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Abstract: Inverse halftoning acting as a special image restoration problem is an ill-posed problem.
Although it has been studied in the last several decades, the existing solutions can’t restore fine
details and texture accurately from halftone images. Recently, the attention mechanism has shown
its powerful effects in many fields, such as image processing, pattern recognition and computer
vision. However, it has not yet been used in inverse halftoning. To better solve the problem of
detail restoration of inverse halftoning, this paper proposes a simple yet effective deep learning
model combined with the attention mechanism, which can better guide the network to remove noise
dot-patterns and restore image details, and improve the network adaptation ability. The whole
model is designed in an end-to-end manner, including feature extraction stage and reconstruction
stage. In the feature extraction stage, halftone image features are extracted and halftone noises are
removed. The reconstruction stage is employed to restore continuous-tone images by fusing the
feature information extracted in the first stage and the output of the residual channel attention block.
In this stage, the attention block is firstly introduced to the field of inverse halftoning, which can
make the network focus on informative features and further enhance the discriminative ability of the
network. In addition, a multi-stage loss function is proposed to accelerate the network optimization,
which is conducive to better reconstruction of the global image. To demonstrate the generalization
performance of the network for different types of halftone images, the experiment results confirm
that the network can restore six different types of halftone image well. Furthermore, experimental
results show that our method outperforms the state-of-the-art methods, especially in the restoration
of details and textures.

Keywords: inverse halftoning; convolutional neural networks; attention mechanism; multi-stage
loss function

1. Introduction

Digital halftone is a technique to convert a continuous-tone image into a binary image
known by the name of halftone image. Due to the low pass character of the human eyes, the
generated halftone image can be perceived as a continuous-tone image when viewed from
a certain distance. Thus, the digital halftone technique is widely used in bi-level output
devices in order to reproduce the tone of a continuous-tone image, such as printing press
machines, printers, fax machines and so on [1,2]. Besides, the digital halftone technique can
also be employed as an image compression mode for saving storage space or electric power
in special occasions, for example in telemedicine [3] and IoT [4]. Major halftone methods
used in practice include ordered dithering (OD), dot diffusion (DD), error diffusion (ED)
and direct binary search (DBS) [5].

Inverse halftoning is the reverse process of digital halftone, which is used to restore a
continuous-tone image from its halftone version. The reason of using inverse halftoning is
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that the typical image processing approaches, such as zooming, rotation, compression or
feature extraction, etc., cannot be directly applied to halftone images. When we want to
further reuse the halftone images appearing in newspapers, magazines or books, they have
to be firstly restored as the corresponding continuous-tone images by using inverse halfton-
ing technique. There are many important applications of inverse halftoning. First, effective
inverse halftoning can be used to restore images that are compressed with lower bits. In
addition, the photographs of halftone pattern in books and magazines can be scanned
and transformed into continuous tone image, which is meaningful for that historically
important photos on old newspapers. Furthermore, continuous-tone images need to be
reconstructed for image enhancement, image manipulations or image super resolution
to obtain better results. Due to the inevitable information losses in the process of digital
halftone, inverse halftoning is an ill-posed problem which means there is not a unique
solution for this problem. In addition, noise dot-patterns are often blended into halftone
images. Hence, inverse halftoning is a challenging research area.

Since 1990s, many inverse halftoning methods have been proposed. These pre-
sented methods can be roughly divided into traditional methods and deep learning-based
methods [6]. The traditional methods include filters [7,8], projection onto convex sets
method (POCS) [9], maximum a posteriori (MAP) estimation method [10], wavelet-based
method [11], look-up-table method (LUT) [12,13], dictionary learning method [2,14], and
neural networks method [15]. Although the above traditional approaches have all achieved
excellent performance at the time, the restored continuous-tone images still suffer several
from visual artifacts and subtle details loss. Deep learning, in particular deep convolutional
neural networks (DCNN), have shown their powerful performance for many computer
vision applications. However, there are few studies in the field of inverse halftoning using
DCNN. Considering inverse halftoning as an image transformation problem, the first
application of DCNN for inverse halftoning was studied by Hou and Qiu [16], who demon-
strated that the method based on deep learning is superior to the traditional methods.
Afterwards, more and more studies were focused on inverse halftoning based on deep
learning [17–22]. According to the network architecture, three typical architectures were
explored in the above proposed methods, which are U-Net [16,19], residual network [18,20]
and fully convolutional networks [17]. In terms of the type of halftone images, inversed
halftoning methods can be classified into methods for digital halftone images and methods
for scanned halftone images. Nowadays, most of the existing methods [16–20] address dig-
ital halftone images, and only a few of methods focus on scanned halftone images [21,22].
Although these methods have made a number of contributions to inverse halftoning, there
are still problems in this field, such as improving the fine image details and increasing the
model adaptation ability to different types of halftone images.

