed to produce all the primary outputs (particularly
for the processing of the spacer). Nevertheless, monotonic circuits can guarantee delay
insensitivity externally to the circuit, which prevents the collision of two data inputs. This
becomes possible by including the isochronic fork assumption [27], which represents the
weakest compromise to delay insensitivity. An isochronic fork refers to an electrical node
from which two or more wires branch out and signal transitions are assumed to occur
concurrently on all the wires branching out from an isochronic node. Like QDI circuits,
monotonic circuits assume isochronic forks for all the primary inputs, and may additionally
assume isochronic forks for the intermediate outputs. Monotonic circuits [25] may exhibit
monotonically increasing behavior, i.e., rising signal transitions (binary 0 to 1) on primary
inputs followed by rising signal transitions on intermediate and primary outputs, or
monotonically decreasing behavior, i.e., falling signal transitions (binary 1 to 0) on primary
inputs followed by falling signal transitions on intermediate and primary outputs, or
monotonically increasing and decreasing behaviors. In this work, the monotonic circuits
that will be presented exhibit both monotonically increasing and decreasing behaviors.

In this article, we present novel designs of monotonic asynchronous building blocks
that are used to realize high-speed, low-power, and lesser size IOM monotonic asyn-
chronous multipliers compared to the existing QDI asynchronous multipliers. Specifically,
we consider the array multiplier architecture for demonstration. The array multiplier has a
regular structure and is suitable for performing small multiplications such as 4 × 4 and
8 × 8. Notably, small multiplications in the order of 8 × 8 are encountered in applications
such as 8-bit digital image processing [28]. Moreover, since asynchronous array multipliers
corresponding to the QDI design style are available in the literature, we, therefore, intend
to provide a comparison between the existing QDI asynchronous array multipliers and the
proposed monotonic asynchronous array multipliers. In the rest of the article, Section 2
discusses some preliminaries of IOM asynchronous design, including encoding and hand-
shaking. Section 3 describes the array multiplier architecture and presents the proposed
monotonic asynchronous building blocks that can be used to realize the array multiplier.
Section 4 gives the design metrics of various IOM asynchronous multipliers including the
proposed designs, which were implemented using a 28 nm CMOS technology. Finally,
Section 5 draws some conclusions from this research.

2. IOM Asynchronous Design Fundamentals

Figure 2 portrays an IOM asynchronous circuit stage positioned between input-side
and output-side registers. The inputs are sourced from the external environment and
initially stored in the input-side registers before being passed to the asynchronous circuit
for processing. After processing, the asynchronous circuit generates outputs, which are
then directed to the output-side registers for storage and any potential use in subsequent
processing stages. The input-side registers can function as output-side registers when
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they should receive inputs from a previous circuit stage, and the output-side registers
can serve as input-side registers when their outputs are utilized as inputs by the next
circuit stage. The inputs and outputs of an IOM asynchronous circuit are encoded using
a delay-insensitive 1-of-n or m-of-n code [29], following the handshake scheme used. In
this work, we consider the dual-rail or 1-of−2 code that is popular and widely used for
IOM asynchronous circuit designs. Since there is no common clock driving the input-side
and output-side registers of an IOM asynchronous circuit stage, communication between
them is established by a process called ‘handshaking’, which involves two handshake
signals, viz. the acknowledgment input (AIP) signal and the acknowledgment output
(AOP) signal, which are Boolean complements of each other. There are two four-phase
handshake protocols available, namely return-to-zero handshaking (RZH) [30] and the
return-to-one handshaking (ROH) [31].
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Figure 2. Schematic of an IOM asynchronous circuit stage showing the asynchronous circuit sand-
wiched between the input-side and output-side registers. Example completion detectors correspond-
ing to return-to-zero handshaking (RZH) and return-to-one handshaking (ROH) are shown within the
dotted blue and brown boxes, respectively. The circles with the marking ‘C’ represent C-elements. The
critical data path traversing an input side register and the IOM asynchronous circuit is highlighted by
the red dashed line. The critical data path may not be the same for the processing of data and spacer,
and this depends upon the type of the IOM asynchronous circuit.

We shall now describe how the inputs and outputs of an IOM asynchronous circuit are
encoded, followed by an explanation of the handshaking process. According to dual-rail
encoding, and based on RZH, an input P is encoded as (P1, P0) whereby P = 1 is represented
by P1 = 1 and P0 = 0, and P = 0 is presented by P1 = 0 and P0 = 1. These two assignments
represent the ‘data’ in RZH. The assignment P1 = P0 = 0 is called the ‘spacer’ or ‘null’ that is
inserted between two successive data. The assignment P1 = P0 = 1 is forbidden with respect
to RZH since the coding scheme should remain unordered [32]. According to dual-rail
encoding, and based on ROH, an input P is encoded as, say, (P1, P0) whereby P = 1 is
represented by P1 = 0 and P0 = 1, and P = 0 is represented by P1 = 1 and P0 = 0. These
two assignments represent the ‘data’ in ROH. The assignment P1 = P0 = 1 is called the
‘spacer’ or ‘null’ that is inserted between two successive data. The assignment P1 = P0 = 0
is forbidden with respect to ROH since the coding scheme should remain unordered.

In Figure 2, the input-side and output-side registers are realized using two-input
Muller C-elements due to their inherent memory capability. The C-element is a fundamental
component in IOM asynchronous circuits. Each two-input C-element, representing a
register on the input side, has one input as AIP and the other as an encoded data input rail.
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AIP is the Boolean complement of AOP that is output by a completion detector. Examples
of completion detectors corresponding to RZH and ROH are shown in Figure 2. Assuming
that (A1, A0) and (B1, B0) represent dual-rail encoded inputs, the completion detector
corresponding to RZH would use a series of two-input OR gates to individually combine
the double rails of each encoded input, and the outputs of those two-input OR gates are
combined using a C-element or a tree of C-elements (if there are more than two outputs).
On the other hand, the completion detector corresponding to ROH would use a series of
two-input AND gates to individually combine the double rails of each encoded input, and
the outputs of those two-input AND gates are combined using a C-element or a tree of
C-elements (if there are more than two outputs).

