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Abstract: Graph neural networks have a wide range of applications, such as citation networks,
social networks, and knowledge graphs. Among various graph analyses, node classification has
garnered much attention. While many of the recent network embedding models achieve promising
performance, they usually require sufficient labeled nodes for training, which does not meet the reality
that only a few labeled nodes are available in novel classes. While few-shot learning is commonly
employed in the vision and language domains to address the problem of insufficient training samples,
there are still two characteristics of the few-shot node classification problem in the non-Euclidean
domain that require investigation: (1) how to extract the most informative knowledge for a class
and use it on testing data and (2) how to thoroughly explore the limited number of support sets
and maximize the amount of information transferred to the query set. We propose an InfoMax
Classification-Enhanced Learnable Network (ICELN) to address these issues, motivated by Deep
Graph InfoMax (DGI), which adapts the InfoMax principle to the summary representation of a graph
and the patch representation of a node. By increasing the amount of information that is shared
between the query nodes and the class representation, an ICELN can transfer the maximum amount
of information to unlabeled data and enhance the graph representation potential. The whole model
is trained using an episodic method, which simulates the actual testing environment to ensure the
meta-knowledge learned from previous experience may be used for entirely new classes that have not
been studied before. Extensive experiments are conducted on five real-world datasets to demonstrate
the advantages of an ICELN over the existing few-shot node classification methods.

Keywords: graph representation; node classification; few-shot learning; mutual information
maximization

1. Introduction

A variety of real-world situations such as social networks, citation networks, and
knowledge graphs can be modeled with graphs. Among graph-based processing and
analysis, the node classification problem is an essential but necessary topic. Nodes’ classifi-
cation results and predicted labels are widely used for downstream tasks. However, graph
structure data are non-Euclid, which increases the difficulties of learning the representation
of nodes. Thus, special care should be taken with the topology and the nodes’ attributed
information when learning node representations.

End-to-end training is utilized by many graph neural network (GNN) models in
order to acquire knowledge about the nodes’ embedding vector representations in low
dimensions, which benefits the node classification problem. Within this supervised or
semi-supervised training paradigm, large numbers of node classes and node labels are
essential to obtain good performance. Unfortunately, data labeling is a task that requires
a lot of time and effort. Usually, only a small part of the data can be labeled. Insufficient
labeled data may easily lead to the overfitting problem, which inhibits the generalization
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ability of the model. To this end, learning node representation in a low-data regime is
highly significant.

Recently, few-shot learning (FSL) has been proposed and researched to solve the
problem of learning from very few labeled examples. An FSL model usually adheres to
the meta-learning paradigm, which involves the extraction of information from a variety of
meta-training tasks that are derived from classes including a significant amount of data
with labels. With the episodic training method, the model may be fine-tuned in only a
few stages. The information can be automatically extended to a new task (also known as
meta-testing) from previously unseen classes throughout training. When performing a task,
the support set and query set will operate as simulations of the real-world testing conditions,
in which a handful of labeled instances (the support set) will be made accessible alongside
a massive portion of unlabeled data (the query set) to be categorized.

A significant line of FSL research has been explored on image and text data, while few
focus on graph structure data. The high-dimension property and topology information
bring difficulties to node representations. Approaches such as the Meta-GNN [1], AMM-
GNN [2], and GPN [3] have been designed specifically for few-shot node classification.
However, they focus on the meta-learning framework and the attributed feature extraction
and ignore taking care of the amount of information transferred between a support
instance and a query instance. The challenges for few-shot learning on node classification
still lie in two aspects: (1) It is impossible to quantify directly the quantity of information
included inside the learned node representation. Therefore, when transferring knowledge
from the support set instances to the query set instances, there is no guarantee that the
maximum effective information can be delivered. (2) Limited by the number of labeled
support set instances, obtaining discriminative feature representation for a particular class
is difficult. Under this low-data circumstance, the crucial problem is ensuring that every
unlabeled query instance can absorb as much category information as possible from the
class representation.

