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Abstract: Based on the previous research on electromagnetic pulse coupling, which pays more
attention to the front-door coupling or the back-door coupling alone, this paper analyzes the influence
of an electromagnetic pulse on electronic devices and systems through the joint analysis of front-
door and back-door couplings using the finite-difference time-domain method (FDTD). This specific
measure is used to simplify the front-door coupling to the voltage source injection, which occurs
simultaneously with plane wave irradiation. This coupling scheme of the front door and back
door with the voltage source and plane wave acting simultaneously is rarely seen in previous
analyses, which also gives consideration to the working state of the circuit. Although the equivalent
circuit model is widely used, it cannot effectively reflect the working state of the diode circuit
under the conditions of large injection and high frequency. In view of the limited application
scenarios of the traditional equivalent circuit model, which cannot accurately describe the internal
response characteristics of the diode under different electromagnetic pulse coupling, this paper
introduces an improved equivalent circuit model based on the physical model. Taking the Positive
Intrinsic-Negative (PIN) limiter as the target, this paper analyzes the influence of the front-door and
back-door joint coupling on its performance under different electromagnetic pulses and then gives
protection suggestions.

Keywords: equivalent circuit model; physical model; limiter; diode; electromagnetic coupling; FDTD;
field-circuit coupling

1. Introduction

With the development of high-precision integrated circuits and the rapid development
of electronic science and technology, the components of electronic equipment are becoming
more intensive [1], the working frequency of the equipment is gradually rising, and the
required power consumption is gradually declining. At the same time, many hidden
dangers are becoming obvious [2,3], such as the increasingly complex electromagnetic
environment and the higher electromagnetic sensitivity of communication equipment to
the outside world.

The way in which electromagnetic pulse affects electronic equipment is mainly divided
into front-door coupling and back-door coupling [4–6]. Front-door coupling enters the
device through an antenna. Back-door coupling refers to the coupling of the electromag-
netic pulse into the equipment by cables connected between different devices or slots in
the system.

A large number of scholars have conducted research on the coupling effect of electro-
magnetic pulses on electronic systems [7,8]. Frank Sabath set up a short pulse simulator
for susceptibility investigations, which consists of a compact ultrawide-band source and a
half-impulse radiating antenna [9]. For the front-door coupling, the antenna is modeled
by different full-wave numerical methods. Simulation usually consumes a lot of com-
puting time and memory because the antenna needs a more refined grid to simulate its
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electromagnetic characteristics. In order to show the influence of different electromagnetic
pulses on antenna coupling, a large number of repeated simulations is needed. Compared
with the front-door coupling, the back-door coupling receives more concern. For example,
there is a lot of theoretical and numerical research work on the shielding effectiveness of
metal cavities with different forms of slots [10]. Mats Backstrom studied the field-to-wire
coupling problem and regarded the wire as a receiving antenna [11]. As a full-wave elec-
tromagnetic algorithm in the time domain, FDTD is widely used to analyze the coupling
between the electromagnetic pulse and the system. For the cable-coupling problem, the
hybrid FDTD and transmission line method are usually used to analyze the coupling
effect of transmission cables in different scenarios. In recent years, in order to analyze the
electromagnetic coupling between cables and circuits, the SPICE model has been widely
used because it can be used to simulate many circuit devices, such as transistors, capacitors,
and inductors [12,13]. However, this method only establishes the SPICE model of the
cable or lumped circuit and does not take into account the fact that the electronic system
contains an antenna and cable in a real situation. That is, it does not take into account front-
door coupling and back-door coupling together. In 2021, some scholars used the hybrid
FDTD-SPICE method to analyze the coupling effect of wireless communication systems,
including antennas, shielded cables, and metal-shielded cavities with slots under external
EMP signals [14]. However, the SPICE model has its own defects: Dan Ren et al. found that
the diode had reverse recovery and junction capacitance, which will produce high-order
harmonic components at high frequencies, causing conducted interference and radiated
interference, leading to electromagnetic compatibility problems. They extracted the diode
model according to the measurement results and optimization algorithm, which is used
to improve the traditional SPICE model [15]. Furthermore, the SPICE model cannot truly
reflect the movement of internal carriers of semiconductor devices under the irradiation of
the electromagnetic pulse and the electromagnetic characteristics displayed at the macro
level; thus, it is necessary to introduce an improved equivalent circuit model based on a
physical model.