We shall now describe how four-phase handshaking is performed between the input-
side and output-side registers to process data and spacer alternately according to RZH
and ROH.

Concerning RZH, in the first phase, the dual-rail data bus assumes the spacer and sets
AIP to 1, while keeping AOP at 0. When the input-side registers transmit data (that has
been supplied from the environment), a rising signal transition (from binary 0 to 1) occurs
on one of the rails of the entire dual-rail data bus. In the second phase, the output-side
registers receive the processed data and set AOP to 1 through the completion detector.
In the third phase, the input-side registers wait for AIP to return to 0, at which point the
dual-rail data bus reverts to the spacer state (since the spacer has been supplied from the
environment to the input-side registers). In the fourth and final phase, after a positive
and unbounded time interval, the output-side registers switch AOP back to 0 through the
completion detector, and eventually, AIP returns to 1. This marks the completion of one
data transaction, and the asynchronous circuit stage becomes ready to initiate the next data
transaction. Inputs applied to an IOM asynchronous circuit following the RZH protocol
follow a pattern of data, spacer, data, spacer, and so on.

Concerning ROH, in the first phase, with AIP set to 1, the dual-rail data bus assumes
the spacer (that has been supplied from the environment). Once the input-side registers
transmit the spacer, rising signal transitions take place on all the rails of the dual-rail data
bus. In the second phase, the output-stage registers receive the transmitted spacer and set
AOP to 1 through the completion detector. In the third phase, the input-side registers wait
for AIP to become 0, upon which it sends the data (supplied from the environment) through
the double-rail data bus. In the fourth phase, after a finite and positively unbounded period
elapses, the output-side registers change AOP to 0 through the completion detector, and
AIP returns to 1. This marks the completion of one data transaction, thus allowing the IOM
asynchronous circuit to proceed with the next data transaction. Inputs applied to an IOM
asynchronous circuit adhering to the ROH protocol follow a pattern of spacer, data, spacer,
data, and so on.

Based on the previous discussions, it becomes evident that both data and spacer
processing entail specific time requirements in an IOM asynchronous circuit. The duration
required to process data through the critical data path, indicated by the red dashed line in
Figure 2, is referred to as the forward latency. The time needed to process the spacer via the
same critical data path or another critical data path is known as reverse latency. Notably,
reverse latency may be equal to or less than the forward latency in an IOM asynchronous
circuit, and this depends on the type of circuit [33]. In general, strong-indication circuits and
conventional weak-indication circuits would have the same forward and reverse latencies.
On the other hand, distributed and biased weak-indication circuits, early-output (QDI)
circuits, and relative-timed and monotonic circuits tend to have lesser reverse latency than
forward latency. The cycle time is the sum of the forward latency and reverse latency,
and the cycle time of an IOM asynchronous circuit is synonymous with the clock period
of a synchronous circuit since the cycle time defines the rate at which new data can be
introduced into an IOM asynchronous circuit.
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3. Monotonic Asynchronous Array Multiplier

Figure 3a and b, respectively, portray the logic schematic of a 4 × 4 and an 8 × 8 array
multiplier. The array multiplier implements a shift-and-add multiplication method and
internally utilizes carry-save addition followed by a final-stage ripple-carry addition. The
carry-save adder (CSA) and ripple-carry adder (RCA) portions of the array multipliers
are highlighted with dotted violet lines in Figure 3a,b. In Figure 3a, J3 to J0 and K3 to K0
represent the multiplier inputs, with J3 and K3 being most significant and J0 and K0 being
least significant. In Figure 3b, J7 to J0 and K7 to K0 represent the multiplier inputs with J7
and K7 being the most significant and J0 and K0 being the least significant. In Figure 3a,b,
P7 to P0 and P15 to P0 represent the product bits, respectively, with P7 and P15 being
the most significant and P0 being the least significant. In Figure 3a,b, ‘HA’ refers to the
half adder, and ‘FA’ refers to the full adder. A binary half adder adds two input bits and
produces the sum bit and any carry overflow. A binary full adder adds two input bits
along with any carry input from a preceding stage and produces the sum bit and any carry
overflow. Importantly, in Figure 3a,b, the multiplier inputs J and K are dual-rail encoded,
and the multiplier output, i.e., the product P, is also dual-rail encoded. Dual-rail encoding
is done according to RZH and ROH separately.

In Figure 3, ‘JxKy’ represents a partial product where x and y vary from 0 up to 3
in Figure 3a, and from 0 up to 7 in Figure 3b. An N×N array multiplier comprises N2

partial products, each of which can be synthesized using a partial product generator, N half
adders, and (N2–2N) full adders. In [13], strongly indicating partial product generators
were used to realize the partial products and the half adders were realized as full adders
with their carry input tied to 0 with the full adders used being strongly or weakly indicating.
In [14], early-output partial product generators were used to realize the partial products
and strong- or weak-indication full adders were used with the half adders realized as full
adders with their carry input tied to 0. In [15], early-output partial product generators,
weak-indication half adders, and early-output QDI full adders were used. Among the
existing works, [15] resulted in reduced design metrics while maintaining the quasi-delay
insensitivity. However, there exists scope to further optimize the design metrics by adopting
a non-QDI design style. To this end, we set up a monotonic asynchronous implementation
of the array multiplier, particularly by implementing the building blocks monotonically,
and this is the major contribution of this work. Monotonic (early-output but non-QDI)
building blocks can be used to realize an IOM asynchronous array multiplier to achieve
significant optimization of the design metrics. At the same time, quasi-delay insensitivity
can be maintained externally for handshaking, which prevents the collision of two data
wavefronts. This is because the handshake signals (AIP and AOP, shown in Figure 2)
are Boolean complements of each other, and AOP is defined by the completion detector
associated with the output-side register bank.

