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Abstract: To improve the accuracy of using deep neural networks to predict the depth information
of a single image, we proposed an unsupervised convolutional neural network for single-image
depth estimation. Firstly, the network is improved by introducing a dense residual module into the
encoding and decoding structure. Secondly, the optimized hybrid attention module is introduced into
the network. Finally, stereo image is used as the training data of the network to realize the end-to-end
single-image depth estimation. The experimental results on KITTI and Cityscapes data sets show
that compared with some classical algorithms, our proposed method can obtain better accuracy
and lower error. In addition, we train our models on PCB data sets in industrial environments.
Experiments in several scenarios verify the generalization ability of the proposed method and the
excellent performance of the model.

Keywords: unsupervised learning; depth estimation; hybrid attention mechanism; residual dense

1. Introduction

The proposal of “made in China 2025” indicates that China’s “industry 4.0” era is
coming [1,2]. In this context, the intelligent industrial robot has become an inevitable
development trend. In recent years, machine vision technology has developed rapidly,
which can meet the requirements of high-precision positioning in industrial scenes. The
introduction of machine vision dramatically expands the application field of industrial
robots and has essential significance for the development of industrial automation. At
present, some important links on the assembly line of the integrated circuit board are
still completed by skilled workers, such as inserting the pins of electronic components
(as shown in Figure 1) into corresponding holes (as shown in Figure 2), quality control of
finished products, etc. However, there are some problems in manual insertion, such as high
cost, low efficiency, and poor quality.

In order to realize the automation of circuit board assembly, besides the pose estimation
of parts, an important premise is the high-precision 3D reconstruction of the scene. Stereo
matching algorithm is its core; only by obtaining the accurate two-dimensional information
of matching points can we reconstruct the accurate three-dimensional scene. Stereo vision
uses binocular cameras to obtain the left and right images of the target object in the
same scene at different positions; through the stereo matching method, the homonymous
points of the left and right images are matched pixel by pixel, and the disparity of the
homonymous points is calculated to obtain the depth information of the object in the
three-dimensional scene. At present, most stereo matching algorithms train the depth
network in a supervised way.
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Figure 2. Manual Assembly.

However, the supervised training method needs to use the image data set with real
depth information (ground truth) as the target training. In monocular image depth esti-
mation, it is difficult to obtain the real depth data per pixel on a large scale. Therefore,
some scholars have proposed a self-supervised monocular depth estimation method. This
method only uses the image itself as the monitoring information when training the depth
network without the explicit ground truth depth of the image. The self-supervised method
reduces the requirements of the training data set and improves the adaptability and robust-
ness of depth estimation. However, due to the problems of occlusion between objects and
high reflectance in the existing data sets, the current self-supervised methods not only fail
to make good use of the context information in the scene, but also are affected by object oc-
clusion and inaccurate contour, and the result of depth estimation will be worse. Therefore,
it is necessary to design a more effective depth estimation network structure. It should
obtain more useful supervising information from the image, optimize the depth estimation
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result, and achieve a more reasonable measurement; this is also the main problem faced by
using the self-supervised convolution network to estimate the depth of a single image.

These show the application value of this study; the design of neural network structure
has many technical difficulties, which is the main reason for the low accuracy of PCB
component reconstruction. These difficulties include making better use of the contextual
information in the scene, better enhancing the spread of features, and maintaining a balance
between accuracy and time consumption.

This paper presents a method of depth estimation of a single PCB image based on a
self-supervised convolution network. The developed method was arduously tested and
compared to commonly used methodologies. The structure of this paper is as follows: in the
second section, we introduce the supervised learning method and self-supervised learning
method in the field of depth estimation of a single image. The third section explains the
network model structure of a self-supervised residual dense network. The fourth section
describes the experimental process; discusses the results of training, verification, and
testing; and compares the methods in this paper with the latest ones. Section 5 summarizes
the research and future work.

2. Related Work

In recent years, deep learning has gradually entered people’s attention. In single-
image depth estimation, neural network-based methods emerge endlessly. These methods
can be divided into supervised learning methods and unsupervised learning methods.

