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Abstract: Array-designed triboelectric nanogenerators (AD-TENGs) have firmly established them-
selves as state-of-the-art technologies for adeptly converting mechanical interactions into electrical
signals. Central to the AD-TENG’s prowess is its inherent modularity and the multifaceted, grid-like
design that pave the way to robust and adaptable detection platforms for wearables and real-time
health monitoring systems. In this review, we aim to elucidate the quintessential role of array design
in AD-TENGs for healthcare detection, emphasizing its ability to heighten sensitivity, spatial resolu-
tion, and dynamic monitoring while ensuring redundancy and simultaneous multi-detection. We
begin from the fundamental aspects, such as working principles and design basis, then venture into
methodologies for optimizing AD-TENGs that ensure the capture of intricate physiological changes,
from nuanced muscle movements to sensitive electronic skin. After this, our exploration extends
to the possible cutting-edge electronic systems that are built with specific advantages in filtering
noise, magnifying signal-to-noise ratios, and interpreting complex real-time datasets on the basis of
AD-TENGs. Culminating our discourse, we highlight the challenges and prospective pathways in the
evolution of array-designed AD-TENGs, stressing the necessity to refine their sensitivity, adaptability,
and reliability to perfectly align with the exacting demands of contemporary healthcare diagnostics.

Keywords: triboelectric nanogenerators; array design; medical application; healthcare diagnostics

1. Introduction

Since their advent in 2012, TENGs have set a new benchmark in energy harvesting and
active sensing, establishing their presence in a myriad of domains including green energy,
molecular detection, healthcare, and gesture recognition [1–6]. Their dual functionality
as energy harvesters and intelligent sensors positions TENGs as a promising solution for
environmentally friendly and personalized healthcare. The array design in TENGs has
emerged as a pivotal aspect in crafting TENG-based biosensors that expand their feasibility
in health monitoring, environmental sensing, and point-of-care diagnostics by enhancing
their sensitivity, adaptability, and spatial resolution [7–13].

However, despite the remarkable advancements in this field, challenges persist con-
cerning power output, device stability, biocompatibility, and integration with other cutting-
edge technologies such as flexible electronics and advanced data processing systems [14–21].
In recent years, research directions have been focused on addressing these limitations and
exploring new pathways for amplifying the performance and capabilities of these adaptable
devices, and AD-TENGs are distinctively recognized because their matrix configuration
nurtures a diverse approach towards detection and energy harvesting [22–25]. This grid-
like framework inherently houses essential qualities such as enhanced sensitivity, superior
spatial resolution, redundancy, and the ability for concurrent multi-detection, elements
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vital for dynamic monitoring functionalities [26–29]. Moreover, AD-TENGs are adept at
registering subtle physiological alterations, thereby holding immense potential to steer
the course of advancements in healthcare and wearable technology [30–36]. The overarch-
ing goal of the current research is to hone and maximize these attributes, promoting the
evolution of robust, efficient, and precise data collection systems.

Compared to piezoelectric, electromagnetic, and thermoelectric, array-designed tri-
boelectric nanogenerators (AD-TENGs) stand out due to several key advantages [37–43].
First, they exhibit high efficiency and energy output, particularly because their array design
enhances power generation efficiency. Secondly, their modularity and scalability make
them versatile for applications ranging from small-scale wearables to larger energy systems.
AD-TENGs are also notable for their flexibility and adaptability, conforming easily to dif-
ferent shapes and surfaces, which is crucial for wearable healthcare devices [44]. The array
configuration enhances both sensitivity and spatial resolution, allowing for the detection of
subtle physiological changes, essential in healthcare diagnostics. Additionally, AD-TENGs
offer redundancy and multi-detection capabilities, ensuring reliable performance even if
individual units fail. In terms of fabrication, they are generally more cost-effective and sim-
pler to produce than other nanogenerators, using low-cost materials and straightforward
processes. Environmentally, AD-TENGs are favorable due to their reliance on non-toxic
materials, making them more sustainable. Lastly, their versatility in energy harvesting from
various mechanical movements, including human motion and natural elements like wind
and water, makes them highly adaptable for diverse applications [45–48]. These attributes
collectively position AD-TENGs as highly effective and versatile for a range of applications,
particularly in healthcare diagnostics and wearable technology.

In this review, we aspire to present an in-depth analysis of the recent advancements and
groundbreaking strategies in the design of AD-TENGs for simultaneous energy harvesting
and medical utilities (Figure 1). We begin from the fundamental aspects by introducing the
basis mechanism and working modes of AD-TENGs, then detail the latest advancements
in the application of AD-TENGs in health monitoring and biosensors to highlight the
versatility and potential (Table 1). After that, we explore various strategies for incorporating
array designs into TENG-based biosensors that foster the development of innovative
and customizable devices for contemporary healthcare diagnostics. To shed light on
the incorporation of cutting-edge materials and their role in augmenting the efficiency
and adaptability of AD-TENG-based devices across diverse sectors, we showcase the
accomplishments of AD-TENGs in realms such as motion sensing and electronic skin,
alongside the wide-ranging medical applications and the adoption of array structures in
textile TENG. Furthermore, we examine the potential repercussions of these progressions on
the frontier of novel energy solutions and state-of-the-art medical apparatuses, ultimately
ushering in a fresh epoch of sustainable and individualized healthcare diagnostics solutions.

Table 1. Summary of AD-TENG.

