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Abstract: This work presents a novel trusted LC voltage-controlled oscillator (VCO) with an em-
bedded compact analog Physically Unclonable Function (PUF) used for authentication. The trusted
VCO is implemented in a 1P9M 65 nm standard CMOS process and consumes 1.75 mW. It exhibits
a measured phase noise (PN) of −104.8 dBc/Hz @ 1 MHz and −132.2 dBc/Hz @ 10 MHz offset,
resulting in Figures of Merit (FoMs) of 191.7 dBc/Hz and 199.1 dBc/Hz, respectively. With the mea-
sured frequency tuning range (TR) of ~5.5 GHz, the FoM with tuning (FoMT) reaches 197.6 dBc/Hz
and 205.0 dBc/Hz at 1 MHz and 10 MHz offset, respectively. The analog PUF consists of CMOS
cross-coupled pairs in the main VCO to change analog characteristics. Benefiting from the impedance
change and parasitic capacitance of the cross-coupled pairs, the AC and DC responses of the VCO
are utilized for multiple responses for each input. The PUF consumes 0.83 pJ/bit when operating
at 1.5 Gbps. The proposed PUF exhibits a measured Inter-Hamming Distance (HD) of 0.5058b
and 0.4978b, with Intra-HD reaching 0.0055b and 0.0053b for the current consumption and fosc,
respectively. The autocorrelation function (ACF) of 0.0111 and 0.0110 is obtained for the current
consumption and fosc, respectively, at a 95% confidence level.

Keywords: analog PUF; LC VCO; trusted VCO; embedded analog PUF

1. Introduction

High-speed wireless communication is becoming a necessity for modern connectivity
solutions [1]. With the introduction of the 5G new radio (NR) standard, millimeter wave
(mm-Wave) frequency bands are becoming accessible to facilitate such high-speed com-
munications in today’s spectrum-congested network [1]. However, migration to higher
frequency bands complicates efforts to reduce the power consumption in wireless data
links used for many consumer and medical applications. In addition to low power con-
sumption, maintaining a high level of security and trust is critical in such links to protect
sensitive data and preserve user privacy [2,3]. This requirement further complicates the
design of low-power high-data throughput wireless transceivers operating at mm-Wave
frequency bands.

Depending on the threat type and application, creating an end-to-end secure and trust-
worthy wireless communication link calls for the inclusion of security features at all levels,
including wireless transceivers [4–6]. Unlike data security, which can be accomplished
using encryption performed in the digital backend, a trusted wireless transceiver should
contain security features in the Radio Frequency Front End (RFFE) for proper authentica-
tion. To minimize the energy, area, and delay overhead, it is more efficient to choose an
embedded approach in which the trust features are integrated into key sub-blocks within
the RFFE.
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Designing the proper trust feature for authentication requires knowledge of the main
attack vectors in an RFFE. Hardware Trojans (HTs) [5,6] and Side-Channel Attacks (SCAs) [4,7,8]
are the main threats to the RFFE. There are a number of authentication solutions that pro-
tect devices against HTs [4–9]. Among them, analog PUFs are more suitable for inclusion
within RFFEs due to their small size, low complexity, and ease of integration with analog
circuits [10–15]. They are particularly useful in authenticating RFFEs built with high-performance
wide-bandgap (WBG) technologies, such as GaAs and GaN [16], where the implementa-
tion of high-density logic/memory needed for digital PUFs is challenging. Analog PUFs
typically rely on the complexity of the Challenge–Response Pair (CRP) instead of only
increasing the number of CRPs [10]; they leverage transistors’ intrinsic random process
variations to generate a unique fingerprint needed for authentication. Due to their small
CRP size, analogs are typically categorized as weak PUFs. However, the complexity of
the CRP mechanism beyond a simple binary stream seen from digital PUFs may help
with increasing the entropy [9–12]. A few examples are printed differential circuits [11],
current-steering digital-to-analog converters (DACs), and VCOs [13].

Presently, nearly all analog PUFs are designed as standalone blocks and are included
on the chip as a separate module. While easier to develop, these solutions have a nega-
tive impact on the overall power consumption, chip area, and latency in the transceiver.
Moreover, analog PUFs typically exhibit low entropy due to their small CRP space [10],
further limiting their usefulness for device authentication. To mitigate these concerns,
this work proposes to integrate the analog PUF within key transceiver blocks, such as
the VCO, to facilitate the authentication process in the wireless transceiver. The resulting
low-power 24.6-to-30.1 GHz trusted LC VCO benefits from a custom analog PUF consisting
of multiple NMOS and PMOS cross-coupled pairs, which are connected to the main CMOS
cross-coupled pair. When properly excited, the impedance across the main cross-coupled
CMOS pair varies [14], changing the VCO characteristics. The overall power consumption
of the VCO also changes. This change is manifested in variations in the VCO’s DC and AC
performance metrics, such as the current consumption, fosc, amplitude, and PN, resulting
in increased entropy with the same number of challenges. The remainder of this paper
is structured as follows. Section 2 describes the threat model and provides more details
on the design of the embedded analog PUF. The proposed low-power trusted LC VCO
design is presented in Section 3 and is followed by the characterization results in Section 4.
Section 5 provides the concluding remarks.