Figure 4 shows the proposed monotonic asynchronous building blocks used to realize
the IOM asynchronous array multiplier. The building blocks include the partial product
generator, half adder, and full adder. Figure 4a–c portray the building blocks corresponding
to RZH, and Figure 4d–f portray the building blocks corresponding to ROH. To convert a
logic corresponding to RZH into an equivalent logic corresponding to ROH or vice versa, all
the gates except the C-element(s) therein should be replaced with their respective Boolean
duals, as shown in [33]. Notably, none of the monotonic building blocks shown in Figure 4
contain the C-element in their logic, in contrast to [13–15]. In Figure 4, (A1, A0) and (B1,
B0) represent the dual-rail inputs of the partial product generator; (P1, P0) and (Q1, Q0)
represent the dual-rail inputs of the half adder; and (R1, R0), (S1, S0) and (C1, C0) represent
the dual-rail inputs of the full adder. (D1, D0) represents the dual-rail encoded output of
the partial product generator; (HSUM1, HSUM0) and (HCOUT1, HCOUT0) represent the
dual-rail sum and carry outputs of the half adder; and (FSUM1, FSUM0) and (FCOUT1,
FCOUT0) represent the dual-rail sum and carry outputs of the full adder.
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We shall now explain the monotonicity and early-output nature of the proposed
building blocks by considering comprehensive example scenarios corresponding to RZH.
Similar example scenarios can be considered for the building blocks for ROH to comprehend
their monotonicity and early-output nature, and this is left to the interest of the reader. In
the following discussions, signals ‘0’ and ‘1’ are in binary format.
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3.1. Partial Product Generator

Figure 4a shows the monotonic partial product generator corresponding to RZH,
which implements the equations D1 = A1B1 and D0 = A0B0 + A0B1 + A1B0. When data
are supplied after a spacer phase (when the primary outputs had assumed 0), if A1 and B1
assume 1, then D1 will assume 1. Alternatively, if A0 and B0 (or) A0 and B1 (or) A1 and B0
assume 1, then D0 will assume 1. Thus, all signal transitions in the partial product generator
are found to be monotonically increasing (0 to 1) during data processing. Subsequently,
when the spacer is supplied, even if A1 or B1 assumes 0 (if A1 and B1 were 1 earlier); A0 or
B0 assumes 0 (if A0 and B0 were 1 earlier); A0 or B1 assumes 0 (if A0 and B1 were 1 earlier);
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or A1 or B0 assumes 0 (if A1 and B0 were 1 earlier), based on one input and regardless
of the other input, D1 or D0 (whichever was 1 earlier) will assume 0. These scenarios
explain the early-output and monotonically decreasing (1 to 0) nature of the partial product
generator for the application of the spacer.

3.2. Half Adder

Figure 4b shows the monotonic half adder corresponding to RZH, which implements
the equations HSUM1 = P0Q1 + P1Q0 and HSUM0 = P0Q0 + P1Q1, and HCOUT1 = P1Q1
and HCOUT0 = P0Q0 + P0Q1 + P1Q0. When data are supplied after a spacer phase (when
the primary outputs had assumed 0), if P0 and Q1 or P1 and Q0 assume 1, then HSUM1
will assume 1. Alternatively, if P0 and Q0 or P1 and Q1 assume 1, then HSUM0 will assume
1. Likewise, if P1 and Q1 assume 1, then HCOUT1 will assume 1; alternatively, if P0 and
Q0 (or) P0 and Q1 (or) P1 and Q0 assume 1, then HCOUT0 will assume 1. Hence, all
signal transitions in the half adder are found to be monotonically increasing during data
processing. Subsequently, when the spacer is supplied, even if P0 or Q1 assumes 0 (if P0
and Q1 were 1 earlier) or P1 or Q0 assumes 0 (if P1 and Q0 were 1 earlier), HSUM1 or
otherwise HSUM0 (if it was 1 earlier) will assume 0. Likewise, even if P1 or Q1 (if P1 and Q1
were 1 earlier) assumes 0, HCOUT1 or otherwise HCOUT0 (if it was 1 earlier) will assume
0. These explain the early-output and monotonically decreasing nature of the proposed
half adder for the application of the spacer.

3.3. Full Adder

Figure 4c shows the monotonic full adder corresponding to RZH, which implements
the equations FSUM1 = (R0S1 + R1S0)C0 + (R0S0 + R1S1)C1 and FSUM0 = (R0S0 + R1S1)C0
+ (R0S1 + R1S0)C1, and FCOUT1 = R1S1 + R1C1 + S1C1 and FCOUT0 = R0S0 + R0C0 +
S0C0. When data are supplied after a spacer phase (when the primary outputs assumed 0),
if R0 and S1 or R1 and S0 assume 1 and if C0 also assumes 1 (or); if R0 and S0 or R1 and
S1 assume 1; and if C1 also assumes 1, then FSUM1 will assume 1; otherwise, FSUM0 will
assume 1. Likewise, if R1 and S1 or R1 and C1 or S1 and C1 assume 1, FCOUT1 will assume
1; otherwise, FCOUT0 will assume 1. Therefore, all signal transitions in the full adder are
found to be monotonically increasing during data processing. Subsequently, when the
spacer is supplied, even if R0 or S1 or C0 assumes 0 (if R0, S1, and C0 were 1 earlier); if
R1 or S0 or C0 assumes 0 (if R1, S0, and C0 were 1 earlier); if R0 or S0 or C1 assumes 0
(if R0, S0, and C1 were 1 earlier); or if R1 or S1 or C1 assumes 0 (if R1, S1, and C1 were
1 earlier), then based on just a single input assuming 0, FSUM1 could assume 0; otherwise,
FSUM0 will assume 0 (if it was 1 earlier). Similarly, if R1 or S1 assumes 0 (if R1 and S1 were
1 earlier); R1 or C1 assumes 0 (if R1 and C1 were 1 earlier); or S1 or C1 assumes 0 (if S1 and
C1 were 1 earlier), FCOUT1 could assume 0; otherwise, FCOUT0 will assume 0 (if it was
1 earlier). These scenarios explain the early-output and monotonically decreasing nature of
the proposed full adder for the application of the spacer.