Data Size Energy Sources Outputs Applications Working Modes

2022 [49] None Vibration 16.96 W m−3 Wave Energy Collection Lateral sliding
2022 [50] 5 cm × 5 cm Movement 26 mW Gait Recognition Contact–separation
2023 [51] None Movement 6 nA. Finger Bending Sensing Contact–separation
2022 [52] 2 cm × 2 cm Movement 3 µA Body Motion Sensing Contact–separation
2022 [53] None Vibration 85 V Energy Collection Contact–separation
2023 [54] 7.5 cm × 7.5 cm Vibration 0.11 V/kPa Pressure Sensing Contact–separation
2023 [55] 1 cm × 1 cm Movement 15 nA Tactile Sensing Contact–separation
2021 [56] 2 cm × 2 cm Vibration 51.2 V Body Motion Sensing Contact–separation
2022 [57] 2.8 cm × 3 cm Vibration 200.93 mW/m2 Energy Collection Contact–separation
2020 [58] 8 cm × 8 cm Vibration 7531 µW/m2 Energy Collection Contact–separation
2022 [59] 4 cm × 4 cm Movement 469 mW/m2 Energy Collection Contact–separation
2022 [60] None Movement 52 V Energy Collection Contact–separation
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Table 1. Cont.

Data Size Energy Sources Outputs Applications Working Modes

2022 [61] 8 cm × 8 cm Movement 138.55 mW/m2 Body Motion Sensing Contact–separation
2023 [62] 2 cm × 2 cm Movement 48 V Body Energy Collection Contact–separation
2021 [63] 3 cm × 3 cm Vibration 12 µA Energy Collection Contact–separation
2020 [64] None Movement 26.9 µA Energy Collection Contact–separation
2022 [65] None Movement 1.25 mW/m2 Dangerous Motion Sensing Contact–separation
2022 [66] 2 cm × 2 cm Vibration 64 V Sleep State Sensing Contact–separation
2022 [67] None Vibration 230 V Sterilization Contact–separation

J. Low Power Electron. Appl. 2024, 14, x FOR PEER REVIEW  3  of  25 
 

 

2022 [57]  2.8 cm × 3 cm  Vibration  200.93 mW/m2  Energy Collection  Contact–separation 

2020 [58]  8 cm × 8 cm  Vibration  7531 µW/m2  Energy Collection  Contact–separation 

2022 [59]  4 cm × 4 cm  Movement  469 mW/m2  Energy Collection  Contact–separation 

2022 [60]  None  Movement  52 V  Energy Collection  Contact–separation 

2022 [61]  8 cm × 8 cm  Movement  138.55 mW/m2  Body Motion Sensing  Contact–separation 

2023 [62]  2 cm × 2 cm  Movement  48 V  Body Energy Collection  Contact–separation 

2021 [63]  3 cm × 3 cm  Vibration  12 µA  Energy Collection  Contact–separation 

2020 [64]  None  Movement  26.9 µA  Energy Collection  Contact–separation 

2022 [65]  None  Movement  1.25 mW/m2  Dangerous Motion Sensing  Contact–separation 

2022 [66]  2 cm × 2 cm  Vibration  64 V  Sleep State Sensing  Contact–separation 

2022 [67]  None  Vibration  230 V  Sterilization  Contact–separation 

 

Figure 1. The comprehensive applications of array-designed TENG. 

2. Array Configuration Amplifies TENG Energy Collection 

2.1. The Principle TENG 

TENGs, similar to TENGS with other various designs, capitalize on the triboelectric 

effect coupled with electrostatic induction to transform biomechanical energy into usable 

electrical energy [68–71]. This conversion process initiates when materials possessing dis-

tinct electronegativities come  into contact,  facilitating  the  transfer of electrons between 

them.  Subsequently,  as  these materials  part ways,  an  electrostatic  induction  initiates, 

steering the flow of electrons towards the external load and thereby engendering an alter-

nating current that sustains through repeated cycles of contact and separation. In princi-

ple, TENGs predominantly exhibit  four core modes of operation, which are delineated 

below and illustrated in Figure 2a. 

Figure 1. The comprehensive applications of array-designed TENG.

2. Array Configuration Amplifies TENG Energy Collection
2.1. The Principle TENG

TENGs, similar to TENGS with other various designs, capitalize on the triboelectric
effect coupled with electrostatic induction to transform biomechanical energy into usable
electrical energy [68–71]. This conversion process initiates when materials possessing
distinct electronegativities come into contact, facilitating the transfer of electrons between
them. Subsequently, as these materials part ways, an electrostatic induction initiates,
steering the flow of electrons towards the external load and thereby engendering an
alternating current that sustains through repeated cycles of contact and separation. In
principle, TENGs predominantly exhibit four core modes of operation, which are delineated
below and illustrated in Figure 2a.
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Vertical Contact–Separation Mode: Within this modality, two triboelectric materials
carrying opposing electrical charges are stationed in close proximity, undergoing periodic
cycles of contact and separation along a vertical trajectory. This contact fosters the genera-
tion of triboelectric charges at the mutual interface. As the materials disengage, a redistri-
bution of these charges occurs, fostering an electrical potential difference that instigates the
flow of electrons through an external load, thereby generating electric power [73,74].

Lateral Sliding Mode: This mode witnesses two triboelectric materials, holding op-
posite charges, engaging in a horizontal sliding motion against each other. This relative
movement, parallel to their interface, leads to a dynamic alteration in the overlapping area,
thereby creating an electric potential gradient. This gradient acts as a catalyst for the flow
of electrons through an external circuit, thereby generating electricity [75,76].

Single-Electrode Mode: In this scenario, one of the materials boasts an attached
electrode, whereas the counterpart remains electrically isolated. This isolated component
undergoes periodic cycles of contact and separation with the material having the attached
electrode. This interaction engenders triboelectric charges at the interface, inducing a flow
of electrons through the connected ground electrode and the singular electrode, thereby
producing electrical power [77,78].

Freestanding Triboelectric Layer Mode: Here, a standalone triboelectric layer, flanked
by electrodes on either side, exhibits opposing triboelectric charges on its two facets. This
layer undergoes a sequence of contact and separation with the electrodes, inducing a defor-
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mation in the layer. This mechanical action facilitates the generation of triboelectric charges
at the interfaces between the freestanding layer and the electrodes. The induced electric
potential difference propels the flow of electrons through an external circuit, culminating in
the generation of electrical energy [79,80].