2. RFFE Threats and Embedded Analog PUF Design

The Integrated Circuit (IC) supply chain (including the fabrication process) is an
inherently untrustworthy process that exposes hardware-induced vulnerabilities. For
example, an attacker can place malware circuits on the die during the fabrication process to
create a backdoor [4] or interrupt the main function of the IC [5]. Or, an attacker may gain
information about the design of the RFFE by accessing mask sets during the IC fabrication
process and be able to directly hack the RFFE and obtain the raw data [7–9]. Major threats
to the RFFE and embedded PUF solutions to protect against such threats are discussed in
this section.

2.1. Security Threats in RFFEs

Security threats or attack vectors for hardware are categorized into three classes [4,5]:
non-invasive, semi-invasive, and invasive. The difference between classes is defined by
the equipment and attackers’ approach [4]. HTs and SCAs are the main security threats for
RFFEs; HTs can be easily implanted using all three specified methods and compromise the
RFFE [4–6]. An attacker can even minimize scars and marks caused by physical altercations
to complicate post-silicon detection efforts performed by the defender. SCAs monitor key
IC signatures, such as the power consumption or EM radiation, to gather information about
the design, and, hence, do not need access to the digital backend for executing a successful
attack [7]. Taking advantage of hardware security primitives employed in PUF blocks, the
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aforementioned threats can be detected and neutralized. These blocks leverage random
fluctuations in the production process, such as IC process artifacts, to create unclonable
and inherent device-specific identifiers of the device. Using PUFs, a challenge applied to
the input will produce a unique output, creating a complex CRP that can be used for device
authentication. For an RFFE operating at mm-Wave, an analog PUF is easier to implement
since it does not require access to the digital backend and additional auxiliary circuits (such
as clock generators and memory) needed for the proper operation of digital PUFs [5]. They
will also occupy a smaller area and have less delay [10–15].

2.2. Embedded Analog PUFs for RFFEs

Analog PUFs usually suffer from low entropy due to their small CRP space. To
solve this problem, an embedded PUF solution is proposed. The proposed PUF uses both
DC and AC characteristics of a radio frequency (RF) circuit to enhance the CRP space
without increasing the complexity or length of the input challenge. The number of input
challenges is defined as n, as shown in Figure 1. In conventional PUF designs, n input
challenges correspond to n output responses (Figure 1). However, the proposed PUF
generates multiple responses for a given challenge (e.g., m responses). In this way, an
n × 1 long input generates an n × m long output response, increasing the CRP space by a
factor of m compared to a conventional PUF solution (Figure 1). The concept of embedded
PUF has been introduced in the early 2000s as a more compact and integration-friendly
alternative to conventional PUFs [10]. However, these designs require a more complicated
CRP generation and detection system due to inaccuracies caused by the miniaturization
of the PUF core, which is needed for integration with the RF/analog block [2–10]. For
example, transistor random mismatch is greatly influenced by the area of the device; the
larger the area, the more accurate the device geometry can be predicted, leading to the
opportunity to design a more accurate PUF with higher entropy. However, utilizing this
phenomenon to increase the entropy in the PUF requires a large area for the transistors and
a very accurate interface circuit consisting of ultra-low offset comparators and amplifiers.
On the other hand, leveraging the high-frequency characteristics of an RF circuit helps
break this paradigm with minimal penalty to the size, power consumption, and the size of
the RFFE. In this prototype, an innovative embedded analog PUF technique is introduced
in the VCO (Figure 2a–c). The CRPs are based on the DC characteristics and the frequency
response of the VCO. The current consumption and fosc are sensitive to process artifacts
and parasitics, and, hence, can be used for authentication. By adding additional cross-
coupled pairs whose device sizes are slightly different than the main pair, in parallel to the
main CMOS cross-coupled pair, the VCO current consumption changes (Figure 2b). The
additional parasitic capacitance from the cross-coupled pair also causes a shift in the fosc. By
adjusting the gate-source voltage (VGS) in each pair or adding multiple pairs with different
W/L, the variation in the current consumption and fosc can be controlled, creating a proper
CRP space for authentication. The additional cross-coupled pairs can be turned off so as to
not impact the performance of the VCO during the normal operation of the VCO. This is
easily performed by pulling up or down the gate voltages for the PMOS and NMOS pairs,
respectively. Unlike conventional PUFs, where the input and output vectors have similar
dimensions, here, each challenge vector generates multiple response vectors, of which the
current consumption and fosc are used in this proof-of-concept prototype. The proposed
prototype uses 64 challenges (six bits: 3-bit NMOS and 3-bit PMOS), resulting in 128 (27)
output responses (Figure 2c). Responses of the 6-bit challenges are analog values but they
are digitized for PUF characterization and analysis. In this work, responses are converted
into codewords for PUF characterization and analysis. The codeword generation from
responses is discussed as part of the PUF characterization efforts discussed in Section 4.
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Figure 2. Block diagram of the proposed design showing (a) the PUF concept, (b) the VCO schematic,
and (c) the CRP mechanism.