This paper uses the mutual information maximization principle to address the chal-
lenges mentioned above and proposes an InfoMax Classification-Enhanced Learning Net-
work (ICELN). The minimal support set nodes are not only used for the task-specific
classifier but have also been processed as a class summary to anchor and maximize the
amount of information for the query set nodes. The proposed framework is made up of two
crucial components that effortlessly cooperate in obtaining node representations: (1) The
few-shot graph representation learning module consists of a GNN-based network encoder
and samples a series of few-shot node classification tasks. The encoder is responsible for
the extraction of expressive node representations, and meta-knowledge is passed between
these tasks. (2) The InfoMax classification-enhanced learning module is designed to get the
most out of the information that is shared by the class anchor and the query nodes, which
restricts and enhances the network representation learning to obtain informative features.
With InfoMax classification-enhanced learning, the finite labeled support nodes are being
put to good use, and the valid information can be transferred to unlabeled query nodes
as much as possible, which ultimately improves the model’s capacity to characterize the
node class feature. The episodic meta-training paradigm also guarantees that the meta-
knowledge about the graph structure and attributed features extracted through various
meta-training tasks may be dynamically adapted to specific few-shot classification tasks.
The contributions of this paper are the following:

• A new few-shot node classification framework (ICELN) is proposed, where we em-
phasize learning task-specific classifiers from a limited number of labeled nodes and
transfer the discriminative class characteristics to unlabeled nodes. The ICELN is
able to explore the limited number of support nodes to achieve a better generaliza-
tion ability.

• We explore the effectiveness of the mutual information maximization principle in
node representation learning. By increasing the amount of mutual information shared
between the known class representation and the corresponding node representation,
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the most representative features and information can be transferred, enhancing the
node representation learning.

• To demonstrate the effectiveness of the ICELN, we test it using a broad range of
datasets derived from the actual world and conduct a number of intensive experiments.
The experiments show that the ICELN achieves competitive performance on several
challenging few-shot node classification datasets.

2. Related Works

The proposed ICELN is connected to the following three works: graph representation
learning, few-shot learning, and mutual information maximization.

2.1. Graph Representation Learning

Graphs, which describe the items in the actual world as well as the connections be-
tween them using nodes and edges, are everywhere. Many research interests have been
developed in graphs to capture the intrinsic property inside node connections and then
apply the knowledge to downstream tasks. Driven by the success of deep learning, network
embedding [4] extended the traditional convolution operations on grid data to the graph
structure domain and has become a popular method for graph representation learning.
The GNN [5] was one of the pioneer works that propagated neighboring nodes’ and edges’
information and iteratively updated the representation of a node via a recurrent neural
architecture. A number of graph convolutional networks (GCNs) have arisen in diverse
applications as a result of the GNN’s outstanding performance in graph spectral theory,
such as recommendation systems [6,7], behavior modeling [8], and anomaly detection [9].
The GCN [10] takes advantage of the localized first-order approximation of spectral con-
volutions and aggregates data from a node’s immediate surroundings. GraphSAGE [5]
adapts several types of aggregation functions to obtain nodes’ embedding representations,
such as mean, pooling, and LSTM aggregators. During the aggregation phase, the graph
attention networks (GATs) [11] make use of a technique called attention to assign varying
weights to the nodes that are neighbors to each individual node. The graph isomorphism
network (GIN) [12] also uses an attention mechanism with arbitrary aggregation functions
and theoretically proves that it is as powerful as the Weisfeiler–Lehman (WL) graph iso-
morphism test. Simple graph convolution (SGC) [13] is a modification of the original GCN
model that eliminates nonlinearities and collapses unimportant weight matrices across
consecutive layers in order to cut down on unnecessary complexity. Nevertheless, these
GNN-based methods focus on semi-supervised node representation, and a significant num-
ber of positive examples are required in training. In situations where there is an inadequate
amount of labeled data, the performance of these models will suffer an inevitable decline
and generalize poorly with unseen classes. With such a small sample size, the proposed
ICELN utilizes the GNN architecture as the encoder to obtain node representations from
the graph structure data and utilizes the meta-learning training paradigm to address the
problem of insufficient training data.