2.2. Design and Optimization of Array-Designed TENG

In an AD-TENG system, the integration of multiple TENG units into a singular array
leads to a significant increase in total energy output (Figure 2b). Each unit contributes indi-
vidually to the energy harvesting process, resulting in a cumulative effect that substantially
elevates the overall power generation. This synergistic operation is a cornerstone in the design
philosophy of AD-TENGs, providing a robust framework for efficient energy conversion.

Moreover, the array configuration ensures a uniform distribution of mechanical stress
across the TENG units. This uniformity is crucial for the consistent activation of all units,
thereby optimizing the energy harvesting efficiency. It also plays a key role in enhancing
the durability and reliability of the system. The redundancy afforded by multiple units
ensures that the failure of any single unit does not critically impair the overall performance,
thereby extending the operational lifespan of the AD-TENG.

Flexibility in design is another hallmark of AD-TENGs. The array can be tailored in
various shapes and sizes, making it highly adaptable to specific requirements, especially in
applications like wearable technology and biomedical devices. This customizable nature of
AD-TENGs opens avenues for their incorporation into a multitude of platforms, ranging
from small-scale electronic devices to larger energy harvesting systems.

The scalability of AD-TENG arrays is an essential feature, allowing for adjustments in
size and configuration to meet the desired power output for different applications. This
scalability, coupled with the ease of integration with electronic circuitry, facilitates sophis-
ticated control and optimization of harvested energy, which is particularly beneficial in
applications requiring precise energy management, such as smart sensors and IoT devices.

Furthermore, the array design presents numerous opportunities for optimization in
material selection, structural design, and operational modes. Tailoring each unit within the
array to specific operational conditions can significantly enhance the overall performance of
the AD-TENG. Additionally, in applications requiring high spatial resolution, such as sens-
ing and health monitoring, the array design allows each unit to act as an independent sensor,
providing detailed information about mechanical interactions or physiological parameters.

2.3. Improving Energy Collection Efficiency

In the realm of energy harvesting, the optimization of array structures to amplify both
energy collection efficiency and stability stands as a focal point of innovation [58,81–83]. A
notable breakthrough in this area is epitomized in Han et al.’s research, which unveils a
remarkable stride in harmonizing efficiency and enduring performance through sophis-
ticated array configurations [49]. In this study, a hybrid TENG was conceptualized and
realized to exploit the intricate dynamics of ultra-low-frequency wave energy—a sector
traditionally marked by its intricate patterns and directional unpredictability. The three
strategically aligned TENGs significantly amplify both space utilization and volume power
density, while ensuring a continuous and stable energy collection ability compared to other
devices (Figure 3a). This accomplishment, evidenced by peak volume power densities
of 2.02 and 16.96 W m−3 for F-TENG and H-EMG, respectively, at a 1.4 Hz stimulation
frequency, delineates a significant advancement in the creation of self-powered intelligent
marine monitoring systems and a spectrum of energy harvesting applications within smart
city frameworks.
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gait recognition results. 2022 Elsevier [50]. (c) Structural diagram of the G-TENG and configuration
of the varied electrode widths (1, 1.5, 2, and 2.5 mm) with a constant electrode spacing of 0.1 mm
for a G-TENG angle sensor. 2023 ACS [51]. (d) Schematic illustration for the fabrication process of
PPy-PVDF TENG. 3DPPyNAs were deposited on carbon paper by electrochemical deposition and
combined with the porous PVDF film to construct PPy-PVDF TENG. 2022 ACS [52]. (e) The structural
design of particle-based TENG. 2022 Elsevier [53].

Building upon recent strides in energy harvesting, Zhang et al.’s research marks a
significant leap forward. This team has ingeniously crafted a hybrid structure combining
three-dimensional polypyrrole nanoarrays with porous poly (vinylidene fluoride) films, a
design that significantly bolsters the mechanical robustness and electrical yield of TENGs
(Figure 3d) [52]. The core innovation of this approach resides in its strategic manipula-
tion of frictional interaction, a pivotal factor in energy generation. By augmenting the
contact surface area and enhancing the affinity for contact, these nanoarrays substantially
elevate the TENG’s efficacy. This amplification in performance positions the device as a
potent and reliable energy harvesting mechanism, particularly suitable for use in personal
electronic devices.

Moreover, Saqib et al. introduces a revolutionary approach to enhancing energy
harvesting efficiencies (Figure 3e) [53]. In this new configuration, each individual particle,
which originally functioned as a standalone unit in P-TENG, becomes an integral element
of a larger array. This array, composed of multiple such particles, each housed in rapidly
degradable gelatin capsules and utilizing cellulose-based materials, significantly amplifies
the system’s power generation capacity. As each particle contributes to the collective
energy output, the overall system can now generate voltages and power at scales much
higher than the original P-TENG’s range of 15 to 85 volts and 5.488 to 70 microWatts. The
array formation ensures efficient energy harvesting from all directions, thereby eliminating
the limitations of traditional contact and separation methods. This modular and scalable
approach not only makes the TENG highly adaptable to various applications, particularly
those involving small and irregular movements, but also maintains the eco-friendly ethos
of the original design by using biodegradable components. Consequently, the TENG
emerges as a highly efficient, versatile, and sustainable solution in the realm of energy
harvesting technologies.

3. Array Configuration Enhances TENG Sensitivity
3.1. Matrix-Designed TENG
3.1.1. Matrix Design Enhances Motion Sensing

In the ever-evolving field of health and technology, pioneering intelligent gait recog-
nition systems have emerged on the basis of TENG as a significant innovation, offering
transformative applications in identity recognition, physical training, and especially clinical
medicine, where it shows promise in the early diagnosis of diseases like Parkinson’s and
hemiplegia [84–88]. These sensors capture intricate details of movements, forming complex
data matrices which are subsequently analyzed by a data processing module before being
interfaced with a PC for further scrutiny.