Referring to Figure 3a, which shows the schematic of the 4 × 4 array multiplier, the
critical path encountered for the processing of the data (i.e., forward latency) and the spacer
(i.e., reverse latency) would be the same for the existing designs [13–15], as highlighted by
the red dotted line. Thus, the cycle time of the existing IOM asynchronous array multipliers
would be twice their forward or reverse latency. This is mainly due to the use of indicating
and/or early-output QDI building blocks in the existing designs. In the case of the proposed
(monotonic asynchronous) array multiplier, the forward latency will be the maximum, as
highlighted by the red dotted line, whereas the reverse latency will be considerably less,
highlighted by the blue dotted line(s) in Figure 3a. The data paths highlighted by the green
dotted lines in Figure 3a would also be traversed for the application of the spacer, but they
are non-critical meaning they do not contribute to the reverse latency. As discussed earlier
in Sections 3.2 and 3.3, during the application of the spacer, the assumption of the spacer
by a single corresponding input could cause the partial product generator output, the half
adder outputs, and the full adder outputs to assume the spacer. Hence, in Figure 3a, all the
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building blocks used in the CSA (the partial product generator first, and the half adders and
full adders next) would nearly simultaneously assume the spacer. Concerning the building
blocks used in the RCA, they wait for inputs (spacer) from the building blocks present in
only the preceding stage, i.e., the last stage of the CSA. Therefore, the reverse latency is
governed by the data path(s) highlighted in blue in Figure 3a. The same explanation holds
for the 8 × 8 array multiplier shown in Figure 3b, where the red dotted line highlights
the forward latency and the reverse latency of the existing designs [13–15], while the red
dotted line highlights just the forward latency of the proposed array multiplier. The reverse
latency of the proposed 8 × 8 array multiplier is highlighted by the blue dotted lines in
Figure 3b. In contrast, the green dotted lines indicate non-critical paths traversed for the
application of the spacer.

Importantly, from Figure 3a,b, it is observed that, regardless of the multiplication size,
the proposed monotonic asynchronous array multiplier tends to have a constant reverse
latency that is roughly equivalent to the sum of the propagation delays of a partial product
generator and two full adders. The forward latency would alone increase linearly according
to the multiplication size. In contrast, for the existing IOM asynchronous array multipliers,
both the forward latency and reverse latency tend to increase linearly according to the
multiplication size.

Figures 5 and 6 show a screenshot of a portion of waveforms of the proposed 4 × 4
array multiplier corresponding to RZH and ROH, respectively. In Figures 5 and 6, (J31,
J30) up to (J01, J00) and (K31, K30) up to (K01, K00) represent two 4-bit dual-rail encoded
multiplier inputs, and (P71, P70) up to (P01, P00) represents the 8-bit dual-rail encoded
multiplier output. In Figure 5, the bus X_4_BIT groups the input rails (J31, J21, J11, J01) and
the bus Y_4_BIT groups the input rails (K31, K21, K11, K01). The bus PRODUCT_8_BIT
groups the output rails (P71, P61, P51, P41, P31, P21, P11, P01). The buses highlighted
in blue in Figure 5 show example multiplications performed between the inputs and the
respective product produced in hexadecimal format. The four markers M1 to M4 shown in
Figure 5 point to the scenarios when some sample input data are multiplied, generating the
corresponding products. It may be seen that the zero spacer separates two data products in
the case of RZH, and hence the spacer product (00 H) appears between two data products.
In Figure 6, the bus X_4_BIT groups the input rails (J30, J20, J10, J00) and the bus Y_4_BIT
groups the input rails (K30, K20, K10, K00). The bus PRODUCT_8_BIT groups the output
rails (P70, P60, P50, P40, P30, P20, P10, P00). The buses highlighted in blue in Figure 6
show example multiplications performed between the inputs and the respective product
produced in hexadecimal format. The four markers M1 to M4 shown in Figure 6 point
to scenarios when some sample input data are multiplied, generating the corresponding
products. It may be seen that the one spacer separates two data products in the case of
ROH, and hence the spacer product (ff H) appears between two data products.

Figures 7 and 8 show screenshots of a portion of waveforms of the proposed 8 × 8
array multiplier corresponding to RZH and ROH, respectively. In Figures 7 and 8, (J71,
J70) up to (J01, J00) and (K71, K70) up to (K01, K00) represent two 8-bit dual-rail encoded
multiplier inputs, and (P151, P150) up to (P01, P00) represents the 16-bit dual-rail encoded
multiplier output. In Figure 7, the bus X_8_RZH groups the input rails (J71, J61, J51, J41,
J31, J21, J11, J01) and the bus Y_4_RZH groups the input rails (K71, K61, K51, K41, K31,
K21, K11, K01). The bus PROD_16_RZH groups the output rails (P151, P141, P131, P121,
P111, P101, P91, P81, P71, P61, P51, P41, P31, P21, P11, P01). The buses highlighted in
blue in Figure 7 show example multiplications performed between the inputs and the
respective product produced in hexadecimal format. The four markers M1 to M4 shown in
Figure 7 point to the scenarios when some sample input data are multiplied, generating the
corresponding products. It may be seen that the zero spacer separates two data products
in the case of RZH, and hence the spacer product (0000 H) appears between two data
products. In Figure 8, the bus X_8_RTO groups the input rails (J70, J60, J50, J40, J30, J20,
J10, J00) and the bus Y_8_RTO groups the input rails (K70, K60, K50, K40, K30, K20, K10,
K00). The bus PROD_16_RTO groups the output rails (P150, P140, P130, P120, P110, P100,
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P90, P80, P70, P60, P50, P40, P30, P20, P10, P00). The buses highlighted in blue in Figure 8
show example multiplications performed between the inputs and the respective product
produced in hexadecimal format. The four markers M1 to M4 shown in Figure 8 point to
the scenarios when some sample input data are multiplied, generating the corresponding
products. It may be seen that the one spacer separates two data products in the case of
ROH, and hence the spacer product (ffff H) appears between two data products.