3. Design of the Trusted CMOS LC VCO

The proposed trusted LC VCO uses a complementary (i.e., CMOS) cross-coupled topol-
ogy without a tail current source to maximize the output swing (Figure 2b). A conventional
CMOS LC VCO (CVCO) is also implemented on the same chip for performance comparison.
The VCO uses open drain buffers to interface with the measurement equipment. Optimum
LC VCO design heavily relies on the bias current (ID) because it determines the mode of
operation, i.e., the voltage-limited or current-limited regime [17,18]. In addition to the gm
of the NMOS and PMOS cross-coupled pairs, the LC tank plays a key role in the power
consumption, PN, and TR performance of an LC VCO, requiring a careful design of tank
components, particularly the inductance [17–19]. Knowing that the PN is proportional to
(Ltank)2 [19], a small inductance with the highest quality factor (Q) is chosen for the tank.



J. Low Power Electron. Appl. 2024, 14, 10 5 of 18

Moreover, the TR is inversely proportional to the Ltank, further incentivizing the use of
a small inductor. To further increase the inductor Q and save chip area, the VCOs use
differential inductors with a floating center tap [19]. The 420 pH inductor designed for the
CVCO exhibits a Q~15 at 28 GHz with 69.2 GHz self-resonance frequency (SRF), while
the 315 pH inductor designed for the trusted VCO (Figure 3) shows Q~17.2 at 28 GHz
with SRF > 80 GHz. The trust features are embedded within the VCO as six cross-coupled
pairs, three NMOS and three PMOS. These additional cross-coupled pairs are only used for
authentication; they are turned off during the normal operation of the VCO and primarily
act as parasitic capacitance in this mode.
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The design procedure for the proposed trusted LC VCO begins with the choice of topol-
ogy. Here, a CMOS cross-coupled pair without a tail current source is chosen to maximize
the output swing and increase the effective transconductance (Gm). Then, the trust features
that can be embedded into the VCO core are identified. An important consideration for the
design of the embedded PUF is the compatibility of the PUF architecture with the VCO
core architecture without a significant hit to the power consumption and size of the VCO.
At the same time, the PUF should generate the required entropy for the authentication
process [10]. For this design, a cross-coupled PUF topology, which relies on the variation
in the impedance, is utilized to generate the change in the current consumption and the
oscillation frequency as the unique identifiers for the authentication process. During the
normal operation, the trust features are disabled, leaving only the main cross-coupled pair
active, which resembles a conventional CMOS LC VCO. In this case, the VCO core design
procedure will be straightforward. The cross-coupled pair generates the required Gm to
compensate for the loss of the LC tank (modeled by Rp). The oscillation frequency, ω, is set
by the tank as follows:

Gm =
1

RP
, (1)

ω =
1

2π
√

LCT
, (2)

CT = Cin + CPd + CV , (3)

Cin = CVCO + CPa = CGS + 4CGD + CPa, (4)
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where Gm is the total transconductance in the system that is equal to the transconductance
of a CMOS device (gm), RP is equivalent parallel resistance of the LC tank used in the
VCO, CT is the total equivalent capacitance of the tank, Cin is the total parasitic capacitance
from a cross-coupled pair, CV is the capacitance from tuning varactors, Cpd is the parasitic
capacitance from the inactive cross-coupled pairs used for the PUF, CPa is the parasitic
capacitance from the active cross-coupled pairs used for the PUF, CVCO is the parasitic
capacitance from the CMOS devices that is equal to CGS + 4CGD, and CGS and CGD are the
gate-source and drain-source MOS capacitance of the CMOS device. In this design, the
power consumption is reduced by increasing the Q of the inductor to generate a larger
Rp, leading to a smaller required Gm for oscillation. Moreover, the stacked combination of
NMOS and PMOS pairs used in the VCO core and the PUF allows for reusing the current
from the PMOS into the NMOS pair, generating larger overall Gm without increasing the
current consumption. When the VCO operates in authentication mode, additional cross-
coupled pairs are enabled. Consequently, the current consumption and the frequency are
lowered due to larger parasitic capacitance from these pairs.

IC fabrication is an electromechanical process that is prone to process variation and
mismatch, of which the device mismatch is the main source of entropy in the proposed
analog PUF [5]. However, the effect of the temperature variation on the performance of the
analog CMOS circuits cannot be ignored and should also be investigated for the proposed
analog PUF. Figure 4 shows changes in the simulated current consumption and fosc when
the temperature is varied from −40 ◦C to 85 ◦C for the first challenge, 000000, and the last
challenge, 111111. The changes to the current consumption are reasonable and follow the
MOS threshold variation with temperature. Since the change in current consumption is
almost linear, it can be easily compensated for using adaptive biasing (i.e., changing the
supply with temperature) or calibrated out in post-measurement calculations. The changes
to the fosc are very small (<±0.1%), as expected, since fosc is mainly determined by the
frequency of the LC tank whose variations with temperature are negligible. Expecting
a unique response for each input challenge, the accuracy of the analog PUF should be
investigated. The amount of mismatch and its impact on the PUF resolution can be found
by performing post-layout Monte Carlo (MC) simulations on the trusted VCO when the
embedded analog PUF is turned on.