Wang developed a self-powered strain sensor from graphene oxide-polyacrylamide
(GO-PAM) hydrogels, which also functions as a TENG to harness mechanical energy for
powering up to 353 LEDs and electronic thermometers, thus demonstrating its potential in
energizing electrical devices [50]. With real-time processing capabilities, these algorithms
achieve high-precision recognition, showcasing an impressive accuracy rate of up to 99.5%
for normal gaits and 98.2% for pathological gaits (Figure 3b). Consequently, this system
stands as a beacon of progress in the gait analysis field, promising a revolutionary approach
to early patient diagnosis and treatment, and offering a significant edge over other biometric
identification technologies.

Dan and his team focused on refining human–robot interaction through the nuanced
detection of finger movements and brought forth a groundbreaking innovation in the
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domain of human–robot interaction systems [51]. At the heart of this advancement lies
the stereoscopic structured triboelectric nanogenerator (SS-TENG), characterized by its
distinctive matrix grating structure (Figure 3c). This central component, termed G-TENG,
amplifies the device’s performance, capable of precisely detecting finger movements by
generating correlating triboelectric signals during the bending and holding states of the
fingers. Remarkably, the device can discern bending angles with a minimum resolution of
4.1◦, facilitating not only self-powered high-resolution angle recognition but also paving
the way for further developments in triboelectric sensing or interactive applications. The
intricate design of the SS-TENG represents a milestone in the pursuit of more intuitive and
diverse control strategies in various sectors, hinting at the potential to redefine human–
machine interaction techniques.

In the burgeoning field of wearable health technologies, the innovative creation of Qiu
et al. has emerged as a significant breakthrough [89]. They have developed a TENG that
astutely incorporates conductive polymers, particularly polyaniline (PANI), as electrodes.
Merging this with commonplace fabrics and integrating it with polycaprolactone (PCL), the
TENG notably enhances the compatibility between the device and its wearer, a crucial aspect
in wearable technologies. The resultant TENG is distinguished by its exceptional softness,
a characteristic that ensures comfort during prolonged use, an essential feature in wearable
devices. This softness, combined with superior gas permeability, permits skin to breathe,
thereby preventing discomfort or irritation over extended periods of wear. Additionally, the
flexibility of the TENG allows it to endure various physical manipulations such as stretching,
folding, and twisting, ensuring that its performance remains uncompromised in diverse
usage scenarios. Furthermore, the TENG’s innovative design enables the development
of a calibration-free, self-powered sensor. This sensor is particularly adept at monitoring
vital signs, a critical component in personal health management, ensuring continuous and
accurate tracking of health metrics without the need for external power sources. This aspect
greatly enhances the device’s utility in remote health monitoring and in scenarios where
consistent power supply is a challenge.

In recent years, the field of prosthetics has witnessed remarkable advancements and
brought new hope and possibilities to amputees. Prosthetic limbs have evolved from mere
functional replacements to sophisticated devices aiming to restore the natural feel and
mobility that amputees once possessed. As researchers venture to overcome these hurdles,
a promising innovation spearheaded by Chang and his team emerges to potentially redefine
the future of prosthetic applications. This novel TENG-based tactile sensor array system
aims to continually monitor the internal pressure distribution in prosthetic sockets and
promises significant improvements over existing sensors. Crafted through a scalable and
economical electrospinning process, the biodegradable PCL nanofiber membrane features
an excellent surface area-to-volume ratio, fostering enhanced charge generation during
triboelectrification processes. This TENG-based sensor demonstrates remarkable resilience,
showcasing stability up to 10,000 cycles and a resistance to variations in temperature and
humidity. It is envisaged that with further development and testing, the TENG-based
sensor array system might become a standard component in prosthetic devices, aiding
in the prevention of pressure sores and other common complications. As this technology
approaches commercialization, it is hoped that it will usher in a new chapter of refined,
patient-centric prosthetic solutions, contributing positively to the healthcare landscape.

3.1.2. Matrix Design Enhances Touch Perception

In a parallel stride of innovation, Huang and his team developed a novel paper-based
touch sensor that stands as a beacon of potential in the rapidly advancing field of consumer
electronics [90]. Central to this innovation is the innovative structure that incorporates
embedded silver nanowire (Ag-NW) micro-probe arrays within a paper substrate, allowing
the sensor to detect multiple touch inputs with heightened sensitivity, all while maintaining
a slim profile of about 100 µm. A noteworthy feature of this design is the matrix or array
format of the micro-probes, where each sensing unit comprises 36 independent micro-
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probes with diameters less than 50 µm, meticulously arranged in a dense matrix. This
arrangement is crucial in capturing the spatial distribution of touch pressure, essentially
functioning as a digital extension of human skin. Remarkably, the fabrication process of
this sensor involves a revolutionary double-sided laser printing technique, which is both
mask-free and solvent-free, lending itself perfectly to the paper substrates used in this
study. Through a streamlined “puncture and fill” process, micro-channels are created and
subsequently filled with Ag-NWs, forming the embedded micro-probe array. This method
showcases not only cost-effectiveness but also scalability, flexibility, and the potential for
adapting to various shapes.

In the realm of addressing tactile deficiencies due to peripheral nerve damage,
Shlomy et al.’s pioneering work on triboelectric nanogenerators (TENG-IT) marks a sig-
nificant advancement, particularly in the context of array design enhancing touch per-
ception [91]. The TENG-IT, with its ingeniously simple architecture, is fundamentally
self-powered, biocompatible, and extensively customizable, making it a ground-breaking
solution for tactile recovery. Central to its design is the use of polydimethylsiloxane (PDMS),
nylon (Ny), and cellulose acetate butyrate (CAB), each selected for flexibility and biocom-
patibility, crucial traits for integration into human physiology. The TENG-IT operates on an
array configuration, where PDMS forms the negative layer, and Ny and CAB constitute
the positive counterparts. This layered array is adeptly embedded under the human skin,
converting mechanical pressure into electrical potential. This potential, once generated, is
deftly conveyed to healthy sensory nerves through an intricate network of cuff electrodes.