2.1. Single-Image Depth Estimation Method Based on Supervised Neural Network

Eigen et al. [3] first applied the CNN network to monocular image depth estimation
task. The model proposed by them is divided into two steps. Firstly, convolutional neu-
ral network is used for coarse-scale global prediction, and then local refinement is used
to obtain a better depth map. However, this method requires the superposition of two
networks and does not realize end-to-end training. Liu et al. [4] first used a convolutional
neural network to convert the depth estimation problem into a continuous conditional
random field learning problem. They proposed an equivalent complete convolution net-
work and super pixel method, which increased the depth estimation speed by nearly ten
times [5]. Laina et al. [6] first applied the complete convolution network based on the
residual network to single-image depth estimation. At the same time, to improve the image
resolution, a new up-sampling method was proposed. By introducing the inverse Huber
loss function, the network has a shorter training time and better real-time performance.
Li et al. [7] proposed a dual-flow network based on vgg-16; the network is divided into
depth flow and gradient flow to extract depth information and depth gradient information
of images, respectively. The feature fusion module and thinning module are used to extract
features further. Finally, the depth map is obtained through the fusion module. Kendall
et al. [8] proposed an end-to-end network based on stereo image pairs. The network has
a high-level feature representation called cost-volume and uses 3D convolution to fuse
the image information with the cost value. By minimizing the cost value, the disparity
value is regressed, and then the depth map of the image is obtained. Fu et al. [9] proposed
an idea of discretization of the distance between growth. By discretizing the depth, the
depth estimation problem is transformed into an ordinal regression problem. The corre-
sponding ordinal regression loss function trains the network to obtain outstanding depth
estimation results.

2.2. Single-Image Depth Estimation Method Based on Self-Supervised Neural Network

Garg et al. [10] transformed the problem of depth estimation into image reconstruction,
used binocular stereo image pairs to train the network, and realized the unsupervised train-
ing of the network by minimizing the optical difference between the actual reconstructed
right image. Godard et al. [11] also used stereo images as training supervision, synthesized
images by introducing the consistency of left and right disparity and estimating the stereo
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disparity according to the depth network, and then trained the neural network by compar-
ing the gray difference between the input stereo image and the synthetic image to complete
the depth estimation of a single image. Zhou et al. [12] used a monocular image sequence
as training data and used a depth estimation network and a pose estimation network to
estimate image depth and obtain camera moving attitude, respectively. Zhang et al. [13]
used binocular video sequences to train the network, obtained time information from adja-
cent frames of the same view video and received spatial data from different view images
simultaneously, and then fused the two to achieve depth estimation. Yin et al. [14] pro-
posed Geo-Net, which is composed of two sub-networks. The two sub-networks are trained
jointly, and the depth information and pose information are estimated simultaneously. The
consistency constraint between them realizes the depth estimation.

The self-supervised method reduces the requirement of the training data set and
improves the adaptability and robustness of depth estimation, but the object contour in the
depth estimation map is fuzzy and the boundary is not clear. Aiming at the problem of
inaccurate depth estimation values caused by fuzzy contour information in single-image
depth estimation, an optimized self-supervised convolution network method for single-
image depth estimation is proposed in this paper. Firstly, by fusing the residual unit and
dense unit, a residual dense unit suitable for single-image depth estimation is proposed.
Then, several residual dense units are used to form a residual dense module, which is
applied to the codec structure with jump connection. The network has no full connection
layer, which reduces the parameters and the requirements for the size of the test image. In
addition, the hybrid attention module is used to improve the depth estimation network,
and the attention mechanism is used to make more effective use of the context information
within and between objects to enhance the feature extraction ability of the model. In the
training stage, the calibrated stereo images are used as training data for self-supervised
training, and the trained network can estimate the disparity between stereo images. In the
test phase, the depth information of the scene in the image can be calculated by inputting a
single image according to the camera calibration parameters and the predicted disparity.

3. Method

By introducing the optimized residual density model and mixed attention model,
we propose a new single-image depth estimation neural network. In the case of self-
supervising, a series of stereo image pairs are used to train the network; the following parts
of the method are introduced in detail.

3.1. Residual Dense Module

The residual dense module used in this paper is obtained by combining the residual
network with the dense network, adding the identity mapping of the residual network
module based on dense network module, and then through some improvements. Its
specific structure is shown in Figure 3.
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Figure 3. Residual Dense Unit.

Similar to the residual structure, the residual dense primitive is divided into a direct
mapping part and a residual mapping part. The residual mapping part is divided into
four convolution layers; the first layer uses 1 X 1 convolution core, the second layer uses
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3 x 3 convolution core, the third layer uses 1 x 1 convolution core, and the fourth layer
uses 1 X 1 convolution core. The first three steps are Formula 1 and the fourth step is
Formula 2; each convolution layer selects ELU [15] as the activation function, as shown in
Formulas (1)-(5). The dense connection is integrated into the residual mapping; after the
dense connection of three convolution layers, the input features will pass through the fourth
convolution layer and then add to the direct mapping. Finally, the final output is obtained
through the ELU activation function. Let x be the input of the residual dense primitive,
F; be the ith convolution operation, and I; be the input of the ith convolution layer.