J. Low Power Electron. Appl. 2024, 14, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 5. Screenshot of a portion of simulation waveforms of the proposed 4 × 4 monotonic asyn-
chronous array multiplier corresponding to RZH. 

  
Figure 6. Screenshot of a portion of simulation waveforms of the proposed 4 × 4 monotonic asyn-
chronous array multiplier corresponding to ROH. 

Figures 7 and 8 show screenshots of a portion of waveforms of the proposed 8 × 8 
array multiplier corresponding to RZH and ROH, respectively. In Figures 7 and 8, (J71, 
J70) up to (J01, J00) and (K71, K70) up to (K01, K00) represent two 8-bit dual-rail encoded 
multiplier inputs, and (P151, P150) up to (P01, P00) represents the 16-bit dual-rail encoded 

Figure 5. Screenshot of a portion of simulation waveforms of the proposed 4 × 4 monotonic asyn-
chronous array multiplier corresponding to RZH.

J. Low Power Electron. Appl. 2024, 14, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 5. Screenshot of a portion of simulation waveforms of the proposed 4 × 4 monotonic asyn-
chronous array multiplier corresponding to RZH. 

  
Figure 6. Screenshot of a portion of simulation waveforms of the proposed 4 × 4 monotonic asyn-
chronous array multiplier corresponding to ROH. 

Figures 7 and 8 show screenshots of a portion of waveforms of the proposed 8 × 8 
array multiplier corresponding to RZH and ROH, respectively. In Figures 7 and 8, (J71, 
J70) up to (J01, J00) and (K71, K70) up to (K01, K00) represent two 8-bit dual-rail encoded 
multiplier inputs, and (P151, P150) up to (P01, P00) represents the 16-bit dual-rail encoded 

Figure 6. Screenshot of a portion of simulation waveforms of the proposed 4 × 4 monotonic asyn-
chronous array multiplier corresponding to ROH.



J. Low Power Electron. Appl. 2024, 14, 1 12 of 19

J. Low Power Electron. Appl. 2024, 14, x FOR PEER REVIEW 13 of 21 
 

 

multiplier output. In Figure 7, the bus X_8_RZH groups the input rails (J71, J61, J51, J41, 
J31, J21, J11, J01) and the bus Y_4_RZH groups the input rails (K71, K61, K51, K41, K31, 
K21, K11, K01). The bus PROD_16_RZH groups the output rails (P151, P141, P131, P121, 
P111, P101, P91, P81, P71, P61, P51, P41, P31, P21, P11, P01). The buses highlighted in blue 
in Figure 7 show example multiplications performed between the inputs and the respec-
tive product produced in hexadecimal format. The four markers M1 to M4 shown in Fig-
ure 7 point to the scenarios when some sample input data are multiplied, generating the 
corresponding products. It may be seen that the zero spacer separates two data products 
in the case of RZH, and hence the spacer product (0000 H) appears between two data 
products. In Figure 8, the bus X_8_RTO groups the input rails (J70, J60, J50, J40, J30, J20, 
J10, J00) and the bus Y_8_RTO groups the input rails (K70, K60, K50, K40, K30, K20, K10, 
K00). The bus PROD_16_RTO groups the output rails (P150, P140, P130, P120, P110, P100, 
P90, P80, P70, P60, P50, P40, P30, P20, P10, P00). The buses highlighted in blue in Figure 8 
show example multiplications performed between the inputs and the respective product 
produced in hexadecimal format. The four markers M1 to M4 shown in Figure 8 point to 
the scenarios when some sample input data are multiplied, generating the corresponding 
products. It may be seen that the one spacer separates two data products in the case of 
ROH, and hence the spacer product (ffff H) appears between two data products. 

  
Figure 7. Screenshot of a portion of simulation waveforms of the proposed 8 × 8 monotonic asyn-
chronous array multiplier corresponding to RZH. Figure 7. Screenshot of a portion of simulation waveforms of the proposed 8 × 8 monotonic asyn-

chronous array multiplier corresponding to RZH.

J. Low Power Electron. Appl. 2024, 14, x FOR PEER REVIEW 14 of 21 
 

 

  
Figure 8. Screenshot of a portion of simulation waveforms of the proposed 8 × 8 monotonic asyn-
chronous array multiplier corresponding to ROH. 

4. Implementation and Design Metrics 
We implemented 20 4 × 4 IOM asynchronous array multipliers, including the existing 

and proposed designs, with 10 corresponding to RZH and an equal number correspond-
ing to ROH. We also implemented 20 8 × 8 IOM asynchronous array multipliers, including 
the existing and proposed designs, with 10 corresponding to RZH and an equal number 
corresponding to ROH. The 40 multipliers were realized using a 28 nm CMOS process 
technology [34]. It has been validated in [14] that IOM asynchronous array multipliers 
comprising only indicating building blocks as in [13] are inferior to their counterparts 
comprising a mix of indicating and early-output QDI building blocks, as in [14]. Therefore, 
the designs given in [13] are not considered for comparison here but the designs given in 
[14,15] were considered for comparison. We considered a typical case library specification 
that involved a supply voltage of 1.05 V and an operating temperature of 25 °C for the 
simulations. To perform functional simulations, approximately 2000 random input vec-
tors were used to form test benches corresponding to 4 × 4 and 8 × 8 multiplications. The 
test benches contained an equal representation of data and spacers. The test benches fol-
lowed a logical equivalence between RZH and ROH. The test benches were supplied to 
the multipliers, assuming a cycle time of 8 ns (i.e., a latency of 4 ns) for 4 × 4 multiplication, 
and a cycle time of 16 ns (i.e., a latency of 8 ns), aligning with prior works [13–15], to allow 
for a direct and fair comparison post-simulation. The switching activity recorded during 
the functional simulations was utilized to estimate the total power dissipation. A fanout-
of−4 drive strength was used for all the output ports (i.e., product bits) and the default 
wire load was considered during the design metrics estimation. Synopsys tools were used 
to estimate design parameters such as the cycle time, area, and total power dissipation. 
The cycle time was calculated as the sum of forward latency and reverse latency. The for-
ward latency could be estimated directly (as it is equivalent to the critical path delay of a 
synchronous design), and doubling the forward latency gave the cycle time of the existing 
designs. For the proposed designs, whose reverse latency was considerably less than the 

Figure 8. Screenshot of a portion of simulation waveforms of the proposed 8 × 8 monotonic asyn-
chronous array multiplier corresponding to ROH.

