
Citation: Solomon, E.; Woubie, A.;

Cios, K.J. UFace: An Unsupervised

Deep Learning Face Verification

System. Electronics 2022, 11, 3909.

https://doi.org/10.3390/

electronics11233909

Academic Editor: Donghyeon Cho

Received: 30 October 2022

Accepted: 23 November 2022

Published: 26 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

UFace: An Unsupervised Deep Learning Face Verification System
Enoch Solomon 1,* , Abraham Woubie 2 and Krzysztof J. Cios 1,3

1 Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
2 Department of Signal Processing and Acoustics, Aalto University, 02150 Espoo, Finland
3 University of Information Technology and Management, 35-225 Rzeszow, Poland
* Correspondence: solomone@vcu.edu

Abstract: Deep convolutional neural networks are often used for image verification but require
large amounts of labeled training data, which are not always available. To address this problem,
an unsupervised deep learning face verification system, called UFace, is proposed here. It starts
by selecting from large unlabeled data the k most similar and k most dissimilar images to a given
face image and uses them for training. UFace is implemented using methods of the autoencoder
and Siamese network; the latter is used in all comparisons as its performance is better. Unlike in
typical deep neural network training, UFace computes the loss function k times for similar images
and k times for dissimilar images for each input image. UFace’s performance is evaluated using
four benchmark face verification datasets: Labeled Faces in the Wild (LFW), YouTube Faces (YTF),
Cross-age LFW (CALFW) and Celebrities in Frontal Profile in the Wild (CFP-FP). UFace with the
Siamese network achieved accuracies of 99.40%, 96.04%, 95.12% and 97.89%, respectively, on the four
datasets. These results are comparable with the state-of-the-art methods, such as ArcFace, GroupFace
and MegaFace. The biggest advantage of UFace is that it uses much less training data and does not
require labeled data.

Keywords: unsupervised face verification; deep learning; Siamese network

1. Introduction

Face recognition is a technology that identifies or verifies a person from an image or
video [1]. Generally, face verification is used to access an application, system or service.
The task is to compare a given face to another face and verify whether it is a match. In
other words, given any two face images, the face verification algorithm decides if they are
of the same person or not. Unlike other verification methods such as using passwords or
fingerprints, biometric face verification uses dynamic patterns that make this approach
one of the safest and most effective ones. Face recognition is also used in forensics and
transaction authentication.

Deep neural networks have been successfully used in different applications such
as speaker verification [2,3] and image recognition [4,5]. In addition to artificial neural
networks, spiking neural networks have been successfully used for image recognition [6,7].

It was shown that using deep neural networks for face verification [8–21] signifi-
cantly improved accuracy when compared with other face verification systems [22–27].
The Facenet [8] face verification system was developed by Google; it used a Siamese net-
work [28] trained on a labeled dataset with 200 M faces. It achieved an accuracy of over 98%
on LFW [29] and over 95% on YTF [30], two benchmark face verification datasets. To achieve
that result, it used a huge labeled dataset, with 200 M faces, for training. DeepFace [9] was
developed by Meta. It used 3D face modeling and a nine-layer network with about 120
million parameters and was trained on 4.4 M labeled face images. On the LFW dataset, it
achieved an accuracy of over 97%. DeepFace was extended in [18] and, by using much more
training data—over 500 M faces—improved its performance on LFW to over 98%. Another
face verification system, VGG Face, was developed at Oxford [10], used 37 convolutional

Electronics 2022, 11, 3909. https://doi.org/10.3390/electronics11233909 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11233909
https://doi.org/10.3390/electronics11233909
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2527-6375
https://doi.org/10.3390/electronics11233909
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11233909?type=check_update&version=2


Electronics 2022, 11, 3909 2 of 17

layers and was trained on 2.6 M labeled face images. It achieved accuracies comparable
to Facenet and DeepFace on LFW, and over 97% on the YTF dataset. In [15], another face
verification system was proposed using marginal loss, which was trained on a 4 M labeled
dataset, and achieved an accuracy of over 99% on LFW and over 95% on YTF. ArcFace
[16] used an additive angular margin loss and obtained over 99% accuracy on LFW, over
98% on both YTF and CFP-FP, and over 95% on CALFW. GroupFace [19] used multiple
group-aware representations and achieved over 99%, 97%, 96% and 98% on the LFW, YTF,
CALFW and CFP-FP datasets, respectively. However, both ArcFace and GroupFace re-
quired labeled training data of 5.8 M samples. MegaFace [31] deployed a magnitude-aware
margin on ArcFace loss to improve intra-class compactness and achieved over 96% and
98% on CALFW and CFP-FP datasets, respectively. CurricularFace [13] used an adaptive
curriculum learning loss and achieved over 99% on LFW, over 96% on CALFW and 98% on
CFP-FP datasets. Both CurricularFace and MegaFace required about 3.8 M labeled training
data. MDCNN [32] is composed of two advanced deep learning neural network models
and achieved over 99% and 94% on the LFW and YTF datasets, respectively, using a 1
M labeled training dataset. PSO AlexNet TL [33] used transfer learning and achieved an
accuracy of over 99% on the LFW dataset. Ref. [34] used data augmentation and achieved
over 99% and 96% on the LFW and YTF datasets, respectively.

Semi-supervised learning methods with deep neural networks use two main ap-
proaches: (1) consistency regularization-based methods [35] and (2) proxy label-based
methods [36]. The consistency regularization-based methods use a regularization term in
the objective function to enable consistency while training on a large amount of unlabeled
data; this constrains model predictions to be invariant to input noise. Ref. [35] devel-
oped an Unsupervised Domain Adaptation method with advanced data augmentation
methods such as rand-augment and back-translation. The proxy label-based methods first
assign proxy labels to unlabeled data (pseudo-labels) and then train unlabeled and labeled
data based on proxy and ground-truth labels. Ref. [36] introduced a FixMatch method
that first generates pseudo-labels using the model’s predictions on weakly augmented
unlabeled images.