Therefore, this paper takes the limiter as the target, introduces the improved equivalent
circuit model based on the physical model, analyzes the influence of front-door and back-
door joint coupling on its coupling power and limiting performance, and then puts forward
protection suggestions for front-door and back-door coupling, respectively. Common
measures to protect equipment from electromagnetic interference include electromagnetic
shielding, grounding, and filtering. The specific actions include using non-metallic fiber-
optic cables when possible and employing methods to decrease the resonance characteristics
of critical equipment enclosures [16]. Frank Leferink has conducted a lot of work on
electromagnetic interference and proposed lots of valuable advice, such as limiting the
length of exposed cable and placing exposed cables out of the line of sight of transmitters
above 400 MHz when common mode currents on cables are exposed to high-intensity
radiated fields and a nuclear electromagnetic pulse [17].

The structure and main contribution of this paper are as follows. Section 2 introduces
the SPICE model of the limiter and the improved equivalent circuit model based on the
physical model. In Section 3, based on the improved equivalent circuit model, the joint-
coupling characteristics of the front door and back door of the limiter are analyzed, and the
protection suggestions of front-door limiting and back-door shielding are given. Section 4
is a summary. A flow chart illustrates the structure and main contributions of this paper in
Figure 1.
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Figure 1. Flow chart for the structure and main contributions of this paper.

2. Theory and Model

This section first introduces the SPICE model of the limiter and gives the traditional
equivalent circuit formula of the diode. Then, the diode simulation method based on the
physical model, as well as the resulting improved equivalent circuit model, is described.
Finally, we give the joint coupling scheme of the front-door and back-door of the limiter.

2.1. Traditional SPICE Model of Limiter

The common SPICE model of the single-stage and single-tube limiter is shown in
Figure 2. RA and RL are equivalent line resistance and load impedance, both set to 50 Ω.
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Figure 2. Single-stage and single-tube limiter.

As shown in Figure 3, the diode is located between nodes (i, j, k) and (i, j, k + 1). The
current direction is the z direction, and Id can be described by the following formula

I = Id[e
qVd/kT − 1] (1)

where Id is the dark current, q is the absolute value of electron charge, k is the Boltzmann
constant, Vd is the voltage across the diode, and T is the thermodynamic temperature.
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Figure 3. Schematic diagram of the diode.

2.2. Diode Formula Based on Physical Model

The traditional equivalent circuit formula cannot accurately reflect the device char-
acteristics, especially in the case of high frequency, so the physical model is introduced.
According to the theory of semiconductor devices, the basic equation consists of three parts:
the carrier transport equation, continuity equation, and Poisson equation, which are sum-
marized into a set of basic differential equations for the analysis of semiconductor devices:

∂p
∂t

= −1
q
∇ · Jp + Gp −Up (2)

∂n
∂t

= −1
q
∇ · Jn + Gn −Un (3)

Jp = −qDp∇p− qµp p∇ψ (4)

Jn = −qDn∇n− qµnn∇ψ (5)

∇·∇ψ = − q
ε
(Nd − Na + p− n) (6)

where ε, Jn, ψ, Jp, n, p, Na, q, Nd, and t are the permittivity, electron current density,
electrostatic potential, hole current density, electron concentrations, hole concentrations,
hole doping concentrations, electronic charge, electron doping concentrations, and time,
respectively. Gn and Gp represent carrier generation rates for the electron and hole. Un
and Up are recombination rates for the electron and hole. Dp and Dn are the hole–diffusion
coefficient and electron–diffusion coefficient.