4. Implementation and Design Metrics

We implemented 20 4 × 4 IOM asynchronous array multipliers, including the existing
and proposed designs, with 10 corresponding to RZH and an equal number corresponding
to ROH. We also implemented 20 8 × 8 IOM asynchronous array multipliers, including
the existing and proposed designs, with 10 corresponding to RZH and an equal number
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corresponding to ROH. The 40 multipliers were realized using a 28 nm CMOS process
technology [34]. It has been validated in [14] that IOM asynchronous array multipliers
comprising only indicating building blocks as in [13] are inferior to their counterparts
comprising a mix of indicating and early-output QDI building blocks, as in [14]. Therefore,
the designs given in [13] are not considered for comparison here but the designs given
in [14,15] were considered for comparison. We considered a typical case library specification
that involved a supply voltage of 1.05 V and an operating temperature of 25 ◦C for the
simulations. To perform functional simulations, approximately 2000 random input vectors
were used to form test benches corresponding to 4 × 4 and 8 × 8 multiplications. The
test benches contained an equal representation of data and spacers. The test benches
followed a logical equivalence between RZH and ROH. The test benches were supplied to
the multipliers, assuming a cycle time of 8 ns (i.e., a latency of 4 ns) for 4 × 4 multiplication,
and a cycle time of 16 ns (i.e., a latency of 8 ns), aligning with prior works [13–15], to allow
for a direct and fair comparison post-simulation. The switching activity recorded during the
functional simulations was utilized to estimate the total power dissipation. A fanout-of−4
drive strength was used for all the output ports (i.e., product bits) and the default wire load
was considered during the design metrics estimation. Synopsys tools were used to estimate
design parameters such as the cycle time, area, and total power dissipation. The cycle time
was calculated as the sum of forward latency and reverse latency. The forward latency
could be estimated directly (as it is equivalent to the critical path delay of a synchronous
design), and doubling the forward latency gave the cycle time of the existing designs.
For the proposed designs, whose reverse latency was considerably less than the forward
latency, the reverse latency was estimated based on the timing report generated by the tool.
An advanced timing analysis was performed using PrimeTime, whereby a virtual clock
was introduced for delay estimation, although the clock was not physically included in the
designs. The design metrics of various IOM asynchronous multipliers corresponding to
4 × 4 and 8 × 8 multiplications are given in Tables 1 and 2, respectively.

Table 1. Design metrics of 4 × 4 IOM asynchronous array multipliers.

Multiplier Legend Area (µm2) Cycle Time (ns) Power (µW)

Corresponding to return-to-zero handshaking (RZH)

4MZ1 *α 852.65 7.18 706.5
4MZ2 *α 843.50 5.34 686.9
4MZ3 *α 764.21 5.78 676.7
4MZ4 *β 813.01 5.12 681.8
4MZ5 *β 660.52 5.10 675.3
4MZ6 *β 691.02 3.82 681.1
4MZ7 *β 672.72 4.40 675.7
4MZ8 *β 785.56 5.36 707.5

4MZ9 *βγ 579.45 3.22 586.3
4PROPZ ψ 360.88 1.93 562.6

Corresponding to return-to-one handshaking (ROH)

4MO1 *α 852.65 6.96 705.2
4MO2 *α 794.71 5.06 676.2
4MO3 *α 764.21 5.66 679.4
4MO4 *β 788.61 4.92 675.9
4MO5 *β 660.52 5.00 674.8
4MO6 *β 691.02 3.58 680.6
4MO7 *β 672.72 4.26 676.2
4MO8 *β 785.56 5.26 714.2

4MO9 *βγ 579.45 3.14 586.7
4PROPO ψ 360.88 1.75 560.3

* Partial product generator is of the early-output type; α Full adder is of strong-indication type; β Full adder is of
weak-indication type; γ Half adder is of weak-indication type; ψ Partial product generator, half adder, and full
adder are monotonic (early-output) type.
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Table 2. Design metrics of 8 × 8 IOM asynchronous array multipliers.

Multiplier Legend Area (µm2) Cycle Time (ns) Power (µW)

Corresponding to return-to-zero handshaking (RZH)

8MZ1 *α 3608.58 14.38 910.0
8MZ2 *α 3565.89 10.94 860.1
8MZ3 *α 3195.86 11.78 834.1
8MZ4 *β 3423.57 10.40 848.1
8MZ5 *β 2711.97 10.18 827.9
8MZ6 *β 2854.29 8.26 842.2
8MZ7 *β 2768.90 8.52 828.4
8MZ8 *β 3295.48 11.20 910.2

8MZ9 *βγ 2602.44 7.62 779.6
8PROPZ ψ 1425.24 3.19 699.6

Corresponding to return-to-one handshaking (ROH)

8MO1 *α 3608.58 13.96 906.9
8MO2 *α 3338.18 10.36 835.4
8MO3 *α 3195.86 11.58 838.9
8MO4 *β 3309.71 10.04 834.2
8MO5 *β 2711.97 10.00 826.5
8MO6 *β 2854.29 7.82 841.4
8MO7 *β 2768.90 8.30 829.3
8MO8 *β 3295.48 11.10 921.7

8MO9 *βγ 2602.44 7.32 780.7
8PROPO ψ 1425.24 2.91 694.9

* Partial product generator is of the early-output type; α Full adder is of strong-indication type; β Full adder is of
weak-indication type; γ Half adder is of weak-indication type; ψ Partial product generator, half adder, and full
adder are monotonic (early-output) type.