2.2. Few-Shot Learning

Few-shot learning (FSL) is an approach to gaining information from previous expe-
riences and applying that meta-knowledge to new challenges using just a small amount
of labeled data. In the context of few-shot learning, tasks are typically selected at random
from a task distribution and then further subdivided into meta-train tasks and meta-test
tasks. These tasks cover both the base class and new classes. Each task is trained to provide
an accurate prediction of query sets’ labels after adapting the transferable prior knowledge
from a handful of support set samples. Generally, the few-shot learning models are of
two kinds: models based on optimization and models based on metrics.The optimization-
based models aim to obtain a meta-learner that can be optimized within a few steps given
the gradient of limited positive examples. MAML [14] is one of the most representative
optimization-based models that learns a parameter initialization capable of learning how
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to perform a new task rapidly by performing just a few gradient modifications. MAML
is model-agnostic and is suitable for different FSL tasks. The meta-learner LSTM [15] is
a model that is capable of learning parameters’ initialization and updating mechanisms
by giving only small training steps. The LSTM states are used to represent the classifier’s
parameters’ updates. Meta-SGD [16] can quickly initialize and adjust any differentiable
of the learner in a single step by reasoning how to initialize the weights, how to update
the gradient, and how to set the learning rate. SNAIL [17] employs a mix of soft atten-
tion and temporal convolutions to train a general meta-learner architecture that combines
knowledge from previous experiences and identifies certain information. The metric-based
models aim to learn task-invariant metrics and generalizable matching functions between
the labeled samples from the support set and the unlabeled samples from the query set
across different tasks. Similar data are clustered together in the learned embedding space,
whereas dissimilar data are spread away, and the classification process then turns into find-
ing the nearest neighbor. Matching networks [18] make predictions by comparing the input
instances with a few-shot labeled support set and training a weighted differentiable closest
neighbor classifier from end to end. Prototypical networks (PNs) [19] will first calculate
a class prototype for each class, and then they will categorize the instances according to
the Euclidean distances that separate them from the class prototype. In a relation network
(RN) [20], scores indicating the degree of the link between a query sample and the support
sample are used during training of the auxiliary network as the metric to categorize data.
With the idea of learning class prototypes, graph prototypical networks (GPNs) [3] explore
metric learning on attributed graph data. In the low-data regime, a class’s prototypical
representation is obtained by considering the support nodes’ informativeness, and the pre-
diction is made by finding each query’s nearest class prototype. With the inspiration of the
GPN, we developed the ICELN, which aims to enhance graph representation learning by
boosting the amount of mutual information that can be gained between the class prototype
and a query instance.

2.3. Mutual Information Maximization

Mutual information (MI) quantifies the interdependence between two random vari-
ables or distributions [21]. The higher the mutual information is, the more significant
the reduction in uncertainty is, and two independent variables have zero mutual infor-
mation. However, it is challenging to compute the MI in environments where data are
high-dimensional and continuous [22], especially when the probability distribution is uncer-
tain for learning. Fortunately, MINE [21] made significant progress in tackling the problem
with the neural estimator. It mathematically derives the lower limit of MI and then trains a
statistical network to act as a discriminator in order to separate samples from two variables’
joint distribution or their marginals’ product. Based on the neural estimator, DIM [23] uti-
lizes a neural network encoder to obtain image representations, and the mutual information
between the encoder’s input character and output embedding vector is maximized by the
estimator. In order to learn informative node representations, DGI [24] first extends MINE
and DIM into the graph structure data. The mutual information between every single
node (a local patch) and the overall graph representation (a global summary) is maximized.
Based on DGI, InfoGraph [25] learns node representations by taking advantage of different
scales’ substructures. The MI maximization takes place in the substructure representations
and the graph-level representations. GIC [26] further exploits MI on the heterogeneous
graph and acquires node-embedding vectors by concurrently maximizing the MI between
the summaries of different clusters and a summary of the whole graph. In order to simulate
a heterogeneous graph, DMGI [27] divides it into homogeneous graphs and then adapts
DGI’s discriminator and mutual information maximization goal to represent each split.
The simple but essential DGI model inspires the ICELN. We also optimize the mutual
information that exists between a class prototype and the query representations to enhance
the class information transfer process and boost the network encoding efficiency. The
most significant difference between the ICELN and DGI is that we adapt the maximization
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principle to the few-shot problem and encourage each query to integrate as much class
information as possible, where the class prototype is generated with only a handful of
support samples.

3. The Proposed Method

Following the overview of our methodology, which is shown in Figure 1, we will
proceed to provide in-depth explanations of the primary components of the proposed
ICELN, which are as follows.

The few-shot graph representation learning component is the backbone of our frame-
work. It is composed of a graph encoder and a number of meta-training tasks. The graph
representation learning process is trained in an episodic paradigm and optimized based on
the classification performance of the query set nodes.