According to the diode response curve fitted by the physical model, the improved
equivalent circuit formula can be proposed [18]:

I = ε( f0 − f )·I0[e
q

kT Vd − 1] + ε( f − f0)
{

α· 1
2π f L0

Vd

+β·[ε(Vd −V1)2π f C1·Vd + ε(V1 −Vd)2π f C2·Vd]}
(7)

where
α =

1
1 + ea(Vd−V0)

(8)

β =
1

1 + e−bVd
(9)

where α and β are control coefficients, I represents the current flowing through the diode,
I0 represents the saturation current, q is the absolute value of the electron charge, k is the
Boltzmann constant, and T is the thermodynamic temperature. Vd is the voltage across
the diode, and V0 is the empirical voltage value. f 0 is the empirical value; f represents the
frequency of solving the problem; ε(f 0 − f ), ε(f − f 0), ε(Vd − V1) and ε(V1 − Vd) represent
the step function; L0 is the empirical inductance value; C1 and C2 are empirical values; and
V1 represents the startup voltage of the diode.
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The physical meaning of the formula is defined as follows: when the frequency f
is lower than f 0, it is calculated according to the traditional empirical formula. When
f is higher than f 0, the traditional empirical formula is no longer applicable. At high
frequency and low voltage, the diode presents high impedance characteristics, and at high
frequency and high voltage, the diode presents low impedance characteristics, and these
are respectively used to control the diode response of low power input (equivalent to low
input voltage) and high power input (equivalent to high input voltage) at high frequency.

2.3. Joint Analysis of Front-Door and Back-Door Couplings of PIN Limiter Based on Physical Model

In Sections 2.1 and 2.2, we introduce the limiter model based on the traditional
equivalent circuit formula and the improved equivalent circuit formula based on the
physical model. On this basis, we introduce how to create the front-door and back-door
joint coupling of the limiter based on the physical model.

The system used in this paper consists of a receiving antenna and a limiter, which
are placed in an equipment cabin with a slot, as shown in Figure 4. In order to study the
influence of front-door and back-door coupling on the working characteristics of the limiter
circuit, the following simplification is made: As introduced in the literature [14], there is
an analytical relationship between the signal received by the antenna from the front door
and the electromagnetic pulse, so the signal reaching the limiter can be expressed as a
certain form of excitation source. This paper simplifies the front-door coupling through the
antenna as the sine wave to the voltage source. The back-door coupling usually includes
electromagnetic wave components from various frequencies in space, so the form of the
plane wave adopts a Gaussian pulse. In order to maximize the effect of back-door coupling,
a bare PIN circuit without any protective measures is adopted here. Here, we use both
voltage source and plane wave excitation so as to simulate the joint coupling characteristics
of the front door and back door under different electromagnetic pulses. Then, we give the
protection scheme of front-door limiting and back-door shielding accordingly.
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3. Numerical Simulation and Analysis

Based on the improved equivalent circuit formula extracted from the physical model
proposed in the previous section, this section analyzes the joint coupling characteristics
of the front door and back door of the limiter under the irradiation of the electromagnetic
pulse and gives protection suggestions accordingly.

3.1. Simulation Effectiveness Verification

In order to verify the effectiveness of the simulation method, this section verifies the
electromagnetic characteristics of the target under plane wave irradiation and voltage injection.

3.1.1. Front-Door Injection

The accuracy of the circuit response curve under voltage injection is verified below.

A. Traditional SPICE simulation
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The response curve of the diode is obtained by the FDTD method, as shown in Figure 5,
using the same simulation condition as reference [18]. When the source voltage is higher
than 0.7 V, the sampling voltage of the diode remains at 0.7 V, which is consistent with the
theoretical analysis [19].

Electronics 2022, 11, x FOR PEER REVIEW 6 of 16 
 

 

3. Numerical Simulation and Analysis 

Based on the improved equivalent circuit formula extracted from the physical model 

proposed in the previous section, this section analyzes the joint coupling characteristics of 

the front door and back door of the limiter under the irradiation of the electromagnetic 

pulse and gives protection suggestions accordingly. 

3.1. Simulation Effectiveness Verification 

In order to verify the effectiveness of the simulation method, this section verifies the 

electromagnetic characteristics of the target under plane wave irradiation and voltage in-

jection. 