Figure 5 shows the Probability Distribution Function (PDF) of the current consumption
and fosc at −40 ◦C, 27 ◦C (room temperature), and 85 ◦C for the first challenge, 000000. As
expected, the PDF of the output results resembles those of a Gaussian/normal function
for all three temperatures. For a 200-sample MC simulation, the current consumption and
fosc show reasonable variations with the standard deviation (σ)~67 µA and ~15 MHz at
27 ◦C (Figure 5). The PDF also remains close to Gaussian when temperature changes with
σ for the current consumption and fosc~70 µA and ~14 MHz at −40 ◦C, and ~63 µA and
~22 MHz at 85 ◦C, respectively. The MC simulations are repeated for the last challenge,
111111, showing a similar Gaussian/normal behavior (Figure 6). The MC results are then
used to evaluate the randomness of the proposed PUF using the Hamming Distance (HD)
function, which is a metric to show the difference between two data strings. There are
two HD measurements: Intra-HD and Inter-HD. Intra-HD measures the randomness of a
single PUF design (or a single chip) when one bit of the input challenge changes, while the
Inter-HD demonstrates the randomness between different PUF designs (or different chips)
when the same challenge is applied to the PUFs. For each challenge, a single MC simulation
can be used to find Inter-HD since MC simulations based on the device mismatch show the
PUF output difference between different samples (i.e., dies). Ideally, the Intra-HD and Inter-
HD of a PUF should be 0 and 0.5, respectively. Simulating Intra-HD in an ideal simulation
environment where circuit parameters, the supply voltage, biasing, and output load do
not experience any variation during the simulation is very challenging since the simulator
only uses the mathematical models for the analysis. To emulate a realistic environment
for Intra-HD simulations, reasonable uncertainty is added to the test bench by adding
randomness to the DC sources and temperature. The DC sources used in the test bench are
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randomly varied by considering ±5 mV error. This is consistent with testing conditions in
our lab where the DC voltages are set manually. In addition to variations of the DC voltages,
the temperature randomly varied from room temperature by ±1 ◦C (from 26 ◦C to 28 ◦C)
to emulate fluctuations in the room temperature during the measurement. Figure 7a–f
show the Inter-HD and Intra-HD results for the current consumption and fosc at −40 ◦C,
27 ◦C, and 85 ◦C based on the 200-sample post-layout MC simulations. Since the PDF
of the current consumption and fosc are reasonably close to Gaussian for both challenges,
as shown in Figures 5 and 6, the Inter- and Intra-HD results are only presented for the
first challenge, 000000. Ideally, Inter-HD for PUFs should be 0.5 and Intra-HD should
be 0 [10–15]. The challenge for defining Inter-HD and Intra-HD is to create accurate and
reliable bit representations (i.e., codeword) for responses. Codeword generation for this
work is based on the Huffman coding algorithm [20] and will be discussed in more detail
in Section 4. Using these codewords, the Inter-HD of the simulated responses are 0.4997
at −40 ◦C, 0.4995 at 27 ◦C, and 0.5004 at 85 ◦C for the current consumption, and 0.5010
at −40 ◦C, 0.4991 at 27 ◦C, and 0.5090 at 85 ◦C for fosc, respectively. The Intra-HD of the
simulated responses are 0.0107 at −40 ◦C, 0.0085 at 27 ◦C, and 0.0092 at 85 ◦C for the current
consumption, and 0.0036 at −40 ◦C, 0.0029 at 27 ◦C, and 0.0043 at 85 ◦C for fosc, respectively.
Both simulated Intra- and Inter-HD are very close to the ideal values for a PUF.
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4. Measurement Results

The proposed trusted VCO is implemented in a 1P9M 65 nm standard CMOS process
(Figure 8b) and uses an on-chip open-drain NMOS buffer to interface with the measurement
equipment (Figure 8a). A CVCO is also included on the same die for performance com-
parison (Figure 8c). To enable accurate performance measurement, both mm-Wave VCOs
are characterized using RF GSG probes with external bias-Ts facilitating the connection
to the power supply (Figure 8a). This way, the loss associated with external components
(such as the cables) can be de-embedded from the measurement results. A general view of
the test setup is shown in Figure 8a. While the core of both VCOs occupies a similar area
(93 µm × 197 µm for the trusted VCO and 99 µm × 182 µm for CVCO), the trusted VCO
needs additional pads to interface with the embedded PUF, resulting in a larger chip area.
A Keysight PXA N9030A signal analyzer and several Keithley 2000 DMM source meters are
used for the frequency analysis and DC characterization of the VCOs. The characterization
process is split into two parts: VCO performance measurement and comparison and PUF
characterization, randomness, and reliability analysis.