The InfoMax classification-enhanced learning component works within a meta-
training task and jointly uses support nodes and query nodes to maximize the mutual
information while minimizing the classification cross-entropy loss.

Figure 1. Overall flow and framework of the proposed ICELN.

3.1. Notation and Problem Definition

In accordance with the notations that are most often used, we denote sets as calli-
graphic fonts (e.g., G) and vectors as bold lowercase letters (e.g., u). Scalars are represented
by lowercase letters (e.g., l). We refer to matrices as bold uppercase letters (e.g., W), and wi
indicates the ith row in W.

An undirected attributed graph is referred to as a quadruple G = {V , E , A, X}, where
V = {v1, v2, . . . , vn} is the node set, n denotes the total number of nodes,
E =

{
eij = (vi, vj)

}
⊆ V × V is the edge set, A ∈ Rn×n represents the asymmetric ad-

jacency matrix that represents the graph structure, and aij = 1 means node vi and node vj

are connected by an edge. X ∈ Rn×d is the attributed feature matrix, a row vector xi ∈ Rd

represents a node’s (vi) characteristic information, and its dimension is d.
Problem Definition: With a direct attributed graph G, we are looking forward to

learning a network encoder and a classifier from a limited number of labeled nodes that
can be adapted to a disjoint set of new classes to predict nodes’ labels. In most cases, there
are just a few nodes for which the labels may be provided. Formally, following the few-shot
learning (FSL) settings, the nodes in training set Dtrain contain C classes, and the nodes in
the disjoint testing set Dtest contain N unseen classes. In Dtest, if each class has K nodes
that are labeled and make up the support set S , the task is referred to as an N-way K-shot
node classification task, and K is usually a relatively small number, such as one, three, or
five. Our purpose is finding and training a suitable network encoder fθ that can obtain
good node representations and make accurate predictions about the labels of the remaining
unlabeled nodes (also called the query setQ). Thus, the meta-learning problem on the graph



Electronics 2023, 12, 239 6 of 19

is addressed as a few-shot node classification problem, and the key lies in how to extract
knowledge that can be transferred from the training data to testing data that have not been
seen before.

3.2. Few-Shot Graph Representation Learning

The methodology for addressing the problem of few-shot node classification largely
depends on the graph representation learning module as its core component. In designing
the framework, we made sure to take into account two difficult research topics:

• How to conduct meta-learning on graph structure data and how to extract information
that can be transferred from the training data to testing data when there are only a
handful of labeled nodes available.

• How to make the most of the limited number of nodes that are available in the support
set and restrict the query set to obtain informative and discriminative representations?

As can be seen in Figure 1, we constructed a meta-learning structure that is based on
the concept of episodic categorization. To be more specific, the training process is composed
of a large number of meta-training tasks sampled from task distribution, which is denoted
as T , and trained episodically. The training process mimics the actual testing setting to
alleviate the distribution gap between training and testing. After studying a significant
amount of different episodes, the knowledge in graph topology and feature distribution
can be extracted and passed through each episode and then applied to unseen classes in
meta-testing tasks.

In order to assure that there will be no differences between the training and the tests,
each task used in the meta-training phase and the meta-testing phase came from the same
task distribution T and were formed as an N-way K-shot classification task Tt. For every
task Tt, we used St to represent the support set and used Qt to represent the query set.
St = {(vi, yi)}N×K

i=1 contains N × K nodes and their corresponding labels from N different

classes. Qt =
{(

vj, y∗j
)}N×M

j=1
contains N ×M nodes taken from the rest of the N classes,

and the unknown labels y∗ are the labels to be predicted. The true labels of the query set
nodes are disguised throughout the training phase so that it may be more similar to the
testing procedure, and the actual labels are used to compute and evaluate the training
loss. After T meta-training tasks and optimization with a gradient descent, the model is
convergent and may be used to make predictions for unknown query nodes in meta-testing
tasks with unseen classes. By completing these meta-training tasks, the model is able to
acquire information that is not only portable from one episode to the next but also may be
generalized to be applied to meta-testing tasks.