3.1.1. Front-Door Injection 

The accuracy of the circuit response curve under voltage injection is verified below. 

A. Traditional SPICE simulation 

The response curve of the diode is obtained by the FDTD method, as shown in Figure 

5, using the same simulation condition as reference [18]. When the source voltage is higher 

than 0.7 V, the sampling voltage of the diode remains at 0.7 V, which is consistent with 

the theoretical analysis [19]. 

 

Figure 5. Diode response curve. 

B. Improved equivalent circuit 

Now, we start the simulation of the circuit shown in Figure 2 with the improved 

equivalent circuit formula. The voltage at both sides of the diode is observed. Here, we 

define f0 = 2 GHz, V0 = 10 V, L0 = 6 H, a = 2, b = 2, C1 = 100 pF, C2 = 1 pF, and V1 = 0.7 V. Three 

examples are given to verify the effectiveness of the improved equivalent circuit method. 

• f = 400 MHz, Vm = 4 V 

In the first example, we define the frequency of solving the problem as 400 MHz and 

the maximum amplitude of the excitation source as 4 V. It is used for testing the improved 

equivalent circuit formula under low frequency. The results are shown in Figure 6, which 

are consistent with the analysis in reference [18]. 

 

Figure 6. Result of improved equivalent circuit method under low frequency. 

Figure 5. Diode response curve.

B. Improved equivalent circuit

Now, we start the simulation of the circuit shown in Figure 2 with the improved
equivalent circuit formula. The voltage at both sides of the diode is observed. Here,
we define f 0 = 2 GHz, V0 = 10 V, L0 = 6 H, a = 2, b = 2, C1 = 100 pF, C2 = 1 pF, and
V1 = 0.7 V. Three examples are given to verify the effectiveness of the improved equivalent
circuit method.

• f = 400 MHz, Vm = 4 V

In the first example, we define the frequency of solving the problem as 400 MHz and
the maximum amplitude of the excitation source as 4 V. It is used for testing the improved
equivalent circuit formula under low frequency. The results are shown in Figure 6, which
are consistent with the analysis in reference [18].
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As we can see from the picture, it is consistent with the traditional equivalent cir-
cuit method.

• f = 4 GHz, Vm = 6 V

In the second example, we define the frequency of solving the problem as 4 GHz and
the maximum amplitude of the excitation source as 6 V. It is used for testing the improved
equivalent circuit formula under high-frequency and low-voltage injection. The results are
shown in Figure 7, which are consistent with the analysis in reference [18].
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The improved equivalent circuit method can feed back the characteristics similar to
the physical model at high-frequency and low-voltage injection.

• f = 4 GHz, Vm = 30 V

In the third example, we define the frequency of solving the problem as 4 GHz and
the maximum amplitude of the excitation source as 30 V. It is used for testing the improved
equivalent circuit formula under high-frequency and high-voltage injection. The results are
shown in Figure 8, which are consistent with the analysis in reference [18].

Electronics 2022, 11, x FOR PEER REVIEW 7 of 16 
 

 

As we can see from the picture, it is consistent with the traditional equivalent circuit 

method. 

• f = 4 GHz, Vm = 6 V 

In the second example, we define the frequency of solving the problem as 4 GHz and 

the maximum amplitude of the excitation source as 6 V. It is used for testing the improved 

equivalent circuit formula under high-frequency and low-voltage injection. The results 

are shown in Figure 7, which are consistent with the analysis in reference [18]. 

 

Figure 7. Result of improved equivalent circuit method under high-frequency and low-voltage 

injection. 

The improved equivalent circuit method can feed back the characteristics similar to 

the physical model at high-frequency and low-voltage injection. 

• f = 4 GHz, Vm = 30 V 

In the third example, we define the frequency of solving the problem as 4 GHz and 

the maximum amplitude of the excitation source as 30 V. It is used for testing the im-

proved equivalent circuit formula under high-frequency and high-voltage injection. The 

results are shown in Figure 8, which are consistent with the analysis in reference [18]. 