4.1. VCO Performance Measurement and Comparison

Both VCOs are interfaced with the signal analyzer to monitor their output spectrum,
measure their PN, and determine their TR. In this work, the proposed trusted VCO is
designed for low-power applications; as such, the PUF is disabled during normal operation.

The trusted VCO sustains oscillation when the supply voltage (VDD) is raised to 0.8 V
with the power consumption (PDC)~0.72 mW. For PDC~1.75 mW, the output power is
increased to −9.7 dBm and the VCO exhibits a TR ≈ 5.5 GHz (Figure 9a), from ≈24.6 GHz
to 30.1 GHz. Under such conditions, the PN measures better than −104.8 dBc/Hz and
−132.2 dBc/Hz at 1 MHz and 10 MHz offset, respectively (Figure 9b), when the fre-
quency is tuned to the upper end of the range (≈29.3 GHz). These results correspond
to FoM~191.7 dBc/Hz and ~199.1 dBc/Hz @1MHz and @10MHz, respectively. When
TR is considered, the FoMT of ~197.6 dBc/Hz and ~205 dBc/Hz are obtained at 1 MHz
and 10 MHz, respectively. On the other hand, the CVCO sustains oscillation when the
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supply voltage (VDD) is raised to 0.8 V with the power consumption (PDC)~0.6 mW. For
PDC~1.5 mW; the output power is increased to −10.1 dBm, and it exhibits a frequency
tuning range (TR) of ≈6.1 GHz, from ≈25 GHz to 31.1 GHz (Figure 9a). Under such
conditions, the PN measures better than −101.1 dBc/Hz and −130.4 dBc/Hz at 1 MHz
and 10 MHz offset, respectively (Figure 9b), when the frequency is tuned to the upper end
of the range (≈29.6 GHz). The CVCO PN results correspond to FoM~188.7 dBc/Hz and
~198 dBc/Hz @ 1 MHz and @ 10 MHz, respectively. When TR is considered, the FoMT of
~194.7 dBc/Hz and ~204 dBc/Hz are obtained at 1 MHz and 10 MHz, respectively. These
results clearly show that the proposed trusted VCO exhibits similar performance (esp. PN),
if not better, when compared against the CVCO under a similar power consumption.
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Figure 9. (a) TR and (b) PN comparison of the trusted VCO with the CVCO. The spectrum of the
trusted VCO is also shown.

The deterioration in the TR of the proposed trusted VCO is due to the extra capacitance
resulting from parasitics of additional cross-coupled pairs and additional metal wiring in
the layout. However, the slight closed-in PN improvement (esp. foffset < 1 MHz) in the
proposed trusted VCO compared to the CVCO requires a more detailed analysis.

A number of PN models have been developed for LC VCOs [21–25]. Among them,
the time variant PN model developed by Hajimiri et al. [21] is more accurate in predicting
the PN of LC oscillators, particularly in the 1/f3 and 1/f2 regions. Considering this time
variant PN model [21], calculating the change in the Impulse Sensitivity Function (ISF),
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which is a periodic and dimensionless function, is necessary [21]. Since the ISF is periodic,
it can be represented by Fourier coefficients as follows:

Γ(ωτ) =
Γ0

2
+

∞

∑
n=1

(Γn cos(nωoτ + θn)), (5)

where the coefficients (Γn) are real values and θn is the phase of the nth harmonic. θn is
small and can be ignored at random input noise [21], and the coefficients can be estimated
analytically or calculated from the simulation. Given its similarities with the ISF, the
Perturbation Projection Vector (PPV), which represents the sensitivity of the per cycle
jitter variance to current perturbations at the nodes of the oscillator [23], can be used to
estimate the ISF changes [21–23]. PPV results can be obtained via periodic simulations.
Figure 10 gives the PPV results obtained from Cadence Harmonic Balance (HB) and HB
noise simulations for both VCOs. HB PPV results are shown in V and HB noise PPV results
are shown in 1/V. Then, the PN of the LC VCO can be expressed as follows [24,25]:

L(∆ω) = 10 log
(

1
4q2

max∆ω2

(
Γ2

id,rmsi2d/∆ f + Γ2
R,rmsi2R/∆ f

))
(6)

where qmax is the maximum charge displacement across the equivalent output capacitance
where the impulse was injected, i.e., qmax = VmaxC (Vmax is the maximum voltage swing at
the output). Γ2

id,rms is the ISF from active devices and can be expressed in several forms,
e.g., Γ2

id,rms = 2V2
TH/πV2

max [24] or Γ2
id,rms = 2IDS/πβV2

max [25], where β = µeCoxW/L, µe
is the electron mobility, Cox the gate oxide capacitance per unit area, and W and L are the
transistor width and length, respectively. Γ2