Li and his associates addressed limitations in sensitivity and crosstalk interference
meticulously and delineated an innovative approach to the design and fabrication of flexi-
ble, skin-integrated TENG sensor arrays, with a concerted focus on crosstalk suppression
and sensitivity augmentation (Figure 4a,b) [54]. By harnessing a synergistic amalgamation
of 3D printing technology, solution-processed silver nanowire (Ag NW) electrodes, and
polydimethylsiloxane (PDMS) triboelectric layers, the researchers have orchestrated the
creation of an adept sensor array, boasting a remarkable sensitivity of 0.11 V/kPa and a
comprehensive pressure detection range, facilitating nuanced detection of tactile nuances,
spanning gentle touches to substantial pressures. This array stands as a testament to metic-
ulous engineering, incorporating 100 independent sensing units arranged methodically
within a 7.5 cm × 7.5 cm grid, a design which actively minimizes crosstalk interference,
an attribute substantiated to restrict output to a minimal 10.8%, illustrating a promising
trajectory in the spheres of tactile sensing and human–machine interface applications
(Figure 4c,d).

3.2. Array Textile-Based TENG
3.2.1. Improve Motion Sensing through Array Textile Design

In the rapidly advancing field of wearable technologies, the array design in fabric-
based TENGS seems to be intrinsic and the array structure serves as a critical component in
enhancing the efficiency and functionality of these devices. It facilitates the fine-tuning of
individual units, which is essential for optimizing performance and potentially introducing
new capabilities in sensing and adaptive response to varying conditions.

In the recent study conducted by Zhang, a pioneering method has been developed
to enhance the performance and multifunctionality of textile-based TENGs (t-TENGs)
(Figure 5a) [56], a promising innovation in the realm of intelligent electronic textiles and
biosensors. The novel brush coating method employed in this work allowed for the
creation of a PDMS–CNT film on commercial silver textile, establishing a high-performing,
eco-friendly, and versatile PCN-TENG system. This enhanced TENG notably excelled in
energy collection and human motion detection, with the capacity to switch between modes
optimized for either energy collection or precise movement identification, showcasing
significant improvements in open-circuit voltage and short-circuit current compared to
devices fabricated using traditional methods, indicating a promising future for self-powered
smart wearables and intelligent electronic textiles.
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Building upon the strides made in the realm of smart textiles, researchers continue
to hone the intricacy and functionality of these innovative materials. In the recent study
conducted by Li, a novel 3D double-electrode and machine-knittable fabric triboelectric
nanogenerator (3D-FTENG) is presented as a significant advancement in wearable elec-
tronic textiles (Figure 5b,c) [57]. Developed through the utilization of coated core-spun yarn
and programmable spacer fabric technologies, it integrates both positive and negative tribo-
electric materials along with electrode materials, where the TPU-PDMS-coated Ag-cotton
core-spun yarns not only offers superior comfort and air permeability but also exhibits
remarkable durability, maintaining performance even after numerous wash cycles and
extensive cyclic tests. Significantly, this innovation can be incorporated into conventional
garments and is able to detect a range of motions in various body parts, even foreseeing
utilization in smart carpets for pedestrian flow monitoring and early warning systems.

Transitioning from Li’s initiative, the research sphere witnesses another noteworthy
contribution in the form of a study conducted by Dong. This study emphasizes not just
energy harvesting, but also on achieving a harmonious blend of comfort and technology.
Here, an innovative, stretchable, and comfortable textile-based TENG (t-TENG) was devel-
oped (Figure 5d) using Ag conductive yarns coupled with PTFE and nylon66 to showcase
an array-like electronic textile [58]. This structure allows the TENG to be embedded within
garments, able to harvest energy during activities such as walking or running, all the
while maintaining the comfort and aesthetic of the garment. Moreover, the array design
also opens up avenues in the medical field for monitoring physical parameters in real
time during exercise, thus paving the way for smart garments with integrated health
monitoring systems.
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In light of the research presented, it is evident that advancements in t-TENGs are
steadily progressing with a clear focus on enhancing human motion detection and energy
harvesting capabilities. These works collectively highlight the potential of integrating
these technologies into wearable garments, aiming for real-time monitoring of human
movements and possibly assisting in healthcare applications. As these studies indicate, the
field seems poised for further developments, with the goal of creating functional, durable,
and comfortable smart garments that can be integrated into daily life.

3.2.2. Improving Disease Prevention through Array Textile Design

In recent years, the emphasis on proactive healthcare diagnostics has steadily in-
creased and shifted from reactive medical practices to preventative strategies [92–97]. Early
disease prevention, a cornerstone of this movement, seeks to detect and address poten-
tial health issues even before they manifest as noticeable symptoms, where the current
strides in the development of wearable devices equipped with TENGS hold great potential
to revolutionize early disease prevention strategies by facilitating continuous, real-time
health monitoring.

In Dai’s study, a remarkable breakthrough has been achieved in the development of
wearable self-powered sensors using textile-based TENGs (t-TENGs), signifying a promis-
ing progression in the field of smart textiles [59]. The liquid alloy/silicone rubber core/shell
fibers (LCFs) exhibit excellent pliability and high-resistance strain sensitivity, making them
ideal for integration in wearable sensors. A prototype t-TENG with an area of 4 × 4 cm2

demonstrated impressive electrical characteristics, such as an open-circuit voltage of 175 V
and a maximum power density of 469 mW/m2, and displayed versatility in detecting
human motions, including walking, jogging, and running. Furthermore, the “array design”
of these fibers can potentially be utilized in medical detection and serves as an invaluable
tool in continuous health monitoring. The array structure could facilitate the meticulous
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tracking of various physiological parameters by different units, enabling the detailed mon-
itoring of health conditions, including minute changes in body movements, potentially
aiding in early diagnosis and management of musculoskeletal disorders (Figure 6a).
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As global healthcare systems are continually pressured to improve early disease
prevention and monitoring, researchers are turning their attention towards the development
of more sophisticated tools that can seamlessly integrate into individuals’ daily lives.
Central to this initiative is the advancement in smart textiles, specifically focusing on
the array design of TENGS, a technology poised to significantly influence early disease
detection and management.