The critical problem of inverse halftoning is to remove noise dots on flat areas and
restore image details on textured areas [17]. However, removing noise dots and restoring
image details form a pair of contradictions. As a result, the first problem of existing
methods based on deep learning is not well removing halftone noise dots, while the second
problem is that the subtle details need to be further improved in the restored image. In
addition, due to the diverse distributions of black dots and white dots in different types
of halftone images, the adaptation ability of the existing methods is poor to different
types of halftone images. To address these issues, inspired by the successful applications of
attention mechanism in many image restoration tasks, we propose a new inverse halftoning
method by incorporating attention mechanism into DCNN, which can determine where to
focus and suppress. Recently, attention mechanisms have been an important component
in deep learning. Among the many diversifications of attention module, the residual
channel attention block (RCAB) [23] showed effectiveness in super-resolution [24], image
denoising [25] and so on. Therefore, we employ RCAB in the proposed network, which
can guide the network to pay more attention on essential channel features and suppresses
unnecessary ones. Moreover, the attention mechanism can increase the network adaptation
ability to restore different types of halftone images. Particularly, [26] proposed that the
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different layers of CNN contain different feature information. The low-level features
contain more sharp and detailed information, while high-level contain more abstract
semantic information. So, in this article, the low-level detail information and high-level
semantic information are concatenated with skip connection and then fused by attention
blocks, which helps to restore image details. To further improve the restored image fine
details, multi-stage loss functions are proposed in the presented network. The final loss
function integrates multiple loss functions which come from the restored images at different
stages, this helps to obtain more informative features at different restoring stages and thus
improve the restored image fine details. We conduct extensive experiments on VOC2012
dataset [27] and six types of halftone images. Results show that our method outperforms
the state-of-the- art methods and has better generalization performance for different types
of halftone images.

The contributions of the paper are as follows:

(1) We introduce the attention mechanism to the proposed network, which can better
guide the network to remove noise dot-patterns and restore image details, and im-
prove the network adaptation ability. To the best of our knowledge, this is the first
work of using attention mechanism for inverse halftoning.

(2) Multi-stage loss functions are employed in the network, which can further enhance
the restored image details.

(3) The experimental results demonstrate that the proposed method achieves impressive
performances compared with the state-of-the-art methods and can be applied to many
different types of halftone images.

The rest of the paper is organized as follows: Section 2 briefly introduces the related
works about inverse halftoning including traditional inverse halftoning methods and deep
learning-based methods. Section 3 details the proposed method. Section 4 discusses the
experimental results. Finally, Section 5 concludes the paper.

2. Related Works

As a classic image restoration problem, inverse halftoning has been widely developed
in the past decades, and a large number of inverse halftoning methods have been pro-
posed, including filtering methods [8], wavelets [11], look-up table (LUT) [12] and neural
networks [16–18,20]. Especially in recent years, with the rapid development of deep learn-
ing, supervised learning and unsupervised learning have been widely used in industrial
production [28–30], which promotes the rapid development of inverse halftoning. As our
method belongs to deep learning method, we review the progresses in inverse halftoning
according to the traditional inverse halftoning methods and deep learning based inverse
halftoning methods.

2.1. Traditional Inverse Halftoning

In view of the characteristics of low pass filtering of human eyes, and high frequency
characteristics of halftone dot-patterns, the earliest methods were based on low filters, such
as the Gaussian filter, median filter or bilateral filter [31]. Low pass filtering simply removes
halftone dot-patterns, but image details are also removed by this process. To get more image
details in the restored images, adaptive filtering [8], non-linear filtering [32] and transform-
domain filter [11,33] were investigated. Kite et al. [8] proposed a multi-scale gradient
estimation filter, and then used it to choose the best parameterized smoothing filter from a
family of parameterized customized smoothing filters for each pixel. The proposed method
can obtain a sharp image with a low perceived noise level for error- diffused halftone
images. Kim et al. [32] proposed a non-linear binary permutation filter for reconstructing
continuous-tone images from ordered dithered halftone or error diffused halftone images.
The presented filter is based on the space and rank orderings of the halftone samples in
a halftone observation window. Luo et al. [33] proposed a novel wavelet-based inverse
halftoning method, which can remove halftone noise by noise attenuation and intraband
filtering in the wavelet space. The method presented by Xiong et al. [11] used highpass
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wavelet images and cross-scale correlations in the multiscale wavelet decomposition to
remove halftone noise while preserving image edges and details information. Unlike the
aforementioned filtering method, Mese et al. [12] creatively proposed a look up table (LUT)
inverse halftoning method with fast speed. In this method, the LUT was constructed by a
halftone template and its corresponding continuous-tone value. Inspired by the successful
applications of sparse representation in field of signal processing, a novel inverse halftoning
method based on sparse representation was firstly presented by Son [34], where two jointed
dictionaries are learned for the concatenated feature spaces of continuous-tone images
and halftone images. In the method, there is assuming that the sparse representation
coefficients of continuous-tone images and halftone images are the same. To relax the
assumption, Zhang et al. [2] proposed a semi-coupled multi-dictionary learning method
for inverse halftoning. Son [14] proposed an edge-oriented local learned dictionaries (LLD)
method, which can enhance the edge details of the restored image. Considering the quality
of inverse halftoning depends on the starting halftone method, Huang et al. [15] proposed
an inverse halftoning method based on neural network by integrating the process of
digital halftoning and inverse halftoning, where a single-layer perceptron neural network
was adopted for halftoning and a radial-basis function neural network was adopted
for inverse-halftoning. Although these abovementioned methods produced relatively
satisfactory results at that time, the quality of restored image by these conventional methods
is still not as good as those based on deep learning methods. The reason is that the
method based on deep learning can get deep and hierarchical feature representation in
an end to end manner, which is more efficient to extract abstract features for halftone
image restoration. Moreover, features extracted at different levels based on deep learning
method exhibit diverse characteristics to the input halftone image. Thus, the method
based on deep learning can better restore image details by fusing low-level detail features
and high-level semantic features. In references [16–18,20], they compared with some
classical traditional methods, such as filtering method [8], wavelet method [11], LUT
method [12], MLP method [15] and dictionary learning method [14]. The experimental
results also demonstrate the image quality restored by inverse halftoning methods based
on deep learning is superior to traditional inverse halftone methods both in qualitative and
quantitative evaluation aspects.