R,rms is the ISF from the thermal noise source of
the oscillator (R), which is mostly produced by the tank. It is assumed to be 1/2 for single-
ended output and 1/8 for differential outputs [25]. i2d/∆ f is the power spectral density of
active devices’ noise current. The portion associated with the thermal noise can be expressed
as i2d,thermal/∆ f = 4kTγβVmax, where k is the Boltzmann constant, γ is the fitting parameter,
and T is the temperature as Kelvin. In most cases, βVmax ≈ gm of the device. The portion
associated with the flicker noise can be expressed as i2d, f licker/∆ f = KFg2

m/(COX .W.L.∆ f ),

where KF is the flicker noise fitting parameter. i2R/∆ f is the power spectral density of the
thermal noise current due to R and can be expressed as i2R/∆ f = 4kT/R. Equation (6)
includes the thermal and flicker noise sources [19,21–30] for both active and passive devices
in the VCO. Since the flicker and thermal noises of MOS devices are considered uncorrelated,
their impact on the PN can be studied separately, and the results can be superimposed [22].
Knowing that flicker noise is dominant at low offset frequencies, the impact of the flicker
noise on the PN should be studied in more detail. Hajimiri et al. [21] expresses the flicker
noise-dominant region of the PN (i.e., 1/f3 region) in terms of the 1/f noise corner, ω1/f. In
this case, the 1/f3 corner frequency, ω1/ f 3 , can be expressed as follows:

ω1/ f 3 = ω1/ f (ΓDC/Γrms)
2, (7)

where ω1/ f 3 is 1/f3 corner frequency, ω1/ f is 1/f corner frequency, and ΓDC and Γrms are
DC and root mean square (RMS) values of the ISF coefficients, respectively. Using (7), the
flicker noise-dominant portion of the PN can be expressed as follows:

L(∆ω)1/ f 3 = 10 × log

(
Γ2

0
q2

max
× i2n/∆ω

8.∆ω2 ×
ω1/ f

∆ω

)
, (8)

where Γ0 is the first coefficient of the ISF, and is equal to 2ΓDC, and i2n/∆ f is the total noise
current, i2R/∆ f + i2d/∆ f . At low offset frequencies, the flicker noise will be dominant; hence,
i2n/∆ f can be expressed as KFg2

m/(COX .W.L.∆ f ). Knowing the flicker and thermal noise of
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the MOS devices and the tank, the flicker noise- and thermal noise-dominant portions of
the PN can be derived separately as follows [31–33]:

L(∆ω) f licker = 10log

(
Γ2

0πKFg2
m

8q2
maxCoxW.L∆ω3

)
, (9)

L(∆ω)thermal = 10 log

(
kTπ2

I2
DD

(
1
R
+ γgm

)(
ω0

2Q∆ω

)2
)

, (10)

where IDD is the RMS current consumption of the VCO. Superimposing (9) to (10) leads to
a simplified PN expression that covers both the flicker noise- and thermal noise-dominant
regions of the PN as follows:

L(∆ω) ≈ 10log

(
kTπ2

I2
DD

(
1
R
+ γgm

)(
ω0

2Q∆ω

)2
+

Γ2
0πKFg2

m
8q2

maxWL∆ω3

)
, (11)
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The PN for two LC VCOs can then be compared using this simplified PN expression.
PPV results for both designs are gathered and compared. Γ0 obtained from the HB noise
simulation is 1.085 1/V and −1.44 1/V for the differential outputs of the CVCO and 0.36 1/V
and −0.19 1/V for the differential outputs of the trusted VCO, respectively (Figure 10).
Utilizing HB simulations reveals Γ0~−0.16 V and 0.14 V for the differential outputs of
the CVCO and ~0.0049 V and 0.058 V for the differential outputs of the trusted VCO,
respectively (Figure 10). The minimum ratio between Γ0 for two VCOs is ~2.4×, which
amounts to a ~7 dB improvement in the close-in PN for the trusted VCO. Additionally, the
trusted VCO exhibits larger qmax compared to the CVCO due to larger parasitic capacitors
from the additional cross-coupled pairs and the resulting on-chip metal wiring. This larger
qmax further improves the close-in PN performance of the proposed trusted VCO. The
measured PN results presented in Figure 9 reveal up to a 9 dB improvement in the PN at
100 kHz offset for the trusted VCO compared to the CVCO. As the frequency increases, the
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effect of flicker noise diminishes, and the thermal noise of active devices and the Q of the
LC tank become the dominant factor affecting the PN [18]. In this region, the PN can be
better modeled with (11). Considering (11), it is evident that the difference between the PN
of two VCOs gradually narrows until it becomes negligible at high offset frequencies near
the PN floor. To conclude this study, the performance of the trusted VCO is summarized
and presented in Table 1. Compared with the state-of-the-art VCOs [26–29] operating in
a similar frequency range and built with the 65 nm CMOS process, the proposed trusted
VCO exhibits competitive FoMs while consuming lower power.

Table 1. Trusted VCO performance summary and comparison with state-of-the-art VCOs.