11 =X (1)

I, = concat[x, F1(I1)] (2)

I3 = concat[x,F1(I), F>(I)] ©)]

14 = concat(x, Fy(I1), F2(I2), F3(I3)] (4)
Out = concat|x, I4] 5)

Among them, concat is the connection operation, and Out is the final output of the
residual dense unit. In the residual dense unit, the input of each convolution layer is
the output characteristics of all previous convolution layers in the unit and the input
characteristics of the unit. Through the integration of the residual network units and the
dense network units that are dense unit residual, we not only can avoid the degradation of
the neural network, but also make sure that the layers of the network extracted features
are fully used, which makes the local characteristics of the network module show better to
extract the features and also solves the problem of the dense network of hard training.

3.2. Hybrid Attention Module

Due to the poor image quality of the PCB board, high density of components, and
complex scene content, it is easy to cause high similarity between the target and the sur-
rounding background, which affects the judgment of the network on the target. Therefore,
the designed model is required to distinguish the target and background features well. The
most direct idea is to enhance a super-resolution of the image and then estimate the depth,
but this will cause high memory consumption, increased computational complexity, and
can not meet the end-to-end training and reasoning, significantly expanding the reasoning
and training time. Because the attention module can enhance the feature expression ability
of the model, at the same time, it can automatically find the significant region and capture
the decisive local features; so as to avoid confusing the target and background and finally
improve the accuracy of depth estimation, the attention module is introduced in this paper.
According to the discussion of SE-Net [16], SE-Net automatically learns the importance of
each channel in the network through training and then improves the critical features and
suppresses other less essential elements according to the extent of each channel. Compared
with SE-Net, CBAM [17] (Convolutional Block Attention Module) calculates the corre-
sponding feature map from two dimensions of space and channel. CBAM is a relatively
lightweight module that can be easily integrated into other convolutional neural network
models to optimize the features extracted by the network and guide the model to pay more
attention to the most discriminative areas in the image to improve the accuracy of the
task. Therefore, this paper designs an optimized hybrid attention module to extract critical
features. The overall structure is shown in Figure 4.
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Figure 4. Improved Hybrid Attention Module.
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For the characteristic graph F : F € REHXW of 4 given network, C, H, and W are
the dimensions of each channel of the feature map, and R is the real number space. The
channel attention map with high contribution to the target is extracted by the channel
attention module M, and the spatial attention map is extracted by the spatial attention
module Mg in a cascade way to obtain the final output. In the channel attention module
of SE-Net network, the spatial information of the worldwide average pooled statistical
characteristic graph is used. Different from their ideas, we think that the global maximum
pooling operation can obtain the most various features between targets, which can help
to infer more precise channel attention. Therefore, this paper uses global average pooling
and all maximum pooling at the same time. Firstly, global average pooling and complete
global pooling are used to generate different spatial description features: M¢,,, € R€*1*1,
M, € RE1X1 Then, the fused channel description feature M1erge is Obtained by pixel
level addition. The fused channel description features are sent to a multi-layer perceptron
to get the final channel attention map.

anerge (F) = Mgy (F) + My, (F) (6)
The feature map optimized by the channel attention module is as follows:
F = Msnerge(F) ®F )

Spatial location attention is mainly to find important key information areas in the
feature map, which is a supplement to channel attention. As shown in Figure 4, the feature
map output by the channel attention module is taken as the input of the spatial attention
module, and the average pooling and maximum pooling are used to compress the input
feature map. The input feature map F' generates two new features along the channel
dimension: Mg, € RVHEXW pp e RVHXW global pooling and average pooling
operations. Then the splicing operation is carried out, and the receptive field is extracted
by 3 x 3 dilated convolution (division = 2) [18]. Compared with standard convolution,
dilated convolution can expand the receptive field of convolution and capture multi-scale
information without introducing additional parameters. Therefore, the process of the
CBAM module can be expressed as follows:

F' = anerge [Mtcnerge (F) @ F} ® [Mcmerge (F) @ P] (8)
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where: F” is the characteristic graph calculated by the hybrid attention optimization module,
“®” in Formulas (7) and (8) is the multiplication operation by element.

3.3. Implementation of Self-Supervised Training Based on Stereo Image Pairs

Compared with supervised learning, self-supervised learning does not need labeled
training data sets, which significantly reduces the requirements for data sets. The self-
supervised training method used in this paper only needs a series of stereo image pairs
provided by the binocular camera and the baseline distance and focal length of the camera
to train the neural network. Our neural network training method is similar to that of
reference [11], its central idea is that stereo image pair is a pair of images obtained by
shooting the same scene simultaneously from the left and right viewpoints; in this pair of
images, there are geometric constraints of the scene, and the depth information of the scene
can be obtained by neural network interpretation. The implementation method is as follows:
first, the left-view image is used as input, and the network predicts the right disparity
image and the left disparity image. Then, the obtained right disparity map and the left map
are fused to get a prediction image for the right image I, and the obtained left disparity
map and the right map are fused to get a prediction image for the left image I; Finally, the
loss is calculated by comparing the two predicted images with the corresponding stereo
image pairs, and the loss is minimized by training the network. Through the above ways,
the self-supervised training for the network is realized. The process is shown in Figure 5.

r

\
I I d; Spr ]
|

Figure 5. Image depth estimation algorithm training.
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The disparity map obtained can be used to calculate the depth estimation of the image
by using Formula (9)
D = bef/disp )

where, D is the depth estimation of the input image of the neural network, b is the reference
distance between the left and right cameras, fis the focal length of the camera, disp is the
corresponding disparity map.