In the research conducted by Wu, a helically structured fiber-based TENG (HS-TENG)
was developed by utilizing Ti3C2Tx as the triboelectric coating [60]. This innovative
structure grants the HS-TENG remarkable stretchability of up to 200% strain, and the ability
to convert multiple forms of mechanical stimuli into electrical energy with impressive
efficiency, allowing it to generate high electrical output even under significant deformation.
This versatility facilitates its integration into electronic textiles (E-textiles), making it a
promising tool for a variety of applications such as energy harvesting insoles, motion-
sensing kneepads, and wireless signal controlling gloves (Figure 6b). Furthermore, this
technology is primed for utilization in medical detection, potentially serving as a powerful
tool for monitoring biomechanical movements closely related to joint bending.

As we delve deeper into this avenue of research, we envisage a future where tech-
nology merges harmoniously with healthcare, signifying a transformative shift towards a
more proactive and informed approach to early disease prevention globally.
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Cao et al. developed a versatile full-textile TENG capable of harvesting energy from
various sources such as sound, human motion, and wind individually (Figure 6c,d) [61].
This device, woven with three different types of fabric, including a silicone-coated yarn,
shows not only impressive electrical outputs under various mechanical impacts but also
has the ability to convert low-frequency sounds into substantial electrical energy, with
results that align well with theoretical predictions.

Notably, the array design of this textile-based TENG can potentially be leveraged to
create innovative health monitoring systems. For instance, it could be woven into garments
for the elderly to detect falls and send automatic alerts to healthcare providers or family
members, potentially reducing response times in emergencies. In rehabilitation settings, the
technology could facilitate precise motion analysis, aiding in the recovery from injuries or
surgeries by offering real-time feedback on patients’ movements, offering sensory feedback
and making these devices more intuitive and functional.

4. Array Configuration Expands TENG Applications
4.1. Extreme Environmental Applications

In the contemporary world, the rapid proliferation of wearable technology and elec-
tronic devices necessitates innovations that can withstand a diverse range of environments
and conditions [98–102]. A significant facet of this innovation lies in the development
of devices capable of functioning under extreme stretching and in aquatic environments.
Extreme stretching capabilities are quintessential in the healthcare and rehabilitation sec-
tors, where the integration of technology into clothing or directly onto the skin requires
materials with high elasticity and durability, able to maintain functionality even when
subjected to significant mechanical stress [103,104]. On the other hand, the ability to func-
tion optimally in aquatic environments opens up avenues for a variety of applications,
including underwater monitoring systems and wearable devices that can withstand heavy
perspiration or even be used during swimming or other water-based activities. Recognizing
these necessities, researchers have ventured into the exploration of TENGs and focused on
the innovation of TENG arrays optimized for extreme stretching and aquatic settings.

In the pursuit of integrating TENG-based healthcare technology seamlessly with the
human body for real-time health monitoring and rehabilitative support, the research spear-
headed by Kim brings a significant contribution [62]. This study emphasizes the critical role
of innovative array design in creating next-generation TENGS that can function effectively
under extreme stretching conditions. The core of this advancement lies in a carefully engi-
neered array, constructed from a plasticized polyvinyl chloride (PVC) gel combined with a
graphene electrode (Figure 7a). This formulation, termed PGTENG, showcases a remarkable
blend of stretchability and conductivity, capable of operating efficiently even when stretched
up to 50%, without experiencing any decline in electrical output. Furthermore, this design
excels in biocompatibility and mechanical resilience, allowing for smooth integration into
wearable devices that can monitor vital signs such as heartbeat and respiration rate continu-
ously, acting as proactive systems in healthcare. Kim’s initiative thus sets a new standard in
the field of biomechanical energy harnessing, offering a pathway to sophisticated wearable
devices that can adapt to the dynamic demands of the human body.

While Kim’s research promises a significant breakthrough in wearable technology,
especially in the realms of healthcare and rehabilitation, it is essential to recognize the
importance of ensuring that these devices can maintain their functionality in various
environments. This brings to light another equally pressing concern: the durability and
effectiveness of these technologies in high-moisture and aquatic environments. It is no
longer sufficient to develop devices that only cater to one set of extreme conditions. Lv’s
study takes a substantial step forward, particularly addressing the challenges posed by
aquatic environments and high-humidity conditions (Figure 7b) [63]. Lv introduced an
interconnected TENG array that is not only flexible but also enclosed, thereby protecting the
device from adverse external factors, including water and humidity, and with significantly
enhanced overall output efficiency.
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Sun et al.’s innovative study explores the synergistic potential of a hybrid double
network, ingeniously combining physically cross-linked gelatin and chemically cross-
linked polyacrylamide (PAM), integrated with PEDOT:PSS for conductivity (Figure 7c) [59].
This unique combination yields hydrogels with exceptional properties; they are not only
stretchable, conductive, and transparent, but also remarkably durable [64]. What sets these
hydrogels apart is their impressive mechanical properties and self-recovery capabilities,
which are primarily attributed to the intricate physical entanglements and a multitude of
dynamic hydrogen bonds formed within the double networks. These characteristics are
further enhanced by an array design approach, which optimizes the spatial arrangement of
the composite materials, thereby maximizing their functional interaction. The embodiment
of this innovative material is a transparent, wearable strain sensor that showcases extraor-
dinary sensitivity and an ultra-wide sensing range. Its response time is notably short, and
it demonstrates unparalleled durability and reproducibility, traits essential for consistent
performance in real-world applications. Moreover, these hydrogels serve a dual function,
acting as highly stretchable triboelectric nanogenerators (STENGs), thereby exhibiting pro-
ficient energy harvesting capabilities. This dual capacity for both strain sensing and energy
harvesting, fortified by the array design, renders these hydrogels particularly promising
for the development of high-performance, self-powered wearable devices and stretchable
power sources.