This Work (CVCO/Trusted VCO) [26] [27] [28] [29]

PDC (mW) 1.5/1.75 3.4 3.8 7.2 3.8

fosc (GHz) 29.6/29.3 27.45 25.48 28.11 19.7

Tuning Range (GHz) 25–31.2/24.6–30.1 26.1–29.9 25.48–29.92 28.11–31.46 19.3–22.0

PN@1MHz (dBc/Hz) −101/−104.8 −105.7 −109.3 * −107.2 −106.33

PN@10MHz (dBc/Hz) −130.4/−132.2 −127.5 −128 * −123 # −127.82

FoM@1MHz (dBc/Hz) 188.7/191.7 189.1 191.6 187.6 186.4

FoMT@1Mz (dBc/Hz) 194.7/197.6 191.7 195.7 189.13 188.8

FoM@10MHz (dBc/Hz) 198/199.1 191 190.3 N/A N/A

FoMT@10Mz (dBc/Hz) 204/205 193.4 194.4 N/A N/A

Core Area (mm2) 0.018/0.018 0.038 0.08 0.11 0.064

Technology 65 nm/65 nm 65 nm 65 nm 65 nm 65 nm

FoM = |PN| + 20log(fo/∆f) − 10.log(Pdc/1 mW); FoMTT = FoM + 20log(TR/10). *: Up-converted to account for
dividing by two used for testing by the authors. #: It can be found via Figure 5 of [28], it is not given in [28].

4.2. PUF Characterization and Randomness Analysis

To characterize a PUF, the randomness, uniqueness, and correlation criteria should be
evaluated. For conventional PUFs, the direct analysis of the response is sufficient. How-
ever, the proposed embedded PUF requires customized digitization since each challenge
will generate multiple responses. As the first step, the expected PDF of the responses
is presented to quantify the reliability of the PUF [5]. Figure 11 shows the distribution
of the measured current consumption and fosc for a trusted VCO chip operating under
VDD = 1.2 V at room temperature (27 ◦C). Since the current consumption and fosc are
directly affected by the device size, which follows the near-Gaussian mismatch profile of
CMOS devices, a normal distribution is expected. To perform HD analysis, the measured
current consumption and fosc should be converted to binary strings. The conversion is
customized considering the accuracy of the measurement equipment and biasing (which
sets the minimum resolution) and the variation range of the measured parameters (current
consumption and fosc). In this work, measurement devices have 1 MHz and 1 µA accuracy.
However, the accuracy of biasing voltage sources used for the challenge pairs is ~10 mV
and, hence, sets the minimum resolution for the responses. During the authentication, each
challenge input based on the “CN3 CN2 CN1 CP3 CP2 CP1” codeword produces its own
unique response as current consumption and fosc. Knowing that the length of the output
bit string should be equal to or greater than that of the challenge codeword [20], a lower
bound (six bits) on the length of the bit string is found. However, accurate conversion
of the output analog response to bit strings is a challenge for this work since multiple
outputs are generated for each challenge input. Unlike most analog PUFs [10–15], setting a
fixed decision threshold is difficult for all chips given normal PVT variations affecting the
high-frequency path. As such, the soft decision technique [12] is used for output bit string
generation before the HD analysis.
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Figure 11. PDF of the (a) current consumption and (b) fosc for the 6-bit input challenge.

First, the responses are analyzed to find the variation range. When the input challenge
moves from 000000 to 111111, the current consumption (i.e., the DC response) changes from
~2.6 mA to ~3.8 mA, and fosc (i.e., the AC response) varies from ~29 GHz to ~29.4 GHz,
respectively. Then, the weight of each digit in the decimal number is considered. Knowing
the accuracy of the measurement equipment, both current (in mA) and fosc (in GHz)
readings can be expressed with three decimal digit accuracy, i.e., A.XYZ for current and
BC.TVU for frequency. A level change for the current response can be 2 or 3, other level
changes can be from 0 to 9, indicating that the changes have an unequal impact on the
response. In such conditions, coding theory approaches, such as Huffman coding [20],
where higher probability represents fewer bits and vice versa, are desired. Due to the
limited accuracy of the biasing network (~10 mV), the least significant digits, i.e., Z and U,
require soft decision thresholds. Finally, the proposed customized coding can be expressed
as 1-bit for A, 4-bit for X, 4-bit for Y, 1-bit for Z, 1-bit for B, 1-bit for C, 3-bit for T, 4-bit for V,
and 1-bit for U. The result will be two 10-bit codewords, one for the current consumption
response and the other for fosc. Using this customized code, a sample set consisting of
eight dies operating under similar conditions (VDD = 1.2 V and T ≈ 27 ◦C) is evaluated for
Inter-HD and Intra-HD analyses (Figure 12). The measured average Inter-HD of the current
consumption and fosc are ~0.5058b and 0.4978b, respectively, which are very close to the
ideal value of 0.5b. Similarly, the measured average Intra-HD of the current consumption
and fosc are 0.0055b and 0.0053b, respectively, which are very close to the ideal value of 0,
demonstrating acceptable randomness for the proposed analog embedded PUF.