3.4. Network Structure

We use the encoder and decoder structure and add a jump connection from the
encoder module to the corresponding decoder module on the common encoder-decoder.
The decoder can obtain higher resolution image information. The specific network structure
is shown in Figure 6.

i
il

. Conv

. Maxpooling . Residual Dense —> Concat

——————>

CBAM ) Upconv A lcony

Figure 6. Depth estimation network structure.
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The neural network in this paper can be divided into three parts:

(1) Encoder part: This part is divided into the global feature extraction module and the
local feature extraction module. The global feature extraction module is composed
of a7 x 7 convolution layer and a top pooling layer, and the local feature extraction
module is composed of four sub-modules. The number of residual dense units in
each module refers to the number of each module unit in DenseNet-121. The number
of residual dense units is 6, 12, 24, and 16, respectively, and the number of output
channels of each module is set to 256, 512, 1024, and 1024, respectively. Increase the
number of channels of the feature map layer by layer to obtain more dimensional
information. The encoder firstly uses the global feature extraction module to extract
the whole image information globally, and then further extracts the details of the
image through the local feature extraction module to obtain more comprehensive
image information.

(2)  Jump connection part: In this part, the information obtained by each encoder mod-
ule is directly introduced to each decoder module through a jump connection so
that the decoder module can get higher resolution image information and the infor-
mation of the previous encoder can be fully utilized; see Figure 6 for the specific
connection method.

(38) Decoder part: This part consists of six decoder sub-modules; each sub-module con-
tains an upper convolution layer and a convolution layer, in which the input of the
upper convolution layer is the output of the upper layer, and the input of the convolu-
tion layer is the combination of the output of the corresponding upper convolution
layer and the jump connection. At the same time, the last four decoder sub-modules
will output four disparity images through up-sampling. The decoder reduces the
dimension of high-level information and restores the resolution of image information
through each decoder module, and finally outputs the disparity pyramid composed of
four disparity graphs with different resolutions, which are all used for loss calculation.
The loss function used is described in detail in Section 3.5. After the training, Disp1
was used to generate the depth map of the input image. The specific parameters of
this network model are shown in Table 1.

Table 1. Coding network structure parameters.

Layer Kernal Stride Channel Input
Conv 7x7 2 3/32 Left + Right
Max Pool 3x3 2 32/64 Conv
Denseblock_1 [ x 1), x 3)] x6 1 64/64 Max Pool
Trans_1 2 x 2 MaxPool 2 64/256 Denseblock_1
Denseblock_2 [(1x1),@3x3)]x12 1 256/256 Trans_1
Trans_2 2x2 MaxPool 2 256/512 Denseblock_2
Denseblock_3 [(1x1),3x3)]x24 1 512/512 Trans_2
Trans_3 2 x 2 MaxPool 2 512/1024 Denseblock_3
Denseblock_4 [(1x1),3x3)]x16 1 1024/1024 Trans_3
Ca_1l 7 x 7 MaxPool 1 1024/1024 Denseblock_4
Sa_1 7 x 7 MaxPool 1 1024/1024 Ca_1l
Upconv_6 3 2 1024/1024 Sa_1
Iconv_6 3 1 1536/512 Upconv_6 + Denseblock_3
Upconv_5 3 2 512/256 Iconv_6
Iconv_5 3 1 512/256 Upconv_5 + Denseblock_2
Upconv_4 3 2 256/128 Iconv_5
Iconv_4 3 1 192/128 Upconv_4+Denseblock_1
Disp_4 3 1 128/2 Iconv_4
Upconv_3 3 2 128/64 Iconv_4
Iconv_3 3 1 130/64 Upconv_3 + MaxPool + Disp_4
Disp_3 3 1 64/2 Iconv_3
Ca_2 7 x 7 MaxPool 2 64/64 Iconv_3
Sa_2 7 x 7 MaxPool 1 64/64 Ca_2
Upconv_2 3 1 64/32 Sa_2
Iconv_2 3 2 98/32 Upconv_3 + Conv + Disp_3
Disp_2 3 1 32/2 Iconv_2
Upconv_1 3 1 32/16 Iconv_2
Iconv_1 3 2 18/16 Upconv_1 + Disp_2
Disp_1 3 1 16/2 Iconv_1
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In the above table, the kernel is the convolution kernel width, the stride is the convo-
lution step size, the channel is the number of input and output channels, Ca represents
channel attention, Sa represents spatial attention, and Denseblock represents representation
dense residual module. The “+” in the table represents the concatenation of the input on the
channel dimension. Conv stands for convolution, Upconv stands for deconvolution, Iconv
stands for superposition of deconvolution result and convolution of the coding network in
channel dimension and then convolution. Disp stands for left and right disparity map to
be output. Due to different scales, a disparity map with the original width of 1,1/2,1/4,
1/8 is generated.