 

Figure 8. Result of improved equivalent circuit method under high-frequency and high-voltage 

injection. 

As we can see from Figure 8, the improved equivalent circuit method can work at 

high frequency and high power. 

3.1.2. Back-Door Irradiation 

For testing the accuracy of the electromagnetic characteristics of the target under the 

plane wave irradiation, the plane wave is used to irradiate the dielectric sphere, the wave-

form of which is the Gaussian pulse. The propagation direction is the z direction, and the 

electric field direction is the x direction. The radius of the dielectric sphere is 10 cm, and 

the electromagnetic parameters are epsilon_r = 3, sigma_ e = 0.5 S/m, sigma_ m = 0.5 H/m, 

and mu_r = 2. The spatial step size is dx = dy = dz = 1 cm. We select the center position of 

the medium sphere as the reference point and obtain the comparison result with CST, as 

shown in Figure 9. 

Figure 8. Result of improved equivalent circuit method under high-frequency and high-voltage injection.

As we can see from Figure 8, the improved equivalent circuit method can work at high
frequency and high power.

3.1.2. Back-Door Irradiation

For testing the accuracy of the electromagnetic characteristics of the target under
the plane wave irradiation, the plane wave is used to irradiate the dielectric sphere, the
waveform of which is the Gaussian pulse. The propagation direction is the z direction, and
the electric field direction is the x direction. The radius of the dielectric sphere is 10 cm, and
the electromagnetic parameters are epsilon_r = 3, sigma_ e = 0.5 S/m, sigma_ m = 0.5 H/m,
and mu_r = 2. The spatial step size is dx = dy = dz = 1 cm. We select the center position of
the medium sphere as the reference point and obtain the comparison result with CST, as
shown in Figure 9.

It can be seen that the FDTD simulation results compare well with CST, which proves
the effectiveness of the FDTD algorithm in simulating the near-field coupling problem
under plane wave irradiation.



Electronics 2022, 11, 3921 8 of 15Electronics 2022, 11, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 9. Comparison of field between FDTD and CST. 

It can be seen that the FDTD simulation results compare well with CST, which proves 

the effectiveness of the FDTD algorithm in simulating the near-field coupling problem 

under plane wave irradiation. 

3.2. Joint Coupling Characteristics of Front Door and Back Door under Different Electromag-

netic Pulse Irradiation 

Based on Section 2.3, we start the process of joint analysis of front-door and back-

door coupling. Firstly, no protective measures are taken for the front door and back door. 

The circuit used is shown in Figure 2. Because the limiter pays more attention to the output 

power, the final obvious target is the power on the load impedance. Under the same con-

ditions, the voltage at both ends of the diode can be observed equivalently. 

• Low-frequency condition 

The voltage of the front-door coupling is mainly a low-frequency component, assum-

ing that the frequency of the sine wave voltage is 400 MHz and the amplitude is 4 V. The 

amplitude of the Gaussian pulse of the back-door coupling is 1000 V/m, the propagation 

direction is along the z direction, and the electric field direction is the x direction. The 

mesh step is dx = dy = dz = 2 mm, and the model is shown in Figure 10. Setting the circuit 

size to 20 mm × 20 mm × 10 mm, we can observe the voltage at both ends of the diode and 

the field at the center. 

 

Figure 10. Model of single tube limiter. 

The voltage at both ends of the diode is obtained by simulation. 

In Figure 11, the influence of the applied Gaussian pulse on the voltage at both ends 

of the diode can be clearly seen, which makes the voltage–response curve different from 

that of front-door coupling only in Figure 6. We can see that a pulse whose absolute am-

plitude takes over 3 V has been introduced. In fact, this is a typical field-circuit coupling 

problem. As the diode in Figure 3 is located between the node (i, j, k) and the node (i, j, k 

+ 1), the port voltage Vd can be deduced from the electric field path integral when there is 

no circuit excitation source: 
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3.2. Joint Coupling Characteristics of Front Door and Back Door under Different Electromagnetic
Pulse Irradiation

Based on Section 2.3, we start the process of joint analysis of front-door and back-door
coupling. Firstly, no protective measures are taken for the front door and back door. The
circuit used is shown in Figure 2. Because the limiter pays more attention to the output
power, the final obvious target is the power on the load impedance. Under the same
conditions, the voltage at both ends of the diode can be observed equivalently.