4.2. Medical Applications

TENGs can serve as sensitive sensors capable of real-time monitoring and analysis,
which is crucial in many healthcare and sports applications [93,105–107]. These TENGs are
being employed to develop tools and devices that not only enhance data acquisition but
also potentially improve quality of life and prevent injuries.

In the experiment conducted by Hao, the integral role of array design in creating the
SRC-TENG is highlighted [65]. This array, developed with careful planning, is composed
of a flexible and durable thermoplastic polyurethane top layer, a copper electrode, and
other essential components, which work collaboratively to enable energy harvesting and
real-time kinematic analysis (Figure 8a). Integrated onto a smart saddle, the array is
precisely engineered to identify varying pressure areas, thereby potentially improving
safety and performance in equestrian sports. Consequently, its applications can branch out
into the medical field. The array’s detailed design not only guarantees a quick response
time but also allows for a detailed analysis of the rider’s state during activity, indicating a
significant step forward in the development of sports training equipment. Furthermore,
it holds promise in assisting surgeons by being integrated into surgical tools, providing
real-time feedback on the forces applied during surgeries, potentially improving outcomes
and reducing complications.

In the recent study conducted by Kou, a significant advancement in the field of
real-time mobile healthcare has been demonstrated through the development of a smart
pillow [66]. Enabled by a well-designed array of flexible and breathable TENGs (FB-TENG),
this approach creates a sensor system that is sensitive and noninvasive. Good durability
and pressure sensitivity were also demonstrated; as shown by Figure 8b, the as-designed
sensor capably facilitates tactile sensing and motion track monitoring, offering real-time
monitoring of head movements during sleep, along with a supplementary feature of an
early warning system to detect falls from the bed. This detailed yet efficient array design
is a critical component in enhancing the sensitivity and stability of the system, setting the
stage for potential applications in comprehensive healthcare management.

In recent times, the focus on developing sustainable and efficient methods for steril-
ization and disinfection has intensified, especially in the healthcare sector. The handling
and treatment of medical waste, including synthetic urine, has emerged as a critical area
of concern.
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In an inspiring work conducted by Zhang, a novel, eco-friendly T-NEA (TENG Driv-
ing Nanowires Electrode Array) system was developed to effectively disinfect synthetic
urine, thereby addressing significant health and environmental concerns associated with
the spread of pathogens found in urine [67]. Based on a meticulously designed TENG
matrix, the system utilizes a high-voltage pulsed electric field from contact electrification
and electrostatic induction, to induce irreversible electroporation damage to microorgan-
isms, facilitating over 99.9999% bacteria inactivation, including pathogens like E. coli and S.
aureus, in a span of 30 min without generating hazardous by-products (Figure 8c). Practical
applications of this promising technology in the medical field include the development of
portable medical disinfection devices, capable of quickly and efficiently sterilizing medical
instruments without the need for chemical agents. Additionally, it could revolutionize
wastewater treatment in healthcare facilities, serving as an eco-friendly solution to disinfect
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wastewater, reducing the spread of waterborne pathogens and minimizing the environ-
mental footprint of these facilities.

In this comprehensive study, Baro et al. have successfully developed a textile-based
wearable sweat sensor, utilizing the principles of triboelectric nanogeneration [108]. The
sensor, a single-electrode triboelectric nanogenerator (STENG), incorporates zinc oxide
(ZnO) nanorods chemically grown on a textile platform, demonstrating its utility in both
sweat sensing and motion detection (Figure 8d). The STENG’s output variation with
changing saline water concentration highlights its potential as an effective sweat sensor.
This variation is attributed to the interaction between the hydrated chloride ions in saline
water and the physisorbed water molecules on ZnO, enhancing the conduction band
electron presence in ZnO and subsequently increasing the charge transfer between ZnO and
the counter triboelectric layer. This results in a heightened output voltage. A miniaturized
prototype of the STENG, approximately 1 cm in diameter, showed considerable efficacy
in detecting sweat when attached to the human body, exhibiting a sensitivity of about
0.02 V/µL and a detection limit of approximately 4.8 µL. Furthermore, when integrated
into a shoe insole, the device successfully detected sweat caused by foot movement. This
innovative STENG also supports remote signal sensing, achieved by connecting it to a
microcontroller unit and wirelessly transmitting the output to an electronic gadget. The
research also explored various materials such as aluminum, nitrile, PET, and PTFE to
optimize the counter triboelectric layer, finding that a PTFE-ZnO combination yielded the
highest output voltage. This groundbreaking work paves the way for future advancements
in wearable sensors, potentially incorporating artificial intelligence of things (AIoT), by
optimizing device structure and the active layer.

Zhong et al.’s research represents a groundbreaking advancement in wearable sen-
sor technology, particularly in the development of a triboelectric nanogenerator (TENG)
textile [109]. This innovative textile, designed for power generation and active sensing,
addresses common challenges in wearable sensors such as limited recognition accuracy,
inflexibility, and complex manufacturing processes (Figure 8e). Central to this development
is the core–shell structured conductive fiber (C-fiber), composed of ionogel and a hollow
silicone tube, enabling large-scale production through a simple one-step UV curing process
and offering personalized color options due to the dyeability of ionogel. Woven into a
flexible fabric sensor (W-TENG), this technology excels in high-precision human behavior
monitoring, maintaining its flexibility and output signal in extreme temperatures ranging
from −18 to 200 ◦C. The W-TENG is capable of accurately detecting daily movements, types
of falls, and post-fall states when attached to the human body. Notably, its application in
fall detection is enhanced by employing a support vector machine (SVM) for data analysis,
achieving an impressive 100% accuracy in classifying different fall categories. Additionally,
the TENG can be integrated with custom Bluetooth modules for real-time fall monitoring,
enhancing safety and response measures. The fabric sensor combines stretchability, heat
and frost resistance, and washability with customizable size and color, making it a versatile
and user-friendly option. Even after rigorous use and exposure to harsh temperatures,
the sensor’s electrical output remains effective, with a slight decrease in output under
extreme conditions. The successful installation of W-TENG sensors on various body parts,
coupled with machine learning for signal optimization, marks a significant leap in wearable
technology, offering unparalleled accuracy and efficiency in human activity monitoring
and fall detection.