3.5. Loss Function Design

We use binocular stereo image pairs to train the network. The final output of the dense
residual network is four disparity estimation maps with different scales. Therefore, when
calculating the loss, we separately calculate the four scales and then sum them up. In other
words, the total loss of the network can be divided into four parts C = Y°2_; Cs. Where Cs
is the loss corresponding to each disparity estimation map. Each Cs is composed of three
parts, C,p represents the similarity between the input image and the reconstructed image;
Cgs represents the smoothness of the disparity map; Cj, represents the similarity between
the left and right disparity maps of the network output. By weighted summation of the
three kinds of losses, the loss value of each scale can be obtained, and its specific expression
is shown in Formula (10).

Cs = w1Cqp + w2 Cys + W3 Cyy (10)

w1, W, w3 represents the weight coefficients of the weight of three kinds of losses in
the total loss. The specific set of these three coefficients in this chapter will be consistent
with [11] wq =1, wy = 0.1, ws = 1. In the output of each scale, there are two disparity
estimation maps: left disparity estimation map and right disparity estimation map. There-
fore, each kind of loss is also divided into two parts: left disparity loss and right disparity
loss, which can be expressed by Formulas (11)—(13).

Cap = Cayp + Ciy (11)
Cias = Cfis + C;s (12)
Cry = C;r + G, (13)

I represents left disparity loss and r represents right disparity loss. The specific
calculation methods of three kinds of losses will be given below.

Image reconstruction loss: the loss reflects the difference between the two-view image
input by dense residual network and the corresponding view reconstruction image. The
specific calculation formula of the loss is shown in Formulas (14) and (15).

~1
1—ssim(IL. T,
1 1’]/ i,j ~
Clp = N &ij 2( ) + (1 - o)[|I}; — T | (14)
1—SSIM(T. T, ;
1 T L »
Cop = N Lt @ 2< ) + (1)~ Ty (15)

where N is the total number of pixels, 1, j represents the abscissa and ordinate values of
the image, respectively, and « is the weight coefficient of the two-loss terms. The weight
value set in this paper is the same as that in reference [11], which is 0.85. I is the input
image. In the formula, the former term reflects the similarity between the original view
image and the reconstructed image of the corresponding view. In contrast, the latter term
represents the difference between the original view image and the reconstructed image of
the corresponding view.
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Disparity smoothing loss: the loss is used to local smooth the depth discontinuous
points in the disparity estimation map. The depth of the discontinuous points in the dispar-
ity estimation map will produce drastic changes in the gradient domain [19]. Therefore,
by increasing the smoothing loss in the gradient domain of the disparity map, the depth
discontinuity area in the disparity estimation map can be smoother and a more realistic
disparity estimation map can be obtained. The specific calculation method of the loss is
shown in Formulas (16) and (17).

1 WS —||oydt.

Cus = Zi,j( Budl eIl 1 ‘aydf,j’e o ”’l) (16)
1 — T - T

Crds — 7} i,j( axd;j e Haxde + ‘ayd;]- e Hayd1,]”) (17)

where d, and dy, are the gradients of the disparity map on the x and y axes, and df,j is the
value of the left disparity map at coordinates (,7). Other parameters are consistent with
the meaning in Formula (14).

Disparity consistency loss: this loss reflects the left and right consistency between
disparity graphs. The second estimation image of the disparity estimation image can be
obtained by left-right fusion and right-left fusion, respectively. The disparity consistency
loss can be obtained by comparing the first estimate image with the second estimate image.
The specific calculation method is shown in Formulas (18) and (19).

1

[ _ 1 r

Clr = 5 2| i — L (18)
’—12 d.—d (19)
Ir — N &ij|"ig ijtd;;

3.6. Evaluation Metrics

The evaluation criteria are mainly divided into error rate and accuracy rate. The error
rate includes average relative error Abs Rel, square root relative error Sq Rel, linear root
mean square error RMSE, and logarithmic root mean square error RMSE log. The accuracy
rate includes three threshold indicators, which are 1.25, 1.25% and 1.25% respectively. The
lower the error, the better the accuracy. The specific calculation formula is as follows [3]:

(1) Average relative error Abs Rel: The ratio of the absolute value of the difference
between the estimated depth value and the true depth value to the true depth value.
The specific calculation method is shown in the formula.