Several methods were proposed to learn features from unlabeled data, which can
significantly reduce the high cost of annotating large-scale data. For example, Ref. [37]
introduced DeepCluster, a clustering method that jointly learns the parameters of a neural
network and the cluster assignments of the resulting features. Ref. [38] proposed learning
image features by training ConvNets to recognize the 2D rotation that is applied to the
image it receives as input. Ref. [39] proposed Spatial-Semantic Patch Learning, which
involves two stages in training. First, three auxiliary tasks, consisting of a Patch Rotation
Task, a Patch Segmentation Task and a Patch Classification Task, are jointly developed
to learn the spatial-semantic relationship from large-scale unlabeled facial data. Ref. [40]
proposed to enhance face recognition with a bypass of self-supervised 3D reconstruction.
Ref. [41] proposed a face frontalization framework combined with 3DMorphableModel
that only adopts front images for training. The authors in [42] proposed a fully trained
generative adversarial network to generate realistic and natural images. In [43,44], the
authors proposed face synthesis and pose-invariant face recognition using generative
adversarial network. PCA feature transform, Correlation Alignment [45] and Unsupervised
Domain Adaptation for Face Recognition in Unlabeled video [34] methods were proposed
to extract features using RFNet. The adaptation was achieved by distilling knowledge from
the network to a video adaptation network through feature matching, performing feature
restoration through synthetic data augmentation and learning a domain-invariant feature
through a domain adversarial discriminator.

All of the above-described methods, as is true for most other deep neural networks,
require large amounts of labeled training data, which are not available in many domains.
Moreover, in many real-world FAR applications, sufficient labels can be difficult to collect.
As a result, the performance of these methods greatly degrades.



Electronics 2022, 11, 3909 3 of 17

To address this problem, we propose an unsupervised deep learning face verification
system using k most similar and k most dissimilar images, called UFace. The k most similar
and k most dissimilar images is calculated for a given face image. UFace does not require
labeled data and, importantly, uses only about 200 K unlabeled face images. However,
based on the experimental result, UFace substantially improves the results of unsupervised
methods because it takes into account the similar and dissimilar face images to extract
distinct features.

The main contributions of this work are as follows:

• Unlike many other face verification methods, the UFace system uses the k most similar
and k most dissimilar images of the original input face image for training.

• The k most similar/dissimilar images are selected from a small amount of training
data, significantly increasing the size of data available for training in applications
where only small datasets exist. For example, having only 100 images with k = 10
results in 1 K + 1 K training images.

• To use the k most similar/dissimilar images, we propose the new loss functions for
calculating the error.

• The performance of the UFace system is demonstrated using autoencoder and Siamese
networks.

UFace was evaluated on four benchmark face recognition datasets: LFW, YTF, CALFW
and CFP-FP. The experimental results of UFace provide accuracies that are comparable
with state-of-the-art methods such as ArcFace, GroupFace, MegaFace, Marginal Loss and
VGG Face.

The rest of this paper is organized as follows. Section 2 describes the UFace architecture.
Next, Section 4 describes datasets, experimental setup and results. Finally, Section 5
provides the conclusions.

2. System Architecture

The architectures of the UFace system are shown in Figures 1, 3 and 4, which includes
the three modules: preprocessing, training and evaluation, respectively.

Figure 1. UFace preprocessing steps.

2.1. Preprocessing

UFace first performs two preprocessing tasks, as shown in Figure 1. The first process-
ing step is to detect a face from a given image using Multi-Task Cascaded Convolutional
Neural Network (MTCNN) [46], which locates a face in a given image and draws a bound-
ing box around it (see Figure 2b). It provides coordinates of the lower left corner of the
bounding box plus its width and height, and resizes the image size to 112 by 112 pixels.



Electronics 2022, 11, 3909 4 of 17

(a)

(b)

Figure 2. Sample images after MTCNN was used for face detection. (a) Sample face images from
CelebA dataset. (b) The same images after using the MTCNN model.

Secondly, it generates embedding vectors using the pre-trained Facenet model [8].
Then, we find the k most similar and k most dissimilar images for each image in the
preprocessing phase. Note that Facenet is used here just to help calculate the cosine
similarity/dissimilarity between images during the preprocessing stage, i.e., we did not
use Facenet to train our models.



Electronics 2022, 11, 3909 5 of 17

Algorithm 1 calculates the cosine similarity between a given image and all other
remaining images in a dataset. Next, a threshold is used to select the k most similar and k
most dissimilar images for each input image from the training dataset. To select the k most
similar and k most dissimilar images, we experimented with different threshold values on
validation set and empirically decided to use the optimal threshold (i.e., one that resulted
in the highest accuracy). The optimal threshold value was found to be 0.6 for the most
similar images and 0.2 for the most dissimilar images. In this way, we make sure any of the
similar images are not the same as the dissimilar images.

Note that the value of k varies from image to image since a face can have a different
number of most similar images. On average, however, we discovered that there are about
11 similar and dissimilar images for each image. In total, we created about 4 M training
pairs (both for the similar and dissimilar pairs) for all images in the CelebA dataset (which
has only about 200 k images). The selection of the threshold value that is used to select the
similar and dissimilar images is described in detail in the experimental section.

Algorithm 1 To select the k most similar and k most dissimilar images for each image in
a dataset.
Require: The thresholds ths and thd, and m training images x
Ensure: k most similar (x̃is) and k most dissimilar images (x̃id) for each image in a dataset,

1 ≤ i ≤m, 1 ≤ p ≤ k and 1 ≤ n ≤ k
for i← 1 to N, N← length(m) do

for j← 1 to N, N← length(m) do
if i 6= j

x̃ij = cosine(xi, xj)
end for

end for
Select k most similar images above the ths=0.6, x̃is and randomly select k most

dissimilar images below the thd=0.2, x̃id
end

Note that we used the Facenet pre-trained model only to calculate the cosine similarity
between images during the pre-processing phase. However, the UFace training methods do
not require to use Facenet and do not require explicitly labeled training data, as described
in the training section.

2.2. Training

Note that the preprocessing and evaluation modules for both the autoencoder and
Siamese networks are the same.

The state-of-the-art methods such as ArcFace [16], Facenet [8], GroupFace [19], Cos-
Face [12], MegaFace [31], DeepFace [9], VGG Face [10] and Marginal Loss [15] require a
very large amount of labeled data, which are difficult to obtain in many applications other
than face images. For example, Facenet used about 200 M training images.

To address this problem, we propose an unsupervised deep learning face verification
system using k most similar and k most dissimilar images, called UFace. To demonstrate
the performance of UFace, we started using only k most similar images and the autoencoder
network for verification. Next, we used both the k most similar and the k most dissimilar
images with autoencoder. Since the latter gave better results than just using k most similar
images, in the Siamese network we used both k most similar and k most dissimilar images.

2.2.1. UFace with Autoencoder Training

Classical Autoencoder Training: An autoencoder is an unsupervised neural network
used in situations when no labeled data are available [47]. It is a feedforward neural network
where the output (the compressed version of the input) is trained to be almost the same as
the input. Autoencoders were successfully used in feature extraction [48], dimensionality
reduction [49], image denoising [50] and image inpainting [51]. Autoencoder compresses



Electronics 2022, 11, 3909 6 of 17

high-dimensional input data, such as an image, into a lower-dimensional (compressed)
representation and is trained to recreate the original input from its output. The difference
between the reconstructed and the input image is the reconstruction error. The network is
trained to minimize this error to find the best lower-dimensional representation, called the
embedded vector. The autoencoder (AE) consists of (see Figure 3a) an encoder and decoder.