To quantify the degree of correlation between the PUF outputs for different challenges,
the ACF of the proposed analog PUF is evaluated [34]. ACF measures the correlation of
a signal with a delayed copy of itself as a function of delay. The smaller the value of the
correlation is, the lower the correlation of the responses and the higher the resemblance
to the Gaussian distribution. For conventional PUFs, bit streams of responses are used
for ACF measurements. In this work, the ACF is applied to current consumption and fosc,
which make up the output responses to each challenge. To compute ACF, a stochastic time
series of measured responses is created since the ACF aims to detect the correlation between
two random responses in a sample set. To this end, 40K responses are gathered for each
output to create the required stochastic time series for the eight chips. Then, the ACF of
both 40K sample sets, one for current consumption and the other for fosc, is calculated when
considering 10K lags (Figure 13). The ACF of the responses for the current consumption
and fosc at a 95% confidence level are 0.0111 and 0.0110, respectively, which are very close
to the ideal value of zero, demonstrating a desired level of randomness for the proposed
PUF (Table 2).
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Table 2. PUF performance summary and comparison with state-of-the-art analog PUFs.

This Work [12] [14] [15]

Technology 65 nm 65 nm 65 nm 55 nm

PUF type Weak Weak Weak Weak

Chip area 594 um2 40,000 um2 37,511 um2 997 um2

CRP space (64,2) (16,8) (16,20) (128,1)

Entropy Source Capacitance and
Impedance mismatch Process variation Impedance mismatch Process variation

Bit rate 1.5 Gbps 100 Mbps 320 Kbps 40 Kbps

ACF 0.0111/0.0110 0.0108 0.0123 0.0142

Energy/bit 0.83 pJ 0.36 pJ 6 pJ 0.91 pJ

Intra-HD 0.0055/0.0054 0.0906 0.0031 N/A

Inter-HD 0.5113/0.4892 0.4859 0.4986 0.4681

The performance of the proposed embedded analog PUF is summarized in Table 2 and
compared against those of the published state-of-the-art analog PUFs. The proposed analog-
embedded PUF offers a competitive performance in terms of entropy, energy consumption,
and bit rate while occupying a smaller chip area in a similar 65 nm CMOS process. An
important advantage of the proposed analog PUF is its high sampling rate. The sampling
rate is calculated by simulating the settling time of the VCO when switching the input
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challenge bit (Figure 14). As shown in Figure 14, the VCO frequency changes and settles to
the new frequency within ~4 ns when switching from the first to the last challenge, enabling
a bit rate as high as 1.5 Gbps for each response type due to the 6-bit length of the challenge.
The bit rate is calculated by multiplication of the sampling rate (Nyquist criterion) and
the number of bits for each symbol, which is the length of challenges in this work [35] as
shown below:

Data rate = fs × l = l/tsettling, (12)

where l is the number of bits for each symbol (i.e., six bits for the proposed PUF), fs is
the sampling rate, and tsettling is the slowest settling time from the first challenge to the
last challenge (i.e., ~4 ns for the proposed PUF). Such a high data rate allows for reducing
the time needed for the authentication process and reducing the unwanted latency when
trying to establish a trusted data link. Using (12), the energy per bit can be calculated by
subtracting the VCO power during the authentication with the one during the normal
operation (i.e., challenge set to 000000), revealing a competitive performance compared to
the state-of-the-art (Table 2). The very high data rate achieved for the proposed embedded
PUG along with its low power consumption allows for delivering an energy/bit as low
as 0.83 pJ, which is comparable to the state-of-the-art PUFs [12,14,15] implemented in a
similar CMOS technology. Moreover, the larger CRP size made available by the generation
of multiple outputs for a single challenge has created a relatively compact design compared
to other analog PUFs implemented in similar CMOS process nodes, making the design
well-suited for integration with communication transceivers.
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5. Conclusions

An innovative 1.75 mW trusted CMOS LC VCO, which employs an embedded analog
PUF and operates at 24.6 GHz to 30.1 GHz, is presented. The VCO benefits from an analog
PUF, which is integrated within the cross-coupled CMOS pair, allowing for a larger set of
CRPs with the same number of input challenges. Fabricated in a 1P9M 65 nm standard CMOS
process, the proposed trusted VCO delivers the measured PN ~−104.8 dBc/Hz @ 1 MHz and
−132.2 dBc/Hz @ 10 MHz, revealing FoMs of 191.7 dBc/Hz and 199.1 dBc/Hz, respectively.
With TR~5.5 GHz, the FoMT reaches 197.6 dBc/Hz and 205.0 dBc/Hz @ 1 MHz and @ 10 MHz,
respectively. The embedded PUF consumes as low as 0.83 pJ/b and is capable of running
at 1.5 Gb/s. It exhibits sufficient uniqueness with the measured Inter-HD of 0.5113b and
0.489b and measured Intra-HD of 0.0055b and 0.0053b for the current consumption and fosc,
respectively. Moreover, an ACF of 0.0111 and 0.110 is achieved for the current consumption
and fosc responses of the proposed PUF, respectively, at a 95% confidence level. Compared
with the state-of-the-art LC VCOs operating in the same frequency range, the proposed
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trusted VCO shows competitive performance at lower power with added device security and
authentication features.
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