With a given N-way K-shot task, we employed an encoder network to capture the
graph topology information A and the nodes’ feature matrix X to obtain a node’s represen-
tation. Specifically, we stacked several GNN layers to convey a node to a low-dimensional
vector hv. The GNNs follow the AGGREGATION − COMBINE pipeline, where the
AGGREGATION step aggregates a node’s neighboring information, and the COMBINE
step compresses the node features from the local neighborhoods. After l instances of
AGGREGATION − COMBINE operations, each node v’s multi-hop messages are passed,
and ultimate node representation hv ∈ RD is obtained for predicting its class label yv. A
GNN layer may be described in a formal way as follows, and l is the layer number:

s(l−1)
v = AGGREGATION

({
h(l−1)

i : vi ∈ Nv

})
,

h(l)
v = COMBINE

({
s(l−1)

v , h(l−1)
v

}) (1)

where h(l)
v is the node embedding at layer l that is updated with the COMBINE function

based on this node’s representation and its neighborhood representation s(l−1)
v at the up-

per layer and s(l)v is the neighborhood representation based on v’s neighborhood set Nv
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and the AGGREGATION function. The AGGREGATION operation can be any form of
information aggregator, such as mean, max, sum, and the COMBINE function can be sum,
concatenation or others. With the different choices of AGGREGATION and COMBINE
functions, there is a series of implementations [5,10,28]. We stacked L instances of GNN
layers above these two operations to build the graph encoder and obtain the node represen-
tations that may be used in the output layer for the purpose of node categorization. For
simplicity, we denote the graph encoder as fθ and the graph encoder’s output matrix as Z.
Zś ith row element, denoted as zi, represents the ultimate node representation of node vi.

3.3. InfoMax Classification-Enhanced Learning

After obtaining the node representations, we could perform classification and evaluate
the model based on the misclassification rate. However, when it comes to learning in a
few-shot task, the labeled nodes of the support set are limited to a small number, and
the unlabeled query set nodes’ number is not fixed. We needed to make the most use of
the scanty labels to train a task-specific classifier for unlabeled nodes and also make sure
the query set nodes kept a similar feature distribution to the support set nodes. Thus,
we propose InfoMax classification-enhanced learning. In a few-shot task, we first train a
task-specific classifier with support set nodes and then restrict the query set nodes to have
similar feature distribution to the support set nodes with mutual information maximization.
By doing so, we enhance the accuracy of the node classification while simultaneously
training the network encoder to learn the maximum comparable feature representation for
the same class of nodes as before.

Class-Specific Classifier: We used support set nodes and their labels to train a task-
specific classifier. The following is the definition of the classifier:

Lclassi f ier = −
1

|N × K| ∑
i∈N×K

K

∑
k=1

yiklog(zik) (2)

where zik denotes the ith node representation of K nodes that belong to one of the N
different classes that make up the support set, yik is its corresponding label prediction, and
N × K is the total number of nodes in the support set.

Mutual Information Constraint: We worked under the assumption that nodes that
belong to the same class ought to have feature representations that are comparable to one
another. Therefore, we used the InfoMax principle [29] to make the query set nodes repre-
sentation near the support set nodes representation. To calculate the mutual information
(MI) between random variables X and Y, we used the following formula:

I(X; Y) = H(X)− H(X|Y)

=
∫

XY
log

dPXY
dPX × dPY

dPXY
(3)

where PXY is the joint distribution of X and Y while PX and PY are the marginal distributions
of X and Y, respectively. PXY means considering X and Y comprehensively, and PX × PY
means considering them separately. The MI between X and Y is maximized to increase the
distance between PXY and PX × PY, which ultimately means X and Y are highly correlated,
and the amount of information these two variables carry is maximized.

However, when X and Y are high-dimensional and with unknown probability distri-
butions, it is not easy to calculate the MI directly. Based on the discriminator, MINE [21]
proposed a simple and scalable neural network estimator to estimate mutual information,
and DGI [24] applied the method to graph structure data. DGI is designed to maximize the
amount of information that the local patches can gain from the graph’s global summary.
hi ∈ Rd, denoted as the representation of node vi, is the local patch, and the global sum-
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mary is generated by a readout function that is calculating the average of all the attributes
of the nodes as its input:

s = R(Z) = σ

(
1
N

N

∑
i=1

hi

)
(4)

where σ represents a logistic sigmoid nonlinearity and N represents the total number of
nodes. The discriminator in DGI assigns points based on a bilinear scoring function to the
pairings of summary-patch representations:

D(hi, s) = σ
(

hT
i Ws

)
(5)

where W represents a score-calculating matrix that can be learned and σ stands for the
logistic sigmoid nonlinearity. The higher probability of the summary-patch representation
pair is a positive pair, and the more information it conveys, the higher the score given
by the discriminator. As MI has been maximized, all the local patch representations are
trained and learned to preserve MI with the graph-level representation in order to enable
the capture of the global properties shared by the whole graph.