For ease of analysis and comparison, we refer to the different array multipliers using
certain legends, specified in Tables 1 and 2. The legend ‘4MZx’ generically refers to an
existing 4 × 4 IOM asynchronous array multiplier corresponding to RZH with x denoting
an integer value varying from 1 to 9, representing the use of a specific half adder and/or
full adder from the literature. The legend ‘4Mox’ refers to the respective counterpart of
‘4MZx’, which corresponds to ROH. The legend ‘4PROPZ’ refers to the proposed 4 × 4
IOM asynchronous array multiplier corresponding to RZH, and the legend ‘4PROPO’ is the
counterpart of ‘4PROPZ’ that corresponds to ROH. Likewise, the legend ‘8MZx’ generically
refers to an existing 8 × 8 IOM asynchronous array multiplier corresponding to RZH, with
x denoting an integer value varying from 1 to 9, representing the use of a specific half
adder and/or full adder from the literature. The legend ‘8Mox’ refers to the respective
counterpart of ‘8MZx’, which corresponds to ROH. The legend ‘8PROPZ’ refers to the
proposed 8 × 8 IOM asynchronous array multiplier corresponding to RZH, and the legend
‘8PROPO’ is the counterpart of ‘8PROPZ’ that corresponds to ROH.

We shall now describe the components used in various IOM asynchronous array
multipliers. All the IOM asynchronous array multipliers from 4MZ1 up to 4MZ8 (thus,
4MO1 up to 4MO8) and 8MZ1 up to 8MZ8 (thus, 8MO1 up to 8MO8) use the early-output
partial product generator shown in Figure 4a (for RZH) and 4b (for ROH). Equally, 4MZ1
up to 4MZ8 (thus, 4MO1 up to 4MO8) and 8MZ1 up to 8MZ8 (thus, 8MO1 up to 8MO8)
modify the full adder (by tying its carry input to 0) to realize the half adder functionality.
Then, 4MZ1 and 8MZ1 (thus, 4MO1 and 8MO1) use the strong-indication full adder of [35];
4MZ2 and 8MZ2 (thus, 4MO2 and 8MO2) use the strong-indication full adder of [36]; 4MZ3
and 8MZ3 (thus, 4MO3 and 8MO3) use the strong-indication full adder of [21]; 4MZ4 and
8MZ4 (thus, 4MO4 and 8MO4) use the weak-indication full adder of [36]; 4MZ5 and 8MZ5
(thus, 4MO5 and 8MO5) use the weak-indication full adder of [22]; 4MZ6 and 8MZ6 (thus,
4MO6 and 8MO6) use the weak-indication full adder of [37]; 4MZ7 and 8MZ7 (thus, 4MO7
and 8MO7) use the weak-indication full adder of [38]; and 4MZ8 and 8MZ8 (thus, 4MO8
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and 8MO8) use the weak-indication SNFC full adder of [39]. Since the SNFC full adder
was found to be better compared to the SN and SNX full adders of [39] in terms of the
cycle time, therefore, only the SNFC full adder was considered here for comparison. In
addition, 4MZ9 and 8MZ9 (thus, 4MO9 and 8MO9) use the early-output partial product
generator and the weak-indication half adder depicted in [15] and the weak-indication full
adder of [37]. The proposed designs 4PROPZ and 8PROPZ utilize the components shown
in Figure 4a–c, and 4PROPO and 8PROPO utilize the components shown in Figure 4d–f.

From Tables 1 and 2, it is seen that the proposed monotonic asynchronous array
multipliers consume a significantly smaller area for both 4 × 4 and 8 × 8 multiplications
compared to the existing QDI asynchronous array multipliers, and this is for two reasons:
(i) as seen in Figure 4, the monotonic building blocks do not feature any C-element in
their logic realization, and (ii) the proposed monotonic components require fewer gates
and realize less complicated logic compared to the QDI realization of such components
used in existing QDI asynchronous array multipliers. Among the existing designs, 4MZ9
and 8MZ9 (and 4MO9 and 8MO9) are found to be better compared to their counterparts
in terms of area, cycle time, and power dissipation. However, compared to 4MZ9 and
8MZ9 (and 4MO9 and 8MO9), the proposed 4PROPZ and 8PROPZ (and 4PROPO and
8PROPO), respectively, consume a smaller area. This is mainly because the monotonic
asynchronous full adders shown in Figure 4c (used in 4PROPZ and 8PROPZ) and Figure 4f
(used in 4PROPO and 8PROPO) require an area of 16.77 µm2, which is 59.2% less than
the weak-indication full adder of [37] used in 4MZ9 and 8MZ9 (and 4MO9 and 8MO9),
which requires an area of 41.17 µm2. Also, the weakly indicating half adder [15] used in
4MZ9 and 8MZ9 (and 4MO9 and 8MO9) occupies an area of 21.35 µm2. In comparison, the
monotonic half adder shown in Figure 4b,d used in 4PROPZ and 8PROPZ (and 4PROPO
and 8PROPO) occupies an area of 10.42 µm2, which is 51.2% less. The early-output partial
product generator [15] used in 4MZ9 and 8MZ9 (and 4MO9 and 8MO9) occupies 4.07 µm2

of area, which is 23.7% less than the area of the monotonic partial product generator used in
4PROPZ and 8PROPZ (and 4PROPO and 8PROPO), shown in Figure 4a,d, which occupies
an area of 5.34 µm2. However, overall, the proposed monotonic array multiplier requires a
substantially smaller area than the best of the existing QDI array multipliers. Compared
to 4MZ9 (and 4MO9), 4PROPZ (and 4PROPO) consumes 37.7% less space. Compared
to 8MZ9 (and 8MO9), 8PROPZ (and 8PROPO) consumes 45.2% less space. This implies
that the proposed monotonic array multipliers would enable more reduction in the area
compared to the existing QDI array multipliers with an increase in the multiplication size.