2.2. Deep Learning Based Inverse Halftoning

Deep convolutional neural networks have shown their outstanding performance for
many tasks. Hou and Qiu [16] firstly applied DCNN to inverse halftoning, where they
used a U-net network as the transformation network for inverse halftoning. In addition,
perceptual loss based on pre-trained network was also introduced to construct the ob-
jective function for the training, which can overcome the shortcoming of per-pixel loss
of producing blurry outputs. To obtain more image details, Xiao et al. [19] proposed a
two- stages gradient-guided DCNN for inverse halftoning. In the first stage, two subnet-
works are designed to predict the gradient maps from the input halftone image. In the
second stage, the gradient maps, along with input halftone image, are fed to the third
subnetwork to reconstruct the continuous-tone image. All the three subnetworks are the
U-net architecture, and halftone images generated by the Floyd-Steinberg error diffusion
algorithm are used to perform experiments. On the basis of the method [19], Yuan et al. [20]
put forwarded a gradient-guided residual learning method for inverse halftoning. In the
paper, the second stage is a residual network, which helps to restore better local details.
Xia et al. [18] proposed deep inverse halftoning via progressively residual learning (PRL),
which is another foundational work for inverse halftoning. The PRL includes two modules:
content aggregation module that is used to remove halftone noise and reconstruct the
initial continuous-tone image, and detail enhancement module that extracts fine struc-
tures by learning a residual image. Recently, Son [17] presented a structure-aware DCNN
(SADCNN) for inverse halftoning, which can not only remove noisy dot-patterns well
on flat areas but also restore details clearly on textured areas. Guo et al. [35] firstly pro-
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posed a novel inverse halftoning method by using GAN network, which can effectively
perform both halftoning and inverse halftoning for dispersed dot halftone images. Due
to no paired data of halftone images and their corresponding continuous-tone images,
restoring scanned halftone image is more challenging than restoring digital halftone image.
Kim T.H et al. [22] proposed a context-aware descreening method for scanned halftone
image. The method consists of two main stages, where the intrinsic features of the scene
are extracted for reconstructing the low-frequency of the image and removing halftone
noise at the first stage, and fine details are synthesized on top of the low-frequency output
at the second stage. Gao et al. [21] proposed a novel inverse halftoning method for scanned
halftone images. In the method, the first stage is unsupervised training for removing
printing artifacts which make the method adapt to real halftone prints, and the second
stage is a supervised training manner for the inverse of halftoning by using synthetic
training data. Table 1 summarizes the traditional inverse halftoning methods and deep
learning-based inverse halftoning methods.

Table 1. A comparative summary of related work.