Encoder: The encoder part of the network maps the original input image into its
lower-dimensional representation h.

h = g((w ∗ x) + b) (1)

where w is a weight matrix between the input x and hidden layers, b is the bias and g is a
nonlinear activation function.

Decoder: The decoder reconstructs the original input data from its encoded representation.
In the decoding process, the AE maps h back to the original input approximation x̂.

x̂ = f ((ŵ ∗ h) + b̂) (2)

where ŵ is a weight matrix between the output of the encoder and hidden layers, x̂ is the
output data, b̂ is bias and f is a nonlinear activation function.

The Mean Square Error (MSE) measures the reconstruction error [52,53]. The classical
training is carried out by minimizing the average squared difference between the output
value and the input value, as shown in Equation (3):

Mean Squared Error (MSE) =
1
m

m

∑
t=1

(x̂− x)2 (3)

where x is the original input and x̂ is the predicated value.
To make a fair comparison of the classical AE system with UFace, we developed our

own classical AE system. Both systems are developed exactly in the same way except how
the reconstruction error is computed. The classical AE system computes the reconstruction
error with one original input image, whereas UFace computes the reconstruction error with
k most similar and k most dissimilar images.

UFace Autoencoder Training: The UFace method is first demonstrated using only
similar images. It trains the autoencoder to reconstruct k most similar images of the input
image. Then, UFace is demonstrated using both similar and dissimilar images. It trains
the autoencoder to reconstruct the k most similar and k most dissimilar images of the
input image rather than the single input image, as is the case with classical autoencoder
training. UFace uses the k most similar and k most dissimilar images of the input image
during calculation of the reconstruction error, which is backpropagated to update the
network weights.

State-of-the-art methods such as Facenet [8], Fusion [18], DeepFace [9], VGG Face [10]
and Marginal Loss [15] require a very large amount of labeled data, which may be hard
to obtain in many applications other than face images. For example, Facenet used about
200 M labeled training images.

To address this problem, we propose a novel training method that does not explicitly
require a labeled training dataset. It trains the autoencoder to reconstruct the k most
similar images of the input image rather than the single input image, as is the case with
the classical autoencoder training. The new method uses the k most similar and k most
dissimilar images of the input image during the calculation of the reconstruction error,
which is backpropagated to update the network weights.

The autoencoder is trained by minimizing the loss function between the reconstructed
image x̂ and the k most similar and k most dissimilar images of the original input image x
for all images in the dataset.



Electronics 2022, 11, 3909 7 of 17

Figure 3. UFace architectures used for training with autoencoder (a) and with Siamese network (b).

The used training mechanism takes into account intra-person and inter-person face
variabilities (k number of times), while in the classical autoencoder training mechanism,
the loss function is computed only once. The value of k varies from image to image. In
the first iteration, as shown in Equation (4), once the first input image is reconstructed it
calculates the mean square error between the reconstructed image and the first kth most
similar/dissimilar images (for the case of dissimilar images, it takes the negative value of
the MSE). After calculating the error, it backpropagates the error to update the network
parameters. In the second iteration, it continues training the same first input image and
computes the mean square error with the second kth most similar/dissimilar images, and it
continues training in the same way using the remaining kth most similar/dissimilar images.
Once training for the first input image is completed, it starts training for the second input
image in the same way, and continues for all images in the dataset. UFace calculation of
the error is shown in Equation (4). The total number of training images is calculated as the
sum of f(j), where f(j) is the function that outputs the total number of k most similar and k
most dissimilar images in the training dataset. Since UFace computes the reconstruction
errors 2k (k for the similar and k for the dissimilar images) times for each input face image,
it accounts for face variabilities.

UFace_MSE =
1

∑m
i=1 f (j)

m

∑
i=1

f (j)

∑
j=1

(x̂i − x̃j)
2 (4)

UFace_MSE is the UFace loss function, where m is the number of training images, f(j) is the
function that represents the variable number of k most similar images for the input image
xi, x̃j is most similar images for input image xi and x̂i is the reconstructed image for the



Electronics 2022, 11, 3909 8 of 17

input image xi. Note that, for the case of dissimilar images, we take the negative of it since
it will be maximized.

2.2.2. UFace with Siamese Training

The UFace training method on Siamese network using both similar and dissimilar
images is shown in Figure 3b. It has three branches, each of which is the CNN encoder
followed by the L2-normalization layer. The branches share the same weights. Branches
for training are fed by an anchor (input image), similar images and dissimilar images. The
output of the CNN encoder is known as image embedding. After the L2-normalization
layer, the UFace loss function—UFace_Loss (Equation (5))—is computed as the error
between the embeddings of similar and dissimilar images and the anchor. The loss function
reduces deviation between the anchor and similar faces and increases deviation between the
anchor and dissimilar faces. While training a model to classify, it optimizes the weights to
minimize the loss function, i.e., to reduce the difference between similar faces and increase
the difference between dissimilar faces. During the training phase, every input consists of
3 images of faces. Two images are of the same person (one image is considered as anchor
and the second is a similar image), and the third is of a different person (dissimilar).

The UFace_Loss (using both k similar and k dissimilar images) loss is computed as

N

∑
i=1

f (j)

∑
j=1

(d( f (xa
i )− f (xp

j ))− d( f (xa
i )− f (xn

j ))) + α (5)

where f(x) takes x as an input and returns an embedding vector, i denotes the ith input, j
denotes the jth similar and dissimilar images for the ith input image, a is an anchor image,
p is a similar image, n is a dissimilar image, N is the number of training data and f(j) is
the function that represents the variable number of k most similar and k most dissimilar
images for the input image xi. The α is a margin that is enforced between positive and
negative pairs. It ensure that the model does not make the embeddings equal each other to
trivially satisfy the above inequality.

Minimizing the above equation means minimizing the first term (distance between
anchor and similar image) and maximizing the second term (distance between anchor and
dissimilar image).

As shown in Figure 3b, in UFace Siamese training, the network uses three branches:
the anchor, k most similar faces of the anchor and k most dissimilar faces of the anchor.
First, the three branches are fed into the CNN network using 112 by 112 pixel images. The
CNN encodes the pixel values and provides face embedding vector. Then, the loss between
the embedding of the anchor and similar and dissimilar faces is computed. By Equation (5),
for each anchor image, the loss function is computed 2 times k, where k is the most similar
and k dissimilar images with the anchor.