1y-r ||d; —dif

Abs Rel = i_, Zi:l IT

Among them T is the total number of pixels, d; is the estimated depth value of pixels,

and dj is the real depth value of corresponding pixels. The same letters in the following

formulas have the same meaning.

(20)

(2) Square root-relative error Sq Rel: The ratio of the square of the difference between the
estimated depth value and the true depth value to the true depth value. The specific
calculation method is shown in the formula.

Lyt |di —di®
SqRelzfzizl’T’ (21)

(3) Linear root mean square error RMSE: Used to describe the root mean square of the
difference between the estimated and true depths.

1 .
RMSE = \/ - Yo (df —d;)? (22)
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(4) Log root mean square error RMSE log: It is the expression of root mean square error in
the log field, which is used to describe the root mean square of the difference between
the logarithm of the estimated depth value and the logarithm of the true depth value.

RMSE log = \/% ZiTzl(logd:f — logd;)* (23)

(5) Accuracy: Used to describe the percentage of the ratio of the estimated depth to the
true depth within a fixed threshold.

*

d’ d;
5= mux(d—’, d—’) < thr, thr=1.25,1.25%1.25° (24)
i d;

Among them, thr represents the given threshold.

4. Experiments and Discussion

In this part, the experiment of this paper will be explained in detail and compared with
several representative image depth estimation methods on the KITTI data set, Cityscapes
data set, and PCB data set we collected, including the supervised learning method of
Eigen et al. [3] and the unsupervised learning method of Godard et al. [11]. The results
verify the effectiveness of this method in error, accuracy, and visual depth effect feasibility.

4.1. Datasets

PCB data set: We use a 2.5 megapixel binocular camera to make the PCB data set,
the baseline distance of the camera is 2.5 cm and the focal length is 4.2 mm. The data set
includes nine categories: square capacitance, varistor, medium capacitance, triode, I-shaped
inductance, relay, resistance, large capacitance, and circuit board. The training set contains
9000 pairs of images, the verification set contains 1000 pairs of images, the test set contains
1000 pairs of images, and the original image resolution is 1700 x 830; as shown in Figure 7,
the first row is the left image and the second row is the right image.

Figure 7. Samples of PCB data set.

Eigen Split set: In this paper, the algorithm is trained and tested on the KITTI 2015
data set, using the data set segmentation method proposed by Eigen et al. [3]. The data set
contains 42,382 pairs of modified images from 61 scenes, and the original image resolution
is 1242 x 375. The image with a resolution of 512 x 256 is obtained from the original image
processing. Eigen et al. selected 697 pictures from 29 scenes in the original KITTI 2015 data
set as the test set. Among the 23,488 images in the remaining 32 scenes, 22,600 images are
selected for training and the rest for evaluation. To compare with most of the methods
using this data set, we use the clipping method proposed by Eigen et al. [3] to test this data
set and evaluate the resolution of the input image.

The Cityscapes data set is the image data set collected by the Benz group company
when driving driverless. The Cityscapes data set is collected in 50 cities with different
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scenes and different seasons. It is divided into schools, streets, towns, work areas, etc.,
and provides 5000 fine label images and 20,000 rough labels images, and 30 kinds of
labeled objects.

4.2. Implementation Details

The proposed model is implemented with the PyTorch framework and trained on
two NVIDIA GTX 2080Ti GPUs. In the model training, after epochs reach 45, loss starts to
maintain dynamic balance. After weighing, this paper finally sets it to 50, and the number
of batches is 16. The initial learning rate was set to 0.0001, and the learning rate was
maintained in the first 30 epochs, while the learning rate was halved in 3040 epochs and
then halved in 40-50 epochs. Adam optimizer is used for optimization, and the optimizer
parameter is set to 1 = 0.9, B, = 0.999, and ¢ = 107 8. The initial learning rate was 0.0001,
using the same data enhancement and post-processing techniques as in reference [11]. The
data are randomly enhanced during the training process to increase the diversity of the
data, such as brightness, contrast, saturation adjustment, and horizontal flip.