Methods Representative
Sub-Method Pros Cons

Traditional
inverse

halftoning

Filtering method It can remove
halftoning noise

It also removes edge
information

Wavelet method It can preserve important
edge information

Only for
grayscale halftones

Maximum a-posteriori
(MAP) method

It can reconstruct
the smooth regions

of the image and
the discontinuities

image edges

The poor quality of
the restored images

Look-up
table (LUT) method Fast Depend on the choice

of table

Deep
Learning

Based
Inverse

Halftoning

U-net network
architecture

The model is simple
and efficient

The details are not
well restored

Gradient-guided residual
learning method

Restore better
local details

Restoration of single
type image

Progressively residual
learning method

Remove halftone noise
and detail enhancement

Generalization of
restoration is

not good

Structure-aware
DCNN method

Remove noisy
dot-patterns and restore

details clearly on
textured areas

Only designed for
grayscale halftones

As can be seen from the abovementioned methods, we can conclude: (1) Most of the
proposed methods are focused on error diffusion halftone images. However, there are more
than twenty types of halftone images used in practice, which have different critical halftone
characteristics such as dot directivity, dot distribution, pattern periodicity, directional
artifacts and so on. [1,5]. Therefore, a general purpose inverse halftoning method which
has generalization performance for different types of halftone images is urgently need. (2)
Due to the coexistence of details loss and halftone noise, the restored images still suffer
from fine details loss and visual artifacts. To solve these problems, we propose a novel
inverse halftoning method in which the attention mechanism and multi-stage loss functions
are introduced to better work with the proposed network. The proposed method is simple
yet effective for different types of halftone images.
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3. Methodology

In this study, we propose a novel inverse halftoning method based on deep learning,
which integrates deep CNN, attention module and multi-stage loss functions. Firstly,
we will introduce the network architecture. Then, the multi-stage loss functions will
be discussed.

3.1. Network Architecture

As shown in Figure 1, the architecture of the proposed approach consists of three
major components: (1) Feature extraction and halftone noise removing; (2) Image restoring
with residual channel attention block (RCAB) module and contextual semantic information
aggregation; (3) Multi-stage loss functions learning. The first part begins with a normal
convolution. As is evidenced in reference [36], a large convolutional kernel could be re-
placed by a multi-layer convolution with small kernel size, which can reduce the parameter
count and improve the non-linear ability of the network. To keep the size of the output
feature maps as the same of the inputs, the stride and the padding have to be set as 1. Since
initial convolution is used to extract low-level features, such as edges, corners, lines and
colors, they can be used to restore image details in the second part with skip connection.
Therefore, the number of filters in the initial convolution layer is set as 32 in order to extract
more fine-grained features. Then, three convolution blocks (Conv_Block1, Conv_Block2
and Conv_Block3) are cascaded for further refining features and removing halftone noise,
where each Conv_Block includes three sequential basic units: convolution, LeakyRelu and
convolution. For each Conv_Block, the filter number of the first convolution is the same as
the input channel number of this Conv_Block, and the filter number of the last convolution
is twice of the first convolution. The above feature extraction process can be expressed in
the following formula:

X = Conv_Block3(Conv_Block2(Conv_Block1(Conv(XI)))) (1)

where XI is the input image and X is the extracted feature image.
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In the second part, three attention modules and three concatenation modules with
identical layout are used to restore continuous-tone images. In every attention module, we
sequentially lay 16 RCAB to extract the channel statistic among channels to further enhance
the discriminative ability of the network [23]. The details of residual channel attention
block are shown in Figure 2. As shown in Figure 2, Xb−1 is the input of RCAB block:

Fb = ω2
bδ
(

ω1
b Xb−1

)
(2)

where ω1
b and ω2

b are weight sets of the two convolutional layers in RCAB. δ(.) denote ReLU
function. Let Fb = [ f1, . . . , fc, . . . , fC]

C×H×W as input feature maps, which has C channels
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and the size of feature map is H ×W. The channel-wise statistic of the c-th channel z ∈ RC

is determined by Equation (3):

zc =
1

H ×W

H

∑
i=1

W

∑
j=1

fc(i, j) (3)

where (i, j) is the position of c-th channel fc, fc(i, j) is the value at (i, j). This formula
denotes the global pooling for every channel, such channel statistic can express the whole
image. The channel-wise global spatial information can be viewed as a channel descriptor
by using global average pooling.
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Figure 2. Residual channel attention block (RCAB).

We aggregate global information by average pooling. Then in order to capture channel-
wise dependencies by introducing a gating mechanism. This gating mechanism can
learn nonlinear interactions between channels and a non-mutually-exclusive relationship
between channel-wise features. We opt to simple gating mechanism by sigmoid function:

sc = f (ωUδ(ωDzc)) (4)

where δ(.) and f (.) denote ReLU function and the sigmoid gating, respectively. ωD is
the weight of a channel-downscaling layer with reduction ratio r. Then it is activated by
ReLU. ωU is the weight set of channel-upscaling with ratio r. Finally, the channel statistics
sc is used to rescale the input feature map fc:

xc = sc. fc (5)

where sc is the scaling factor in the c-th feature map. The channel attention enhances the
discriminative ability by rescaling the residual component in the RCAB. For the b-th RCAB
block, we have:

Xb = Xb−1 + Rb(Fb) (6)

where Xb−1 and Xb are the input and output of residual channel attention block. Rb dnotes
channel attention module.