2.3. Evaluation

As shown in Figure 4, the goal of face image verification is to decide if two face images
belong to the same person or not. Given a pair of input face images, we first use MTCNN
to detect faces from the given images. Then, image embeddings are extracted using any
encoder branch of the network for the pairs of test images. Cosine similarity is computed
between the two embedding vectors. If the cosine similarity is above the given threshold
value, the two images belong to the same person, and not otherwise.



Electronics 2022, 11, 3909 9 of 17

Figure 4. Architecture used in UFace evaluation.

3. Datasets Used

CelebA [54] is a dataset that has over 200 K images of 10,177 celebrities, which include
pose variations and background clutter; it was used for training UFace.

The Labeled Faces in the Wild dataset (LFW) [29] contains 13,233 images of 5749
people. For testing, the database is randomly (uniformly) split into 10 subsets. Next, 300
matched (of the same person) pairs and 300 mismatched (of different persons) pairs are
randomly chosen within each subset. In other words, for testing, 3000 (10 × 300) matched
and 3000 mismatched pairs [29] were used.

The YouTube Faces dataset (YTF) [30] of face videos contains 3425 videos of 1595
people collected from YouTube, with an average of two videos per person. The shortest
clip duration is 48 frames and the longest is 6070 frames. The average length of a video
clip is 181 frames. For testing, 5 K video pairs are randomly chosen and prepared, half of
which are pairs of videos of the same person and half are of different people. Thus, for
testing, 5 K pairs of static images with 2500 of them of the same person and 2500 not of the
same person [30] were used.

Cross-age LFW (CALFW) [55] is a newer version of LFW in which 3000 similar face
pairs at different ages and 3000 dissimilar face pairs of the same gender are present to
reduce the influence of attribute differences between similar/dissimilar pairs. Thus, for
testing, 6 K pairs of face images were used.

Celebrities in FrontalProfile in the Wild (CFP-FP) [56] is another face verification
benchmark dataset with 7000 face images, of which 3500 are same person pairs and 3500
are different person pairs. Thus, for testing, 7 K pairs of face images were used.

4. Experiments

UFace was trained on the CelebA dataset and its performance was tested on four
benchmark datasets: LFW, YTF, CALFW and CFP-FP.

4.1. Experimental Setup

The Keras deep learning library [57] was used to train the model. It is trained for
100 epochs or until the error is not decreasing, using a batch size of 100 images. It uses
backpropagation with stochastic gradient descent (SGD), momentum of 0.91, weight decay
of 0.00001 and a logarithmically decaying learning rate from 10−2 to 10−8. The dimension
of the input images is 112 by 112 pixels.

In order to select the best threshold value, which is used to select the number of
similar and dissimilar images for each image, we selected about 10% of the images from
the training set and selected the similar and dissimilar images using different threshold



Electronics 2022, 11, 3909 10 of 17

values (i.e., from 0.1 to 0.7). We used about 10% of the images as a validation set to tune
the threshold value. Thus, all cosine distance scores less than the threshold values were
considered as dissimilar images and all cosine distance scores greater than the threshold
values were considered as similar images. For example, if we take the threshold values
of 0.6 and 0.2, all cosine distances less than 0.2 are considered as dissimilar and all cosine
distance scores above 0.6 are considered as similar images.

The reason for selecting two different threshold values is to choose similar and dissim-
ilar images correctly. The threshold values were optimized experimentally by changing
their values from 0.1 to 0.9 and choosing the ones that resulted in the highest accuracy on
the validation dataset; the threshold 0.6 was chosen for the similar images and threshold
0.2 for the dissimilar images (to a given image).

After computing the most similar and dissimilar images for each threshold value, we
have trained different models (i.e., one model for each threshold value). After training the
model, we computed the accuracy of each model on other 1 K datasets that were selected
from the validation set.

Using threshold values of 0.6 and 0.2 gives us the highest accuracy. Thus, we selected
0.6 and 0.2 as threshold values for similar and dissimilar images, respectively, and selected
the most similar/dissimilar images on the remaining 180 K training images. Note that
we used two threshold values, one to select the similar images and the other to select the
dissimilar images; thus, we can reduce the possibility of dissimilar images being selected as
similar images and vice versa. A total 10% of the training dataset was used for validation
in order to select the best threshold values.

The training was performed using the CelebA [54] dataset. First, the face is detected,
including the bounding box around the face. Then, the cosine similarity for each face
against the remaining faces in the training dataset is computed. Then, the threshold values
are chosen experimentally to select the k most similar and k most dissimilar images for
each image.

The autoencoder is a fully connected feed-forward network consisting of 3 hidden
layers. As shown in Figure 3a, the encoder and decoder are symmetrical. The encoder
input and decoder output each have 112 by 112 neurons. The second layer in both the
encoder and decoder has 800 neurons. The output of the encoder has 300 neurons, which
determines the size of the embedding vector.

The Siamese network has 3 branches, each of which is the CNN encoder followed by
the L2-normalization layer. The CNN encoder block is a Resnet100 architecture [47]. It
consists of five main layers where each layer contains convolutional and identity blocks.
The first layer contains max-pooling and the last layer contains average pooling. The five
layers are followed by two fully connected layers of 800 and 300 neurons, respectively.
The CNN encoder encodes the input images (112 by 112) into a 300-dimensional image
embedding vector. Note that in addition to convolutional, identity and max-pooling layers,
it also uses batch normalization [58] and dropout [59].

4.2. UFace Training Using Autoencoder and Comparing It with Classical Autoencoder Training

As it is shown in Table 1, UFace using autoencoder provides better results than
the one based on classical autoencoder training. Note that we use classical autoencoder
training as the baseline system. Table 1 shows that the baseline accuracies are 92.76%,
89.97%, 89.22% and 91.88% on LFW, YTF, CALFW and CFP-FP datasets, respectively. It is
compared with two UFace models: UFace autoencoder training method using only the k
most similar images and UFace autoencoder training using both the k most similar and k
most dissimilar images.

From Table 1, we see that UFace using autoencoder that uses only the k most similar
images results in 95.81%, 93.24%, 92.63% and 95.13% accuracies on the LFW, TYF, CALFW
and CFP-FP datasets, respectively. The improvements over the classical autoencoder
represent a 3.05%, 3.24%, 3.41% and 3.25% improvement on the LFW, YTF, CALFW and
CFP-FP datasets, respectively.



Electronics 2022, 11, 3909 11 of 17

Table 1. Accuracy using classical autoencoder *, modified autoencoder with k most similar images **
and modified autoencoder with both k most similar and k most dissimilar images ***.