• Low-frequency condition

The voltage of the front-door coupling is mainly a low-frequency component, assum-
ing that the frequency of the sine wave voltage is 400 MHz and the amplitude is 4 V. The
amplitude of the Gaussian pulse of the back-door coupling is 1000 V/m, the propagation
direction is along the z direction, and the electric field direction is the x direction. The mesh
step is dx = dy = dz = 2 mm, and the model is shown in Figure 10. Setting the circuit size to
20 mm × 20 mm × 10 mm, we can observe the voltage at both ends of the diode and the
field at the center.
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Figure 10. Model of single tube limiter.

The voltage at both ends of the diode is obtained by simulation.
In Figure 11, the influence of the applied Gaussian pulse on the voltage at both ends of

the diode can be clearly seen, which makes the voltage–response curve different from that
of front-door coupling only in Figure 6. We can see that a pulse whose absolute amplitude
takes over 3 V has been introduced. In fact, this is a typical field-circuit coupling problem.
As the diode in Figure 3 is located between the node (i, j, k) and the node (i, j, k + 1), the
port voltage Vd can be deduced from the electric field path integral when there is no circuit
excitation source:

Vd =

k+1∫
k

→
Ed·dl (10)

where Ed represents the coupling voltage caused by back-door coupling at both ends of
the diode [20]. When the front-door and back-door coupling occurs at the same time,
the voltage at both ends of the diode is the composition of the coupling voltage caused
by back-door irradiation and the voltage caused by the excitation source injection of the
front-door circuit. This explains the difference between the coupling voltage waveform at
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both ends of the diode when the front door and rear door are coupled together and the
coupling-voltage waveform when only the front door is injected.
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• High-frequency condition 
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Figure 11. Voltage at both ends of diode at low frequency.

The dynamic changes of the electric field in the circuit are shown in Figure 12 below.
These figures are all made by MATLAB 2018 using the animation function.
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• High-frequency condition

When the voltage of the front-door coupling is mainly a high-frequency component, it
is assumed that the frequency of the sine wave is 4 GHz, the amplitude is 6 V, and the other
settings are the same as those in low frequency before. The updated formula of the diode is
in accordance with the improved equivalent circuit formula, and the voltage at both ends
of the diode is simulated.

In Figure 13, the influence of the applied Gaussian pulse on the voltage at both ends of
the diode can be clearly seen, which makes the voltage–response curve different from that
of front-door coupling only in Figure 7. We can see that a pulse whose absolute amplitude
takes over 5 V has been introduced. This can be explained as above. The dynamic changes
of the electric field in the circuit are shown in the Figure 14 below.
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3.3. Joint Coupling Characteristics of Front-Door and Back-Door Coupling after Taking
Protection Measures

In order to reduce the electromagnetic coupling of the front door and back door, this
paper adopts the protection scheme of front-door limiting and back-door shielding.

3.3.1. Single-Stage and Double-Tube Limiter

In order to achieve a better limiting effect of the front door, the single-tube limiter is
changed to the double-tube, as shown in Figure 15.
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Figure 15. Double-tube limiter.

1. Low-frequency condition

The simulation setting is the same as when the frequency of the front-door coupling is
400 MHz, and the voltage at both ends of the diode is shown in Figure 16.
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2. High-frequency condition 

Setting the front-door coupling frequency to 4 GHz, the other settings are consistent 

with those at low frequency. The voltage at both ends of the diode of the double-tube 

limiter can be obtained in Figure 18. 

  

Figure 16. Voltage at both ends of the double-tube under low frequency.