Following each attention module, there is a concatenation module which stacks the
output of the attention module and the feature maps from the previous Conv_Block with
skip connection. Before concatenating, the output of each attention module is convoluted
with convolution in order to have the same channel number with the feature maps from
the corresponding previous Conv_Block. The concatenation can provide more contextual
semantic information, which helps to restore the fine details. The detailed parameters of
the whole network are shown in Table 2.
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Table 2. The detail experimental parameters of the network.

Feature extraction stage

Stage1: [Conv], kernel_size = 3 × 3; C=16, 32; padding = 1

Stage2: Conv-Block1 [Conv + LeakyReLU + Conv]
kernel_size = 3 × 3;C = 16, 32; padding = 1

Stage3: Conv-Block2 [Conv + LeakyReLU + Conv]
kernel_size = 3 × 3;C = 32, 64; padding = 1

Stage4: Conv-Block3 [Conv + LeakyReLU + Conv]
kernel_size = 3 × 3;C = 64, 128;padding = 1

Image reconstruction stage

Stage1: 16 RCAB {[Conv + ReLU + Conv]
kernel_size = 3 × 3; C = 128,128; padding = 1 [Avg_pool +

Conv + ReLU + Conv+sigmoid]
r = 16,kernel_size = 1 × 1; C = 8128; padding = 0}

1 × 1 Conv + Concat

Stage2: 16 RCAB {[Conv +ReLU+Conv]
kernel_size = 3 × 3; C = 128,128; padding = 1
[Avg_pool + Conv + ReLU + Conv+sigmoid]

r = 16,kernel_size = 1 × 1; C = 8128; padding = 0}

1 × 1 Conv + Concat

Stage3:16 RCAB {[Conv +ReLU+Conv]
kernel_size = 3 × 3; C = 128,128; padding = 1

[Avg_pool + Conv + ReLU + Conv + sigmoid]
r = 16, kernel_size = 1 × 1; C = 8,128; padding = 0}

1 × 1 Conv + Concat

The whole network architecture imitates the design of U-net network structure, but
our network doesn’t adopt down-sampling and upsampling. Based on the analysis of
U-net, we proposed the following special structure designs: (1) the downsampling can
lead to the loss of underlying feature, which are lose some important feature information
for the restoration of inverse halftoning. Thus, the downsampling is not adopted in the
step of feature extracting in our proposed solution; (2) we use skip connection to retain
detailed features from shallow layers, which can better restore the image details; (3) the
special design of our network is the introduction of attention module, which can focus on
informative features and further enhance the discriminative ability of the network. The
ablation experiment results detailed in section IV demonstrate the rationality of attention
module RCAB. (4) deep supervision with multi-stage losses can accelerate the optimiza-
tion of network model. Unlike previous methods which compute loss function only using
the final restoring image, we propose a multi-stage loss function calculating strategy. As
shown in Figure 1, the loss functions of Loss1, Loss2, Loss3 and Loss4 are from images
reconstructing at different stages, where Conv_1, Conv_2, Conv_3 and Conv_4 are used to
reconstruct the continuous-tone images with three channels at different stage.

Through the analysis of the network architecture, we can conclude: (1) the proposed
network is a fully convolution network, which can adapt to the input halftone images with
different image size and can be learned in an end-to-end manner. (2) the proposed network
is a lightweight network, where the parameter size is 10.87 M. (3) unlike the existing
inverse halftoning method based on deep learning, which treat halftone image channel-
wise features equally, the proposed method can generate different attention in different
channel-wise feature. Thus, it is flexible to different types of halftone images and can pay
more attention to the informative features at different channels, such as shapes, colors,
edges and textures. (4) The proposed network is simple yet effective, because it achieves
notable performance improvements compared to previous inverse halftoning methods.
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3.2. Loss Function

We define multi-stage loss functions that measure the difference of the reconstruction
image at different feature reconstruction stages and its original continuous-tone image. In
feature reconstruction stage, In order to encourage the pixels of the construction image
ŷ to exactly match the continuous-tone image y, we hope them to have similar feature
representations in different feature reconstruction layers.

As shown in Figure 3, when we reconstruct from early layers, the image content
and global spatial structure are preserved. But when we reconstruct the continuous-tone
image from higher layers, the color and texture are reconstructed well, so we define multi-
stage loss functions to encourage the reconstruction image ŷ to be perceptually similar
to the continuous image at different feature reconstruction stages. What’s more, if the
output images of early layers are reconstructed well due to constraints of loss function, the
reconstruction images of higher layers must be well.
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Based on above analysis, as shown in Figure 1, we define multi-stage loss for training
our network:

L(ŷ, y) =
4

∑
j=1

λj ×
∣∣ŷj − y

∣∣ (7)

where j denotes the j-th layer of reconstruction stage, ŷj and y are the output reconstruction
image of j-th layer and the ground truth continuous-tone image. For the value of λ,
we consider the following factors: In the deep layers, the network reconstructs good
semantic information, the higher loss weight can better reconstruct the global information
of the image. From deep layers to shallow layers, the loss weight from large to small is
conducive to better reconstruction of the global image. By the experiment in Section 4, we
set λ1 = 0.1, λ2 = 0.2, λ3 = 0.3, λ4 = 0.4.