5. Conclusions and Prospect

As we venture into a new period of technological advancements, TENGs with array
design are emerging as a significant development in the fields of energy harvesting and real-
time health monitoring. These devices, known for their modular and array-based grid-like
design, hold the potential to greatly impact energy sustainability and healthcare technology.
Their development signifies progress in renewable energy sectors and introduces the
possibility of more accurate, real-time health monitoring systems. As we explore the



J. Low Power Electron. Appl. 2024, 14, 7 18 of 24

complexities of AD-TENG technology further, we discover opportunities to enhance its
power generation and detection capabilities, which may contribute to a more sustainable
and health-aware future.

5.1. Enhancing AD-TENG’s Power Generation Capacity
5.1.1. Material Innovations

The energy collection efficiency of AD-TENGs can be significantly improved by pio-
neering innovations in material science, which include but are not limited to the follow-
ing: (a) developing nanostructured materials, which are known to maximize surface areas
available for charge transfer, potentially amplifying output power significantly; (b) ex-
ploring high-dielectric-constant materials, a pivotal step enabling an increase in charge
storage capacity and facilitating a surge in energy outputs; (c) utilizing surface modification
techniques such as micro/nano patterning to increase surface roughness and to optimize
the contact electrification process; (d) introducing functional coatings, which is another
promising avenue to modify surface potential and hence fostering more efficient energy
harvesting avenues.

5.1.2. Structural Optimization

To escalate the energy harvesting efficiency of AD-TENGs, it is essential to prioritize
meticulous structural optimization. Efforts are being concentrated on the development
of hierarchical and biomimetic designs, which have shown a promising trajectory in am-
plifying charge generation and retention, thereby enhancing energy collection efficiency.
Additionally, advanced surface modification techniques such as patterning and texturing
can also facilitate an increase in the effective contact area and charge transfer capabilities,
heralding significant improvements in energy harvesting efficiency.

5.1.3. Hybrid Energy Harvesting Systems

The integration of TENGs, including AD-TENGs, with complementary energy har-
vesting technologies, such as piezoelectric or solar generators, can create groundbreaking
hybrid systems capable of multi-faceted energy collection. By combining the strengths
of various energy harvesting mechanisms, these systems can offer enhanced efficiency
and adaptability, meeting the diverse demands of various applications including wearable
electronics and IoT devices, and ensuring a consistent and reliable energy supply.

5.2. Enhancing the AD-TENG Detection Capability
5.2.1. Sensitivity Augmentation

Improving the sensitivity of AD-TENG detection is key in advancing its capabilities as
a health monitoring tool. Presently, novel conductive polymers and composites with higher
sensitivity to target analytes are being explored, which may result in more nuanced and
accurate health monitoring. Furthermore, enhancing the contact surface area or altering
the surface morphology of these materials can lead to improved charge transfer and
heightened sensitivity.

5.2.2. Ensuring Bio-Safety

In the sphere of in vivo and in vitro applications, prioritizing the bio-safety of AD-
TENG devices emerges as a critical necessity. This involves not only adopting biocompatible
and non-toxic materials but also fostering innovation in creating materials that supersede
existing safety benchmarks. It is essential to conduct robust studies focusing on long-term
stability and degradation patterns within biological settings, which is critically important
for insights into potential failure modes and toxicity profiles. Concurrently, the devel-
opment of advanced sterilization techniques is required, which maintain the device’s
functionality without compromising its stability.
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5.2.3. Reducing Interference and Improving Accuracy

To enhance the detection capabilities of AD-TENGs further, efforts must be concen-
trated on reducing interference and improving sensing accuracy. Innovations such as the
inclusion of built-in reference electrodes and compensation circuits or the use of selec-
tive coatings can significantly minimize environmental interference, thus improving the
accuracy and reliability of these systems. Moreover, the integration of advanced signal
processing techniques and machine learning algorithms can refine data analysis, leading to
more accurate and robust biochemical sensing systems.

In conclusion, the future trajectory of AD-TENG technology is laden with promising
opportunities and avenues for innovations in healthcare. As research deepens and tech-
nology advances, we anticipate a significant shift in the realms of energy harvesting and
healthcare monitoring, steering us towards a future that harmoniously blends sustainability
with advanced diagnostics technology.

5.3. AD-TENG in Healthcare Detection
5.3.1. Customization for Specific Medical Conditions

Tailoring AD-TENGs for specific medical conditions is a crucial research avenue.
This involves customizing the design and operation of AD-TENGs to suit the unique
requirements of different health monitoring applications, such as cardiac monitoring,
glucose level detection, or neural activity tracking. Research should aim to develop AD-
TENGs with specific material properties, structural designs, and operational modes that
are optimized for detecting and monitoring particular health conditions.

5.3.2. Improving Wireless Connectivity and Remote Monitoring

As AD-TENGs are well-suited for wearable health monitoring devices, enhancing
their wireless connectivity and remote monitoring capabilities is essential. Research should
be directed towards integrating AD-TENGs with wireless communication technologies
to enable remote health monitoring. This will allow for continuous health tracking and
real-time data transmission to healthcare providers, making it possible to monitor patients
in their natural environment and respond promptly to any health changes.

5.3.3. Developing Eco-Friendly and Sustainable Materials

Given the growing emphasis on environmental sustainability, future research should
also focus on developing eco-friendly and sustainable materials for AD-TENGs. This
includes exploring biodegradable and bio-compatible materials that reduce environmental
impact and are safe for long-term use in healthcare applications. Sustainable material
development will not only make AD-TENGs more environmentally friendly but also
potentially improve their biocompatibility and effectiveness in healthcare applications.
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