In terms of timing, the existing QDI array multipliers exhibit the same forward latency
and reverse latency, the doubling of which results in a cycle time which would be high. The
proposed monotonic array multipliers have the same forward latency as the existing QDI
array multipliers, but their reverse latency is a constant roughly dictated by the sum of
the propagation delays of a partial product generator and two full adders. As a result, the
proposed monotonic array multipliers feature a significantly reduced cycle time compared
to the existing QDI array multipliers. In Table 1, for 4 × 4 multiplication, 4PROPZ features
a forward latency of 1.20 ns and a reverse latency of 0.73 ns and thus a cycle time of 1.93 ns
while 4PROPO features a forward latency of 1.08 ns and a reverse latency of 0.67 ns and
thus a cycle time of 1.75 ns. Thus, compared to 4MZ9, 4PROPZ achieves a 40.1% reduced
cycle time, and compared to 4MO9, 4PROPO achieves a 44.3% reduced cycle time. For
8 × 8 multiplication, 8PROPZ features a forward latency of 2.41 ns and a reverse latency
of 0.78 ns and thus a cycle time of 3.19 ns while 8PROPO features a forward latency of
2.18 ns and a reverse latency of 0.73 ns and thus a cycle time of 2.91 ns. Thus, compared to
8MZ9, 8PROPZ achieves a 58.1% reduced cycle time, and compared to 8MO9, 8PROPO
achieves a 60.2% reduced cycle time. These imply that as the size of the multiplication
increases, the proposed monotonic array multipliers will enable a greater reduction in
cycle time compared to the existing QDI array multipliers since the number of logic levels
containing the processing elements (such as half adders and full adders) tends to increase
in linear order.
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Both the existing QDI array multipliers and the proposed monotonic array multiplier
adhere to the monotonic cover constraint [30], which refers to the activation of a unique
signal path from the primary inputs to the primary outputs of an IOM asynchronous circuit.
This is because an IOM asynchronous circuit output (corresponding to RZH) is typically
expressed as a sum of disjoint products [40], where the products are mutually disjoint, and
only one product term is activated corresponding to a given input data. Hence, unnecessary
signal transitions do not occur widely throughout an IOM asynchronous circuit, unlike a
synchronous circuit. As a result, the power dissipation does not tend to vary much between
different IOM asynchronous multipliers. This contrasts with synchronous circuits where
power dissipation is generally proportional to area. Therefore, in Table 1, compared to
4MZ9, 4PROPZ reports a moderate 4% decrease in power, and compared to 4MO9, 4PROPO
reports a moderate 4.5% decrease in power. In Table 2, compared to 8MZ9, 8PROPZ reports
a 10.3% decrease in power, and compared to 8MO9, 8PROPO reports an 11% decrease in
power. Notably, the savings in power dissipation are also expected to increase with an
increase in the multiplication size.

The product of power and delay commonly serves as a low-power/low-energy figure
of merit in digital designs [41]. In IOM asynchronous circuits, the Power—Cycle Time
Product (PCTP) serves as a low-power/low-energy figure of merit. Hence, we calculated
the PCTP of all the asynchronous multipliers and normalized them. The normalization was
performed by dividing the actual PCTP of each asynchronous multiplier by the highest
actual PCTP of an asynchronous multiplier of the same size and corresponding to the same
handshaking protocol. The results of the normalization of PCTPs of different 4 × 4 and
8 × 8 asynchronous multipliers corresponding to RZH and ROH are portrayed in Figure 9.
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Since the power and cycle time should be reduced, therefore, the PCTP is also desired
to be low. Therefore, in Figure 9, a PCTP of 1 implies the most inferior design and the
lowest value of PCTP reflects a preferred (superior) design. From Figure 9, it is evident
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that the proposed monotonic asynchronous array multipliers are preferable as they exhibit
reduced PCTPs compared to the existing QDI asynchronous array multipliers. Notably,
for 4 × 4 multiplication, compared to 4MZ9, 4PROPZ reports a 42.5% reduction in the
PCTP, and compared to 4MO9, 4PROPO reports a 46.7% reduction in the PCTP. For 8 × 8
multiplication, compared to 8MZ9, 8PROPZ reports a 62.5% reduced PCTP, and compared
to 8MO9, 8PROPO reports a 64.5% reduced PCTP.

5. Conclusions

This paper has presented some monotonic asynchronous building blocks that could be
used to efficiently realize monotonic asynchronous arithmetic circuits. Specifically, a mono-
tonic partial product generator, a monotonic half adder, and a monotonic full adder were
presented corresponding to RZH and ROH. When the proposed building blocks were used
to realize a monotonic asynchronous array multiplier, they were found to enable significant
reductions in design metrics such as the cycle time, area, and power dissipation compared
to the existing QDI asynchronous array multipliers. Notably, a constant reverse latency was
realized for the monotonic implementation of the asynchronous array multiplier regardless
of the multiplication size, which is unlikely to be realized with existing QDI asynchronous
array multipliers. The proposed monotonic asynchronous building blocks do not include
the C-element in their logic realization and require fewer gates for implementation, which
translates into reductions in area and power dissipation. The proposed monotonic asyn-
chronous array multiplier achieves the following reductions in design metrics compared to
the best of the existing QDI asynchronous array multipliers: (i) 40.1% (44.3%) reduction in
cycle time, 37.7% (37.7%) reduction in area, and 4% (4.5%) reduction in power for 4 × 4
multiplication for RZH (ROH), and (ii) 58.1% (60.2%) reduction in cycle time, 45.2% (45.2%)
reduction in area, and 10.3% (11%) reduction in power for 8 × 8 multiplication for RZH
(ROH). In terms of the PCTP, which serves as a low-power/low-energy figure of merit
for IOM asynchronous designs, the proposed monotonic asynchronous array multiplier
consumes roughly one-half of the energy of the existing optimized QDI asynchronous
array multipliers for 4 × 4 multiplication, and roughly one-third of the energy for 8 × 8
multiplication, thus suggesting an increase in energy savings with an increase in the multi-
plication size. Future work could consider the monotonic implementation of other building
blocks such as logic compressors to realize other multipliers efficiently in a monotonic IOM
asynchronous design style.
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