4. Experiment

In this section, we introduce our experimental settings in Section 4.1, including de-
tailed experimental parameters and dataset. Then we show the generalization performance
of the proposed method for different types of halftone images in Section 4.2. To demon-
strate the superior performance, we compare our method with the state-of-the art methods
in Section 4.3. The ablative study in Section 4.4.

4.1. Experiment Settings

For training and testing, we use the PASCAL VOC2012 dataset [27], which are used as
continuous-tone color images. The numbers of color images are 13,600, in which we select
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10,000 images for training and 3600 images for validation. In addition, some other classical
images are also selected as test images, such as Lena, Peppers, Baboon and so on.

Our network is implemented using the PyTorch frame-work and trained on 1080 Ti
GPU. In the training, the whole network is trained in an end-to-end manner. We define the
initial learning rate 0.0001 and choose Adam algorithm as the optimizer, the learning rate
is reduced by Cosine annealing [37]. We select the number of iterations is 100 times and
the batch size is 2 by experiments.

4.2. Evaluation for Different Types of Halftone Images

In order to illustrate the generalization performance of the network for different types
of halftone image restoration. We choose different halftone methods to produce different
types of halftone images. The continuous-tone images are converted into halftone images
by Bayer’s CD Ordered Dithering (BCD), Bayer’s DD Ordered Dithering (BDD), Knuth
DD Dot Diffusion (KDD), Direct Binary Search (DBS), Floyd Steinberg DD error diffusion
(FSDD), Ulichney CD Ordered Dithering (UCD) respectively, the code is provided by
Guo et al. [5]. Each type of halftone image is divided into training image and testing image.

For performance evaluation, the peak signal-to-noise ratio (PSNR) and the Structural
Similarity (SSIM) are used to measure the difference of the output image and the original
image. We train the network with different types of halftone images, and then twenty
classical images are used to test the network. Figure 4 shows the classical images [38],
numbered as 1–20.

The restoring continuous-tone images and their corresponding halftone images for
Lena, Man and Peppers images are illustrated in Figure 5. From Figure 5, we can see
the quality of the restoring images is satisfactory compared with the original images,
which means the proposed method has generalization performance for different types
of halftone images. In addition, the halftone images generated by DBS and FSDD have
a great superiority over the other halftone images. Table 3 details the PSNR and SSIM
values of different types of halftone images for the twenty classical images. From the
average PSNR and SSIM, the proposed method achieves encouraging results on all types
of halftone images.
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Peppers images.

Table 3. Performance evaluation for different types of halftone image.

Test
BCD BDD KDD DBS FSDD UCD

PSNR SS
IM PSNR SS

IM PSNR SS
IM PSNR SS

IM PSNR SS
IM PSNR SS

IM

1 28.2 0.85 28.9 0.88 32.7 0.93 31.9 0.92 32.2 0.93 28.0 0.87
2 29.1 0.83 28.8 0.86 32.8 0.92 30.8 0.86 31.9 0.92 29.0 0.85
3 30.1 0.86 30.9 0.89 30.9 0.85 33.2 0.88 33.4 0.92 29.9 0.87
4 24.1 0.68 25.6 0.80 29.3 0.93 28.1 0.86 28.9 0.91 24.8 0.75
5 24.1 0.65 25.1 0.72 27.9 0.80 27.6 0.83 28.8 0.88 24.4 0.68
6 26.8 0.79 27.7 0.84 31.0 0.89 30.5 0.88 30.9 0.91 27.2 0.83
7 31.3 0.83 32.3 0.89 34.0 0.92 34.1 0.89 34.5 0.92 31.4 0.87
8 28.6 0.87 29.9 0.92 32.9 0.95 32.5 0.93 33.2 0.96 29.3 0.91
9 31.4 0.85 32.1 0.89 32.8 0.89 34.7 0.89 34.5 0.93 31.3 0.89
10 26.2 0.78 26.6 0.82 29.0 0.89 28.0 0.84 29.9 0.91 25.8 0.78
11 26.5 0.67 27.6 0.84 29.8 0.64 30.0 0.75 30.1 0.88 27.0 0.82
12 29.5 0.78 30.9 0.86 32.9 0.92 33.5 0.87 33.9 0.91 28.9 0.79
13 27.2 0.75 28.5 0.82 30.8 0.86 30.4 0.85 31.0 0.89 27.7 0.79
14 24.5 0.69 25.5 0.78 27.9 0.84 26.3 0.81 28.1 0.89 24.8 0.75
15 25.7 0.62 25.9 0.68 30.0 0.85 27.6 0.74 28.8 0.82 25.7 0.66
16 27.2 0.63 27.9 0.71 30.1 0.81 29.1 0.74 29.8 0.81 27.5 0.68
17 31.3 0.85 31.9 0.87 33.2 0.90 33.5 0.88 34.0 0.91 31.3 0.86
18 32.9 0.75 33.7 0.78 32.7 0.77 35.4 0.81 35.3 0.84 33.2 0.76
19 24.9 0.76 26.0 0.83 28.9 0.90 29.0 0.89 28.9 0.93 25.2 0.80
20 32.8 0.90 32.9 0.92 32.7 0.93 35.5 0.93 35.7 0.94 31.3 0.92