Model LFW YTF CALFW CFP-FP

UFace * 92.76 89.97 89.22 91.88

UFace ** 95.81 93.24 92.63 95.13

UFace *** 96.42 93.92 93.08 95.78

Next, we assess the impact of using also the k most dissimilar images. Table 1 shows
that using both the k most similar and k most dissimilar images results in 96.42%, 93.92%,
93.08% and 95.78% accuracies on the LFW, YTF, CALFW and CFP-FP datasets, respectively.
Thus, using dissimilar images, in addition to the similar images, results in a slight im-
provement over using only the similar images (i.e., 96.42% vs. 95.81% on LFW, 93.92% vs.
93.24% on YTF, 93.08% vs. 92.63% on CALFW and 95.78% vs. 95.13% on CFP-FP). If we
compare the UFace autoencoder method that uses both the similar and dissimilar images
with the classical autoencoder training method, it provides us 3.66%, 3.95%, 3.86% and
3.9% improvement on LFW, YTF, CALFW and CFP-FP datasets, respectively. Thus, the
results reported in Table 1 show the advantage of UFace demonstrated on an autoencoder
network that uses both the k most similar and k most dissimilar images.

4.3. UFace Training Using Siamese Network

In addition to demonstrating UFace training using the autoencoder network, we also
demonstrated UFace training using the Siamese network and compared the performance
of the UFace with different state-of-art face verification systems.

4.3.1. Comparison of UFace on LFW Dataset

Table 2 shows a comparison of UFace with the state-of-the-art methods. Note that
we compare our best result with the state-of-the-art systems that use both supervised and
unsupervised training, whereas the UFace training does not explicitly required labeled data.

Table 2. Comparison of UFace results using Siamese network with both k most similar and k most
dissimilar face images with those of some state-of-the-art methods on the LFW testing dataset.

Model Training Data Size Labeled/Unlabeled Testing Data Size Testing Accuracy (%)

Fusion 500 M Labeled 6 K 98.37 [18]

Facenet 200 M Labeled 6 K 99.63 [8]

UniformFace 6.1 M Labeled 6 K 99.80 [60]

ArcFace 5.8 M Labeled 6 K 99.82 [16]

GroupFace 5.8 M Labeled 6 K 99.85 [19]

CosFace 5 M Labeled 6 K 99.73 [12]

DeepFace-ensemble 4.4 M Labeled 6 K 97.35 [9]

Marginal Loss 4 M Labeled 6 K 99.48 [15]

CurricularFace 3.8 M Labeled 6 K 99.80 [13]

RegularFace 3.1 M Labeled 6 K 99.61 [61]

AFRN 3.1 M Labeled 6 K 99.85 [62]

VGG Face 2.6 M Labeled 6 K 98.95 [10]

Stream Loss 1.5 M Labeled 6 K 98.97 [63]



Electronics 2022, 11, 3909 12 of 17

Table 2. Cont.

Model Training Data Size Labeled/Unlabeled Testing Data Size Testing Accuracy (%)

MDCNN 1 M Labeled 6 K 99.38 [32]

PSO AlexNet TL 14 M Labeled 6 K 99.57 [33]

ULNet 1 M Labeled 6 K 99.70 [64]

Ben Face 0.5 M Labeled 6 K 99.20 [34]

F2C 5.8 M Labeled 6 K 99.83 [65]

PCCycleGAN 0.5 M Unlabeled 6 K 99.52 [43]

CAPG GAN 1 M Unlabeled 6 K 99.37 [44]

UFace 200 K Unlabeled 6 K 99.40

Although most of the methods such as ArcFace, GroupFace, Marginal Loss and
CosFace have slightly better accuracy than UFace, UFace is trained on a much smaller
dataset (about 200 K images) while most of the state-of-the-art methods use millions of
training images.

UFace with Siamese network achieves an accuracy of 99.40%, which is on par both
with the state-of-the-art supervised and unsupervised systems. For example, the ArcFace
used 5.8 M labeled images to achieve 99.82% accuracy, whereas UFace accuracy is 99.40%
but required only about 200 K images for training.

4.3.2. Comparison of the UFace on YTF Dataset

Similarly, we compare the UFace with Siamese network using similar and dissimilar
images with state-of-the-art supervised and unsupervised systems on the YTF dataset.
In Table 3, VGG Face [10] used 2.6 M labeled training data and achieved slightly over
97% accuracy. In [15], the authors used marginal loss and a labeled 4 M training dataset
to achieve a comparable result with Facenet [8], which used 200 M labeled training data
and achieved over 95% accuracy. The drawback of these methods, however, is that they
require a huge labeled dataset for training. On the other hand, UFace uses much less and
unlabeled training data to achieve over 96% accuracy. Although, if we compare the UFace
Siamese with both the state-of-the-art supervised and unsupervised systems on YTF, its
accuracy (i.e., 96.04%) is slightly better than some of the supervised systems, better than
the unsupervised systems and almost close to state-of-the-art methods such as ArcFace,
GroupFace, CostFace and VGG Face.

4.3.3. Comparison of UFace on CALFW and CFP-FP Datasets

In addition to LFW and YTF, the results of UFace have been compared against both
state-of-the-art supervised and unsupervised systems on the CALFW and CFP-FP datasets.
Tables 4 and 5 show that UFace’s results are close to those of ArcFace. However, the results
of the UFace are a bit lower than the GroupFace, CurriculaFace and MegaFace models. If
we compare our best results with both supervised and unsupervised ones, Table 5 shows
that our results are on par with the state-of-the-art unsupervised systems.

The UFace has the following advantages over the state-of-the-art systems. Firstly, while
the UFace does not explicitly require labeled training data, the state-of-the-art methods do.
Secondly, the UFace requires only about 200 K training data, whereas the state-of-the-art
use a minimum of 3.8 M and maximum of 5.8 M. Thirdly, the training time of UFace is
much less than that of the state-of-the-art ones because of the amount of training data.
Lastly, the results of UFace are comparable to the state-of-the-art.



Electronics 2022, 11, 3909 13 of 17

Table 3. Comparison of UFace results using Siamese network with both k most similar and k most
dissimilar face images with those of some state-of-the-art methods on the YTF testing dataset.