4.3. Ablation Study

The ablation study was also taken in the experiment, and we choose Monodepth [11]
as the baseline method. To verify the model’s generalization ability, we tested it with the
Eigen Split set, the Cityscapes data set, and the PCB data set without any adjustment to
the model parameters. Monodepth-D upgrades four residual modules in Monodepth to
four dense residual modules; Monodepth-C adds optimized hybrid attention modules
to Monodepth in the encoding and decoding stages, respectively; Monodepth-DC adds
optimized hybrid attention modules to Monodepth-D in the encoding and decoding stages,
respectively; the experimental results are shown in Table 2. At the same time, this paper
visualizes some data for a more intuitive comparison; the first column in Figure 8 is the
predicted results of the four algorithms on the Eigen Split set; the second column is the
expected results of the four algorithms on the Cityscapes data set; the third column is the
predicted results of the four algorithms on the PCB data set.

Our depth estimation result shows clearer edges on some thin structures, such as
trunks shown in Figure 8. We also found that, due to the deep network, Monodepth-
D provides a clearer depth map than Monodepth in a variety of environments and can
accurately predict distant targets. Monodepth-C has sharper edges than Monodepth
predicted depth maps because the hybrid attention mechanism provides better feature
fusion and the network focuses more on the local information of the image. In the areas
with more complex details, the target edge predicted by Monodepth-DC method is the
clearest, such as the telegraph pole, the human’s head, and the reflection part of electronic
components in the second column of images. Of the four networks, each index of the depth
map predicted by Monodepth-D and Monodepth-C is better than Monodepth; Monodepth-
DC works best, both in numerical metrics and visual depth map results. It can be found
from Table 2 that the RMSE of this algorithm is 4.984, which is 15.9% lower than that
of Monodepth. The threshold accuracy of 6 < 1.25 is 0.858, which is 6.8% higher than
Monodepth and 3.2% higher than Monodepth-D. It can be seen that the depth error of the
image predicted by this algorithm is smaller and the accuracy is higher.

Table 2. Ablation study on the Eigen Split set.

Lower Is Better Higher Is Better
Method
Abs Rel Sq Rel RMSE RMSE log §<1.25 § <1.25 § <1258
Monodepth 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Monodepth-D 0.123 1.029 5.392 0.236 0.831 0.953 0.970
Monodepth-C 0.135 1.312 5.671 0.242 0.829 0.935 0.966
Monodepth-DC 0.119 0.987 4.984 0.225 0.858 0.962 0.974
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Figure 8. Results of three algorithms on the Eigen split set, Cityscapes data set, and PCB data set.

4.4. Performance Comparison with State-of-the-Art

We verify the effectiveness of the model proposed in this paper on the Eigen Split set;
the comparison results with other existing methods are shown in in Table 3. The depth
estimation results of several representative images in the Eigen Split set, the Cityscapes
data set, and the PCB data set are shown in Figures 9-11.

Table 3. Results on the Eigen Split set.

Method Super-  spsRel  SqRel RMsg ~ RMSElg 5155 s<12%  §<125
Vision (log)

Eigen [3] Yes 0.203 1.548 6.307 0.282 0.702 0.890 0.890
Liu [4] Yes 0.201 1.584 6.471 0.273 0.680 0.898 0.967
Zhou [12] No 0.208 1.768 6.856 0.283 0.678 0.885 0.957
DF-Net [20] No 0.150 1.124 5.507 0.223 0.806 0.933 0.973
Ranjan [21] No 0.148 1.149 5.464 0.226 0.815 0.935 0.973
Garg [10] No 0.169 1.080 5.104 0.273 0.740 0.904 0.962
Godard [11] No 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Xu [22] No 0.132 0.911 / 0.162 0.804 0.945 0.981
GASDA [23] No 0.149 1.003 4995 0.227 0.824 0.941 0.973

Ours No 0.119 0.987 4.984 0.225 0.858 0.962 0.974
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Figure 9. Results compared with other methods on the Eigen split set.
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Figure 10. Results compared with other methods on the Cityscapes data set.

Input Zhou et al Godard et al Qurs

Figure 11. Results compared with other methods on the PCB data set.
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(1) Quantitative analysis

As shown in Table 3, compared with the method proposed by Eigen et al. [3], the
Abs Rel of our method is lower than their 0.4%, and the RMS log is lower than their 5.5%
on the Eigen Split set. Although our method does not use the ground truth depth map
as supervision, it considers the similarity between pixels so as to make the error smaller;
when 6 < 1.25, the threshold accuracy is 15.6% higher than them, and 8.5% higher than
them when § < 1.253; the higher the accuracy, the more depth image information will
be estimated.

Compared with the unsupervised learning method proposed by Zhou et al. [12], the
Abs Rel of our method is 0.3% lower than them, the threshold accuracy of 6 <1.25is 18%
higher than them, and the threshold accuracy & < 1.25% is also 1.7% higher than them. We
use dense connections to enhance feature reuse and feature forward propagation, so we
can effectively improve the accuracy of image depth prediction. The spatial context in the
image is used more effectively through the hybrid attention mechanism to enhance the
feature extraction ability of the model. In the process of image depth estimation, we can get
more position information and make the boundary of the object more obvious. In general,
our model has small error and high prediction accuracy.