Avg. 28.1 0.77 28.9 0.83 31.1 0.87 31.1 0.85 31.7 0.9 28.2 0.81
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4.3. Comparison with State-of-the-Art Methods

To verity the advantage of the proposed method, we compare our proposed method
with state-of-the-art inverse halftoning methods, where the halftone images are generated
using Floyd Steinberg DD error diffusion method. Recently, three representative methods,
named as SADCNN [17], GRL [20], PRL [18], achieved state-of-the-art results for inverse
halftoning. Thus they are selected for comparison with our method. Due to the fact the
GPL [20] code is not open, so we wrote it according to the paper. Maybe our experimental
environments are different, but the average test result is not as high as in the original paper.
Besides inverse halftoning methods based on deep learning, a typical traditional method
based on dictionary learning, named as LLD [14] is also employed as a comparison method.
The PSNR value and SSIM value are used to evaluate the performance of different inverse
halftoning methods. We first select all test images in Figure 4 to compare different methods.

Figure 6 shows the comparison with state-of-the-art methods. As observed in Figure.6,
our proposed method has a qualitative and quantitative superiority over the state-of-the-art
methods. What’s more, recently published paper in reference [39] proposed an inverse
halftoning method via stationary wavelet domain. In this paper, six classic images are
selected as the testing images, which are Koala, Cactus, Bear, Barbra, Shop and Pepper,
corresponding to images in the 5th, 4th, 14th, 12th, 10th and 9th of Figure 4. The average
PSNR of the five test images is 29.95 in reference [37] and 30.68 in our method. The results
once again show our method has better performance than recently published solutions.
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To further show the advantages of our proposed method compared with the previous
methods, we demonstrate some restored image details, lines and texture in Figures 7–9. In
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Figure 7, the results of SADCNN [17] lack of texture details, but our approach describes
the image details more accurately.
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Figure 9. Comparison with texture restoration between PRL and Ours.

In Figure 8, the restoration of GRL [20] cannot restore the lines of the image very
well, but in our approach more lines and sharpness of the images are restored better. For
the texture of restored Butterfly image as shown in Figure 9, there are some noise in the
restored image by the PRL [18] method. However, the restored image by our method is
smoother and more natural in texture restoration.

Besides, our approach could be applied to other datasets successfully. Table 4 gives the
quantitative evaluation results, which demonstrates that methods based on deep learning
are superior to traditional inverse halftoning methods. Moreover, our proposed method
obtains the highest average PSNR performance compared with the other four methods
and the SSIM value is similar to PRL [18]. Table 5 gives the results of comparison on
PSNR/SSIM in 3600 test datasets obtained by different methods. From Table 5, we can see
our proposed method achieves the best performance both in PSNR and SSIM compared
with other methods.
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Table 4. Comparison on PSNR/SSIM obtained by different methods.

Test
LLD [14] SADCNN [17] GRL [20] PRL [18] Ours

PS
NR

SS
IM

PS
NR

SS
IM

PS
NR

SS
IM

PS
NR

SS
IM

PS
NR

SS
IM

1 20.72 0.884 30.09 0.893 31.56 0.795 32.01 0.933 32.21 0.933
2 25.77 0.830 28.03 0.842 30.52 0.766 31.84 0.925 31.97 0.917
3 22.28 0.856 28.67 0.870 31.09 0.760 32.75 0.928 33.38 0.920
4 22.05 0.759 25.14 0.805 29.30 0.817 29.06 0.929 28.91 0.908
5 22.87 0.742 25.28 0.779 29.78 0.779 29.71 0.917 28.83 0.884
6 22.97 0.856 28.13 0.866 30.79 0.785 30.59 0.918 30.99 0.908
7 22.71 0.879 30.94 0.878 31.34 0.765 33.77 0.928 34.46 0.923
8 23.03 0.902 28.87 0.915 30.87 0.779 32.82 0.957 33.15 0.956
9 23.27 0.898 31.12 0.893 31.44 0.776 32.92 0.924 34.52 0.927