Compared with Figure 11, it is found that the coupling voltage of the front door de-
creases significantly, which means that the output power decreases significantly. However,
due to the lack of back-door protection, the back-door coupling voltage is still obvious. The
dynamic changes of the electric field in the circuit are shown in the Figure 17 below.
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2. High-frequency condition

Setting the front-door coupling frequency to 4 GHz, the other settings are consistent
with those at low frequency. The voltage at both ends of the diode of the double-tube
limiter can be obtained in Figure 18.
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Figure 18. Voltage at both ends of double-tube under high frequency.

Compared with Figure 13, when the front door is injected with a high frequency and
low voltage, the diode shows high impedance, which is equivalent to a large inductance.
After the two tubes are connected in parallel, it is still a large inductance, so the coupling
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waveform changes little compared with Figure 13. The dynamic changes of the electric
field in the circuit are shown in the Figure 19 below.
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3.3.2. Limiter with Shielding Cavity

In order to reduce the influence of the back-door coupling on the performance of the
limiter, the limiter is placed in a PEC metal shielding cavity. The size of the shielding cavity
is 40 mm × 40 mm × 20 mm, and the wall thickness is 4 mm. In reality, it is difficult to
achieve complete shielding, so a 4 mm × 4 mm × 4 mm hole is opened at the bottom of the
shielding cavity to simulate this situation. The model is shown in Figure 20.
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3. Low-frequency condition

The simulation setting is the same as that of the double-tube limiter at low frequency,
and the voltage at both ends of the diode is obtained in Figure 21.
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Compared with Figure 16, it can be seen that due to the skin effect of the shielding
cavity and the reflection of electromagnetic waves, the back-door coupling component has
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been suppressed and eliminated, which proves the effectiveness of the shielding cavity.
The dynamic changes of the electric field in the circuit are shown in the Figure 22 below.
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From the field calculation results, it is also clear that the back-door coupling is effec-
tively suppressed due to the existence of the shielded cavity, which is consistent with the
circuit analysis results.

4. High-frequency condition

The simulation setting is the same as that of the double-tube limiter at high frequency,
and the voltage at both ends of the diode is obtained in Figure 23.
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to reflect the coupling of various frequency components to the system. This joint-coupling 

scheme of the front-door and back-door, with the voltage source and plane wave acting 

simultaneously, is rarely seen in previous analyses. In view of the limited application 

Figure 23. Voltage at both ends of the diode.

Compared with Figure 18, it can be seen that due to the skin effect of the shielding
cavity and the reflection of electromagnetic waves, the back-door coupling component has
been suppressed and eliminated, which proves the effectiveness of the shielding cavity.
The dynamic changes of the electric field in the circuit are shown in the Figure 24 below.

From the field calculation results, it is also clear that the back-door coupling is effec-
tively suppressed due to the existence of the shielded cavity, which is consistent with the
circuit analysis results.
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4. Conclusions

This paper studies the joint coupling effect of the front door and back door of the PIN
limiter under electromagnetic pulse irradiation based on the physical model. Previous
research on electromagnetic pulse coupling in electronic devices and systems focuses more
on front-door or back-door coupling alone; thus, it cannot accurately reflect the situation
when electronic devices and systems suffer from front-door and back-door coupling at the
same time. More importantly, when front-door and back-door coupling occurs, the internal
circuit is in a working state, and there is excitation. This factor should also be considered.
In this paper, the front-door coupling is equivalent to the voltage injection, and the back-
door coupling adopts the Gaussian pulse as the plane wave source in order to reflect the
coupling of various frequency components to the system. This joint-coupling scheme of the
front-door and back-door, with the voltage source and plane wave acting simultaneously,
is rarely seen in previous analyses. In view of the limited application scenarios of the
traditional equivalent circuit model, an improved diode equation based on the physical
model is introduced. The improved equivalent circuit method can be used to analyze the
working state of the diode circuit under large-injection and high-frequency conditions so
as to expand its application scenarios. By adopting the scheme of “front-door limiting”
and “back-door shielding”, it is found that the voltage, finally coupled to both ends of
the limiter diode, has been significantly reduced compared with that before the protection
measures were taken. The equivalent understanding is that the power at both ends of the
load has been significantly reduced. Therefore, it has obvious practical significance for
protecting load devices.
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