Because the distance between the electronic components and the camera is far, it is
difficult to directly measure the distance between the electronic components and the camera.
Therefore, we judge the depth accuracy in the Z direction by measuring the maximum
distance between the electronic components and the desktop. The depth estimation exper-
imental results of five electronic components are shown in Table 4, and the numbers in
parentheses are errors. From the data in the table, the average error value of five electronic
components is about 0.35 mm, the minimum error value is 0.28 mm, and the maximum
error value is 0.44 mm by the Monodepth-DC method. Through the Monodepth method,
the average error value of five electronic components is about 0.60 mm, the minimum error
value is 0.49 mm, and the maximum error value is 0.66 mm. Compared with the benchmark
algorithm, our accuracy index has been greatly improved.

Table 4. Results on the PCB data set.

Square Capacitor Medium Large Capacitor Medium Varistor Large Varistor
Method .
(mm) Capacitor (mm) (mm) (mm) (mm)
Ground Truth 12.28 20.61 32.17 15.88 21.66
Eigen [3] 13.81 (1.53) 22.17 (1.56) 33.52 (1.35) 17.63 (1.75) 22.57 (0.91)
Zhou [12] 14.05 (1.77) 22.65 (2.04) 34.31 (2.14) 17.92 (2.04) 22.81 (1.15)
Monodepth 12.93 (0.65) 21.18 (0.57) 32.66 (0.49) 16.52 (0.64) 22.32 (0.66)
Monodepth-DC 12.72 (0.44) 21.02 (0.41) 32.53 (0.36) 16.18 (0.30) 21.94 (0.28)

(2) Qualitative analysis

As can be seen from Figure 9, the depth map predicted by us is more perfect in detail
than that predicted by the method of Godard et al. [11] and Zhou et al. [12], especially
in areas with highly similar colors. In the third line of comparison, due to the influence
of shadow, the method of Zhou et al. [12] confuses pedestrian and vehicle shadow when
predicting the depth value of pedestrian in the middle of the image. However, our method
is not affected by shadow and also performs a better prediction for distant vehicles. In
the comparison of the first line, the depth map predicted by our method can not only well
separate the trees, street lights, and background in the foreground, but also completely
reflect the depth changes of the road from near to far; while the depth map predicted by
Zhou et al. [12] has a fuzzy separation effect on the front and back scenes. In Figure 10,
due to the poor contrast of the scene without strong light, the separation effect of the front
and back scenes of the depth map predicted by Zhou et al. [12] is more fuzzy, and the
target contour edges in the depth map predicted by our method are more accurate and the
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prediction effect of details is better. Meanwhile, the prediction was better in challenging
areas such as pedestrian heads, moving vehicles, tree trunks, signs, and traffic lights.

In Figure 11, the depth map of electronic components predicted by Zhou et al. [12] and
Godard et al. [11] has serious fuzziness, and in the depth estimation map of Zhou et al. [12],
some backgrounds are misjudged as prospects. The boundary of electronic components
in the depth map indicated by us is clear, and there is almost no place for the wrong
estimation. Due to the idea of DenseNet, our method can alleviate the problem of gradient
disappearance and strengthen feature propagation. Therefore, the depth map has less error
estimation and is relatively clear on the whole. Meanwhile, the hybrid attention mechanism
is improved, and the object boundary ambiguity caused by Zhou et al. [12] in the process
of image estimation is solved.

5. Conclusions

In this paper, the improved Monodepth model for depth estimation of monocular
electronic components was proposed. In order to improve the accuracy of image depth
estimation, we improved the network by introducing dense residual module into the coding
and decoding structure. In order to solve the problem of boundary ambiguity in monocular
image depth estimation, we added an improved hybrid attention module to the coding
and decoding structure, respectively. We collected 11,000 pairs of images containing nine
electronic components (square capacitance, varistor, medium capacitance, triode, I-shaped
inductance, relay, resistance, large capacitance, and circuit board.), Data augmentation was
accomplished by adding noise (Gaussian blur, gaussian noise, motion blur, and salt and
pepper noise) to the original set of images.

In order to prove the effectiveness of our proposed method, it was compared with
some of the latest monocular image depth estimation methods. The experimental results
showed that our model has similar accuracy in depth estimation compared with Eigen’s
supervised model. In addition, compared with Zhou and other unsupervised models, it
has significant advantages in the prediction of object edge contour information.

The monocular image depth estimation method proposed in this paper can be used for
three-dimensional reconstruction of electronic components, but there is still a certain gap
between its performance and real-time detection. In the future, we will focus on optimizing
the existing models so that the depth of electronic components in video can be estimated to
meet the real-time requirements.
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