Model Training Data Size Labeled/Unlabeled Testing Data Size Testing Accuracy (%)

Facenet 200 M Labeled 5 K 95.12 [8]

UniformFace 6.1 M Labeled 5 K 97.70 [60]

ArcFace 5.8 M Labeled 5 K 98.02 [16]

GroupFace 5.8 M Labeled 5 K 97.80 [19]

CosFace 5 M Labeled 5 K 97.60 [12]

DeepFace-single 4.4 M Labeled 5 K 91.40 [9]

Marginal Loss 4 M Labeled 5 K 95.98 [15]

RegularFace 3.1 M Labeled 5 K 96.70 [61]

AFRN 3.1 M Labeled 5 K 97.70 [62]

NAN 3 M Labeled 5 K 95.70 [66]

VGG Face 2.6 M Labeled 5 K 97.30 [10]

Stream Loss 1.5 M Labeled 5 K 96.40 [63]

MDCNN 1 M Labeled 5 K 94.69 [32]

Ben Face 0.5 M Labeled 5 K 96.63 [34]

F2C 1 M Labeled 5 K 97.76 [65]

CORAL 0.5 M Unlabeled 5 K 94.50 [45]

UDAFRUV 0.5 M Unlabeled 5 K 95.38 [67]

UFace 200 K Unlabeled 5 K 96.04

Table 4. Comparison of UFace results using Siamese network with both k most similar and k most
dissimilar face images with those of some state-of-the-art methods on the CALFW testing dataset.

Model Training Data Size Labeled or Unlabeled Testing Data Size Testing Accuracy (%)

ArcFace 5.8 M Labeled 6 K 95.45 [16]

GroupFace 5.8 M Labeled 6 K 96.20 [19]

CurricularFace 3.8 M labeled 6 K 96.20 [13]

MegaFace 3.8 M Labeled 6 K 96.15 [31]

ULNet 1 M Labeled 6 K 95.71 [64]

F2C 1 M Labeled 6 K 95.25 [65]

UFace 200 K Unlabeled 6 K 95.12



Electronics 2022, 11, 3909 14 of 17

Table 5. Comparison of UFace results using Siamese network with both k most similar and k most
dissimilar face images with those of some state-of-the-art methods on the CFP-FP testing dataset.

Model Training Data Size Labeled or Unlabeled Testing Data Size Testing Accuracy (%)

ArcFace 5.8 M Labeled 7 K 98.27 [16]

GroupFace 5.8 M Labeled 7 K 98.63 [19]

CurricularFace 3.8 M Labeled 7 K 98.37 [13]

Dyn-ArcFace 5.8 M Labeled 7 K 94.25 [68]

MegaFace 3.8 M Labeled 7 K 98.46 [31]

CircleLoss 5.8 M Labeled 7 K 96.02 [69]

ULNet 1 M Labeled 7 K 98.23 [64]

F2C 1 M Labeled 7 K 98.25 [65]

IMAN 0.5 M Unlabeled 7 K 92.74 [70]

UFace 200 K Unlabeled 7 K 97.89

5. Conclusions

The state-of-the art deep learning methods for face verification usually require large
amounts of labeled data for training. However, it is not always easy to obtain such data. To
address this problem, we proposed a novel unsupervised deep learning face verification
system (UFace) that uses k most similar and k most dissimilar images to a given image that
are selected from unlabeled data.

UFace’s performance was evaluated using both the autoencoder approach and Siamese
networks approach. As Siamese networks performed much better than the autoencoder,
they were used for all the presented comparisons with state-of-the-art algorithms. Unlike
in the classical neural network training, UFace computes its loss function k times with the
similar images and k times with the dissimilar images (for a total of 2xk times) for each
input image. UFace is evaluated on four benchmark face verification datasets, namely,
Labeled Faces in the Wild (LFW), YouTube Faces (YTF), Cross-age LFW (CALFW) and
Celebrities in Frontal Profile in the Wild (CFP-FP). Its performance using the Siamese
network achieved accuracies of 99.40%, 96.04%, 95.12% and 97.89%, respectively, which
are comparable with the state-of-the-art methods even though UFace uses much less data
for training.

Additional advantage of UFace is that it can be used for verification of other types of
images in domains where labeled data are not available at all.

Author Contributions: Conceptualization, E.S. and K.J.C.; methodology, E.S. and K.J.C.; software,
E.S. and A.W.; validation, E.S. and K.J.C.; formal analysis, E.S. and K.J.C.; investigation, E.S. and
A.W.; resources, E.S. and K.J.C.; data curation, E.S. and A.W.; writing—original draft preparation,
E.S. and K.J.C.; writing—review and editing, E.S., A.W. and K.J.C.; visualization, E.S.; supervision,
K.J.C.; project administration, K.J.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: CelebA (https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html (ac-
cessed on 30 September 2022)), LFW (http://vis-www.cs.umass.edu/lfw/ (accessed on 30 September
2022)), YTF (https://www.cs.tau.ac.il/~wolf/ytfaces/ (accessed on 30 September 2022)), CALFW
(http://whdeng.cn/CALFW/?reload=true (accessed on 30 September 2022)), CFP-FP (http://www.
cfpw.io/ (accessed on 30 September 2022)).

Conflicts of Interest: The authors declare no conflict of interest.

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
http://vis-www.cs.umass.edu/lfw/
https://www.cs.tau.ac.il/~wolf/ytfaces/
http://whdeng.cn/CALFW/?reload=true
http://www.cfpw.io/
http://www.cfpw.io/


Electronics 2022, 11, 3909 15 of 17

References
1. Jain, A.; Li, S. Handbook of Face Recognition; Springer: Berlin/Heidelberg, Germany, 2011.
2. Woubie, A.; Koivisto, L.; Bäckström, T. Voice-quality Features for Deep Neural Network Based Speaker Verification Systems. In

Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 176–180.
3. Nagrani, A.; Chung, J.; Xie, W.; Zisserman, A. Voxceleb: Large-scale speaker verification in the wild. Comput. Speech Lang. 2020, 60,

101027. [CrossRef]
4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference On

Computer Vision And Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
5. Cios, K.; Shin, I. Image recognition neural network: IRNN. Neurocomputing 1995, 7, 159–185. [CrossRef]
6. Shin, J.; Smith, D.; Swiercz, W.; Staley, K.; Rickard, J.; Montero, J.; Kurgan, L.; Cios, K. Recognition of partially occluded and rotated

images with a network of spiking neurons. IEEE Trans. Neural Netw. 2010, 21, 1697–1709. [CrossRef] [PubMed]
7. Cachi, P.; Ventura, S.; Cios, K. CRBA: A Competitive Rate-Based Algorithm Based on Competitive Spiking Neural Networks. Front.

Comput. Neurosci. 2021, 15, 627567. [CrossRef] [PubMed]
8. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823.
9. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. Deepface: Closing the gap to human-level performance in face verification. In

Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 1701–1708.

10. Parkhi, O.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. British Machine Vision Association. 2015. Available online:
http://www.bmva.org/bmvc/2015/papers/paper041/paper041.pdf (accessed on 11 May 2022).