10 21.97 0.756 25.71 0.811 29.83 0.783 30.64 0.936 29.86 0.911
11 20.83 0.866 28.42 0.693 31.61 0.746 31.62 0.866 30.12 0.878
12 23.89 0.789 28.02 0.781 30.63 0.731 32.68 0.925 33.91 0.913
13 23.12 0.812 27.37 0.812 30.25 0.767 31.42 0.922 31.03 0.888
14 21.72 0.727 23.92 0.765 29.51 0.787 29.46 0.931 28.06 0.885
15 22.15 0.674 25.38 0.723 25.08 0.733 28.38 0.868 28.83 0.823
16 20.63 0.681 26.49 0.679 29.75 0.713 29.84 0.872 29.75 0.806
17 26.22 0.860 30.83 0.859 31.31 0.725 33.94 0.924 34.05 0.907
18 25.16 0.770 31.52 0.785 31.56 0.720 33.27 0.858 35.31 0.836
19 21.01 0.839 26.18 0.864 29.96 0.834 30.14 0.941 28.89 0.926
20 22.31 0.911 31.08 0.909 31.54 0.786 35.20 0.949 35.67 0.943

Avg 22.73 0.815 28.06 0.821 30.39 0.767 31.6 0.918 31.690 0.900

Table 5. Comparison on PSNR/SSIM in 3600 test datasets obtained by different methods.

Methods GRL [20] SADCNN [17] PRL [18] Ours

PSNR 27.529 28.375 31.328 31.447
SSIM 0.750 0.815 0.891 0.892

In the model training, the model loss and PSNR values were recorded in Figure 10,
where PSNR is the average of 3600 test images.
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4.4. Ablative Study

To evaluate the effect of the attention module and the parameter selection of loss
function, we conducted an ablation experiment. All the evaluations are based on classical
testing images in Figure 4.

Table 6 gives the effect of attention module. From Table 6, we can conclude that the
attention module can improve the performance of the restored images. In addition, the
restored images achieve highest PSNR and SSIM when RCAB is 16. Thus, the number of
RCAB is selected 16 in our networks.

Table 6. The importance of RCAB for the inverse halftoning.

Number of RCAB PSNR SSIM

RCAB-0 28.07 0.842
RCAB-4s 29.22 0.863
RCAB-8s 29.26 0.864

RCAB-16s 31.70 0.900
RCAB-20s 30.92 0.861

To obtain the suitable weight parameters for loss function, we do an experimental
study as shown in Table 7. From Table 7, we can see the optimum values of λ are λ1 =
0.1, λ2 = 0.2, λ3 = 0.3, λ4 = 0.4.

Table 7. The selection of loss function parameters.

λ
PSNR SSIM

λ1 λ2 λ3 λ4

0.4 0.3 0.2 0.1 30.97 0.861
0.1 0.4 0.3 0.2 31.15 0.864
0.1 0.2 0.4 0.3 31.05 0.867
0.1 0.2 0.3 0.4 31.70 0.900

4.5. Discussion

In this article, we report a simple and effective network structure. Firstly, we use a
stacked convolution layer to extract features effectively. Then we use a residual channel
attention module to extract more effective features and guide the network to remove noise
dot-patterns and restore image details. We realize the fusion of low-level features and
high-level features through skip connection. Finally, the network is optimized by the
multi-scale supervision loss, and the state-of-the-art experimental results are achieved.

The following points summarize our experimental results. (1) From the network
structure design, the network is a lightweight network, simple and effective, easy to im-
plement. (2) From the results of quantitative indicators PSNR and SSIM, this method
achieves the state-of-the- art results compared with some previous methods. (3) From the
qualitative analysis, the network has good restoration results, especially the restoration of
the details, lines and texture, which is better than the previous methods. (4) From the point
of view of the generality of the model, the previous method can only restore the single
halftone image, our method can realize the restoration of many types of halftone images,
and has generality.

5. Conclusions

We have proposed a novel deep convolutional neural network by fusing the attention
mechanism for inverse halftoning. The proposed network first extracts main features and
removes noisy-dot patterns by a convolution layer, and then reconstructs image by fusing
the feature information and residual channel attention block. Such an attention block can
help the network to focus on informative features. Thus, the restored image can have more
fine details. Finally, we test on the classic datasets, the average PSNR is 31.70, and the
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average SSIM is 0.9. The results of experiment show that our approach outperforms the
state-of-the-art methods both in visual performance and in quantitative evaluation.

In the future research, the restoration of scanned halftone image is an urgent problem
to be solved, where the most challenging problem is that there is no paired data. How to
construct the inverse halftone method under the condition of unpaired data is an im-portant
research direction. In addition, semi-supervised or unsupervised learning com-bined with
our methods will be further studied in the future work.
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