11. Zhu, Z.; Luo, P.; Wang, X.; Tang, X. Recover canonical-view faces in the wild with deep neural networks. arXiv 2014,
arXiv:1404.3543.

12. Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Li, Z.; Liu, W. Cosface: Large margin cosine loss for deep face recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 5265–5274.

13. Huang, Y.; Wang, Y.; Tai, Y.; Liu, X.; Shen, P.; Li, S.; Li, J.; Huang, F. Curricularface: Adaptive curriculum learning loss for deep face
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 5901–5910.

14. Deng, J.; Guo, J.; Yang, J.; Lattas, A.; Zafeiriou, S. Variational prototype learning for deep face recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11906–11915.

15. Deng, J.; Zhou, Y.; Zafeiriou, S. Marginal loss for deep face recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 60–68.

16. Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4690–4699.

17. Sun, Y.; Liang, D.; Wang, X.; Tang, X. Deepid3: Face recognition with very deep neural networks. arXiv 2015, arXiv:1502.00873.
18. Taigman, Y.; Yang, M.; Ranzato, M.; Wolf, L. Web-scale training for face identification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 2746–2754.
19. Kim, Y.; Park, W.; Roh, M.; Shin, J. Groupface: Learning latent groups and constructing group-based representations for face

recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19
June 2020; pp. 5621–5630.

20. Wang, X.; Zhang, S.; Wang, S.; Fu, T.; Shi, H.; Mei, T. Mis-classified vector guided softmax loss for face recognition. AAAI Conf.
Artif. Intell. 2020, 34, 12241–12248. [CrossRef]

21. Zhang, J.; Yan, X.; Cheng, Z.; Shen, X. A face recognition algorithm based on feature fusion. Concurr. Comput. Pract. Exp. 2022, 34,
e5748. [CrossRef]

22. Marcialis, G.; Roli, F. Fusion of LDA and PCA for Face Verification. In Proceedings of the International Workshop on Biometric
Authentication, Copenhagen, Denmark, 1 June 2002; pp. 30–37.

23. Marcel, S.; Bengio, S. Improving face verification using skin color information. Object Recognit. Support. User Interact. Serv. Robot.
2022, 2, 378–381.

24. McCool, C.; Marcel, S. Parts-based face verification using local frequency bands. In Proceedings of the International Conference on
Biometrics, Alghero, Italy, 2–5 June 2009; pp. 259–268.

25. Pereira, T.; Angeloni, M.; Simões, F.; Silva, J. Video-based face verification with local binary patterns and svm using gmm
supervectors. In Proceedings of the International Conference on Computational Science and Its Applications, Salvador de Bahia,
Brazil, 8–21 June 2012; pp. 240–252.

26. Wang, Y.; Wu, Q. Research on Face Recognition Technology Based on PCA and SVM. In Proceedings of the 2022 7th International
Conference on Big Data Analytics (ICBDA), Guangzhou, China, 4–6 March 2022; pp. 248–252.

27. Serson, C.; Saban, M.; Gao, Y. On local features for GMM based face verification. In Proceedings of the Third International
Conference on Information Technology and Applications (ICITA’05), Sydney, Australia, 4–7 July 2005; Volume 1, pp. 650–655.

28. Bromley, J.; Guyon, I.; LeCun, Y.; Säckinger, E.; Shah, R. Signature verification using a" siamese" time delay neural network. Adv.
Neural Inf. Process. Syst. 1993, 6, 737–744. [CrossRef]

http://doi.org/10.1016/j.csl.2019.101027
http://dx.doi.org/10.1016/0925-2312(93)E0062-I
http://dx.doi.org/10.1109/TNN.2010.2050600
http://www.ncbi.nlm.nih.gov/pubmed/21047704
http://dx.doi.org/10.3389/fncom.2021.627567
http://www.ncbi.nlm.nih.gov/pubmed/33967726
http://www.bmva.org/bmvc/2015/papers/paper041/paper041.pdf
http://dx.doi.org/10.1609/aaai.v34i07.6906
http://dx.doi.org/10.1002/cpe.5748
http://dx.doi.org/10.1142/S0218001493000339


Electronics 2022, 11, 3909 16 of 17

29. Huang, G.; Mattar, M.; Berg, T.; Learned-Miller, E. Labeled Faces in the Wild: A Database Forstudying Face Recognition in
Unconstrained Environments. 2008. Available online: https://hal.inria.fr/inria-00321923 (accessed on 10 May 2022).

30. Wolf, L.; Hassner, T.; Maoz, I. Face recognition in unconstrained videos with matched background similarity. In Proceedings of the
CVPR, Colorado Springs, CO, USA, 20–25 June 2011; pp. 529–534.

31. Meng, Q.; Zhao, S.; Huang, Z.; Zhou, F. Magface: A universal representation for face recognition and quality assessment. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 14225–14234.

32. Huang, X.; Zeng, X.; Wu, Q.; Lu, Y.; Huang, X.; Zheng, H. Face Verification Based on Deep Learning for Person Tracking in
Hazardous Goods Factories. Processes 2022, 10, 380. [CrossRef]

33. Elaggoune, H.; Belahcene, M.; Bourennane, S. Hybrid descriptor and optimized CNN with transfer learning for face recognition.
Multimed. Tools Appl. 2022, 81, 9403–9427. [CrossRef]

34. Ben Fredj, H.; Bouguezzi, S.; Souani, C. Face recognition in unconstrained environment with CNN. Vis. Comput. 2021, 37, 217–226.
[CrossRef]

35. Xie, Q.; Dai, Z.; Hovy, E.; Luong, T.; Le Q. Unsupervised data augmentation for consistency training. Adv. Neural Inf. Process. Syst.
2020, 33, 6256–6268.

36. Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.; Raffel, C.; Cubuk, E.; Kurakin, A.; Li, C. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence. Adv. Neural Inf. Process. Syst. 2020, 33, 596–608.

37. Caron, M.; Bojanowski, P.; Joulin, A.; Douze, M. Deep clustering for unsupervised learning of visual features. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 132–149.

38. Gidaris, S.; Singh, P.; Komodakis, N. Unsupervised representation learning by predicting image rotations. arXiv 2018,
arXiv:1803.07728.

39. Shu, Y.; Yan, Y.; Chen, S.; Xue, J.; Shen, C.; Wang, H. Learning spatial-semantic relationship for facial attribute recognition with
limited labeled data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN,
USA, 20–25 June 2021; pp. 11916–11925.

40. He, M.; Zhang, J.; Shan, S.; Chen, X. Enhancing Face Recognition With Self-Supervised 3D Reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Louisiana, USA, 21–24 June 2022;
pp. 4062–4071.

41. Yin, J.; Xu, Y.; Wang, N.; Li, Y.; Guo, S. Mask Guided Unsupervised Face Frontalization using 3D Morphable Model from
Single-View Images: A face frontalization framework that can generate identity preserving frontal view image while maintaining
the background and color tone from input with only front images for training using 3D Morphable Model. In Proceedings of the
2022 4th Asia Pacific Information Technology Conference, Bangkok, Thailand, 14–16 January 2022; pp. 23–30.

42. Khan, M.; Jabeen, S.; Khan, M.; Saba, T.; Rehmat, A.; Rehman, A.; Tariq, U. A realistic image generation of face from text description
using the fully trained generative adversarial networks. IEEE Access 2020, 9, 1250–1260. [CrossRef]

43. Liu, Y.; Chen, J. Unsupervised face frontalization for pose-invariant face recognition. Image Vis. Comput. 2021, 106, 104093.
[CrossRef]

44. Hu, Y.; Wu, X.; Yu, B.; He, R.; Sun, Z. Pose-guided photorealistic face rotation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8398–8406.

45. Sun, B.; Feng, J.; Saenko, K. Return of frustratingly easy domain adaptation. In Proceedings of the AAAI Conference on Artificial
Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 30.

46. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE
Signal Process. Lett. 2016, 23, 1499–1503. [CrossRef]

47. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

48. Zabalza, J.; Ren, J.; Zheng, J.; Zhao, H.; Qing, C.; Yang, Z.; Du, P.; Marshall, S. Novel segmented stacked autoencoder for effective
dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016, 185, 1–10. [CrossRef]

49. Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial autoencoders. arXiv 2015, arXiv:1511.05644.
50. Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.; Bottou, L. Stacked denoising autoencoders: Learning useful

representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.
51. Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A. Context encoders: Feature learning by inpainting. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2536–2544.
52. Ling, Z.; Kang, S.; Zen, H.; Senior, A.; Schuster, M.; Qian, X.; Meng, H.; Deng, L. Deep learning for acoustic modeling in parametric

speech generation: A systematic review of existing techniques and future trends. IEEE Signal Process. Mag. 2015, 32, 35–52.
[CrossRef]

53. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F. A survey of deep neural network architectures and their applications.
Neurocomputing 2017, 234,11–26. [CrossRef]

54. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference
on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3730–3738.

55. Zheng, T.; Deng, W.; Hu, J. Cross-age lfw: A database for studying cross-age face recognition in unconstrained environments.
arXiv 2017, arXiv:1708.08197.

https://hal.inria.fr/inria-00321923
http://dx.doi.org/10.3390/pr10020380
http://dx.doi.org/10.1007/s11042-021-11849-1
http://dx.doi.org/10.1007/s00371-020-01794-9
http://dx.doi.org/10.1109/ACCESS.2020.3015656
http://dx.doi.org/10.1016/j.imavis.2020.104093
http://dx.doi.org/10.1109/LSP.2016.2603342
http://dx.doi.org/10.1016/j.neucom.2015.11.044
http://dx.doi.org/10.1109/MSP.2014.2359987
http://dx.doi.org/10.1016/j.neucom.2016.12.038


Electronics 2022, 11, 3909 17 of 17

56. Sengupta, S.; Chen, J.C.; Castillo, C.; Patel, V.M.; Chellappa, R.; Jacobs, D.W. Frontal to Profile Face Verification in the Wild. In
Proceedings of the IEEE Conference on Applications of Computer Vision, Lake Placid, NY, USA, 7–10 March 2016.

57. Chollet, F. Keras, GitHub. 2015. Available online: https://github.com/fchollet/keras (accessed on 11 May 2022).
58. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.
59. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
60. Duan, Y.; Lu, J.; Zhou, J. Uniformface: Learning deep equidistributed representation for face recognition. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3415–3424.
61. Zhao, K.; Xu, J.; Cheng, M. Regularface: Deep face recognition via exclusive regularization. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1136–1144.
62. Kang, B.; Kim, Y.; Jun, B.; Kim, D. Attentional feature-pair relation networks for accurate face recognition. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 27 October–2 November 2019; pp. 5472–5481.
63. Rashedi, E.; Barati, E.; Nokleby, M.; Chen, X. “Stream loss”: ConvNet learning for face verification using unlabeled videos in the

wild. Neurocomputing 2019, 329, 311–319. [CrossRef]
64. Boragule, A.; Akram, H.; Kim, J.; Jeon, M. Learning to Resolve Uncertainties for Large-Scale Face Recognition. Pattern Recognit.

Lett. 2022, 160, 58–65. [CrossRef]
65. Wang, K.; Wang, S.; Zhang, P.; Zhou, Z.; Zhu, Z.; Wang, X.; Peng, X.; Sun, B.; Li, H.; You, Y. An efficient training approach for

very large scale face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, USA, 21–24 June 2022; pp. 4083–4092.

66. Yang, J.; Ren, P.; Zhang, D.; Chen, D.; Wen, F.; Li, H.; Hua, G. Neural aggregation network for video face recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4362–4371.

67. Sohn, K.; Liu, S.; Zhong, G.; Yu, X.; Yang, M.; Chandraker, M. Unsupervised domain adaptation for face recognition in unlabeled
videos. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3210–3218.

68. Jiao, J.; Liu, W.; Mo, Y.; Jiao, J.; Deng, Z.; Chen, X. Dyn-arcFace: Dynamic additive angular margin loss for deep face recognition.
Multimed. Tools Appl. 2021, 80, 25741–25756. [CrossRef]

69. Sun, Y.; Cheng, C.; Zhang, Y.; Zhang, C.; Zheng, L.; Wang, Z.; Wei, Y. Circle loss: A unified perspective of pair similarity
optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 6398–6407.

70. Wang, M.; Deng, W.; Hu, J.; Tao, X.; Huang, Y. Racial faces in the wild: Reducing racial bias by information maximization adaptation
network. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 27–28 October 2019;
pp. 692–702.

https://github.com/fchollet/keras
http://dx.doi.org/10.1016/j.neucom.2018.10.041
http://dx.doi.org/10.1016/j.patrec.2022.06.004
http://dx.doi.org/10.1007/s11042-021-10865-5

	Introduction
	System Architecture
	Preprocessing
	Training
	UFace with Autoencoder Training
	UFace with Siamese Training

	Evaluation

	Datasets Used
	Experiments
	Experimental Setup
	UFace Training Using Autoencoder and Comparing It with Classical Autoencoder Training
	UFace Training Using Siamese Network
	Comparison of UFace on LFW Dataset
	Comparison of the UFace on YTF Dataset
	Comparison of UFace on CALFW and CFP-FP Datasets


	Conclusions
	References