Following the settings in DGI, we aim to learn the node representations for each node
to ensure the MI between the query set’s nodes’ representations and the support set’s global
summary representation is maximized. To this end, with the help of the readout function,
we created a global representation that was a summary of the representations of the nodes
in the support set that belonged to the same class:

pc = σ

(
1
K

K

∑
i=1

hi

)
(6)

Here, c = {1, 2, . . . , N} represents the total number of classes in the few-shot task,
and pc is the global summary representation of a class in a few-shot task. Thus, the
nodes’ representations in the query set are the patch representations, and with each class’s
summary representation, they form the summary-patch pairs to be discriminated. If the
pair is true, and the score given by the discriminator is high, then the node representation
and class summary are highly correlated. Otherwise, the node representation is irrelevant
to this class summary. Therefore, we now have positive samples and negative samples that
lead us to the restraint loss:

Lrestraint =
|Q|

∑
vi∈Q

logD(hi, pc) +
|Q|

∑
vi∈Q

log(1−D(hi, p̃c)) (7)

where p̃c is the class summary representation that is irrelevant to this node. Finally, we
joined the restraint loss to the classification loss to obtain the final objective L for a few-shot
task as follows:

L = Lclassi f ier + λLrestraint (8)

λ governs how significant the restraint loss is to the overall balance. After completing
a number of meta-training tasks using Equation (8), our model can be trained and used to
classify unlabeled nodes on the meta-test tasks. Algorithm 1 presents the specific steps that
ICELN takes throughout the learning process.

Time Complexity Analysis: The time complexity of Algorithm 1 is mainly spent on
acquiring the nodes’ representations, which is O(l(nd)2), where l represents the number of
GNN layers, n represents the number of nodes in the graph, and d represents the dimension
of the node feature.
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Algorithm 1: The detailed ICELN learning framework for few-shot node classi-
fication.

Input: Attributed NetworkG = {V , E , A, X}, few-shot node classification tasks
Tmeta−training = {St,Qt} and Tmeta−testing = {S ,Q}, training episodes E, λ

Output: Node classification results for nodes in Q
1 //Meta-training
2 for i < E do
3 Sample a meta-training task Ti = {Si,Qi};
4 Obtain node representations in Si and Qi;
5 Perform task-specific classifier learning according to Equation (2);
6 Perform InfoMax classification-enhanced learning according to

Equations (6) and (7);
7 Minimize the overall training loss L according to Equation (8).
8 end
9 //Meta-testing

10 Obtain node representations in S and Q;
11 Perform task-specific classifier learning according to Equation (2);
12 Predict labels for nodes in Q.

4. Experiments and Analysis

We carried out different kinds of experiments, and we provide the comprehensive
results of those experiments in order to provide evidence for the effectiveness of the
proposed ICELN.

4.1. Datasets

We carried out the experiments using the set-ups described in [19] and evaluated the
proposed ICELN on the following five datasets, which are accessible to the public:

• Cora [30] and CiteSeer [30] are two similar datasets related to machine learning topics.
Their networks are built with the paper citation relation and attached with different
words describing the papers’ information. There are seven subcategories and six
subcategories in Cora and CiteSeer, respectively.

• DBLP [31] is also a citation network which was taken from “DBLP dataset (version
v11)”. The network is linked with the papers’ citation relation, and the nodes’ at-
tributed information comes from the papers’ abstract information. The node class
labels represent the locations of the paper’s presentations.

• Amazon-Clothing [32] is known as a product network built on Amazon (https://
www.amazon.com/, accessed on 12 December 2022, Amazon review dataset released
in 2014). This dataset was first generated in [32], and in [3], the authors preprocessed
this dataset so that it could be used in the few-shot problem. The network’s nodes
are individual goods that are categorized under the heading of “Clothing, Shoes and
Jewelry” on Amazon, and the edges are the “also reviewed” relationship between
two products. The labels of the nodes represent the lower-level classifications of the
products. The attributed information for a node is the description of a product.

• Amazon-Electronics [32] is another Amazon product network analogy to Amazon-
Clothing. Nodes in this dataset are products belonging to “Electronics”. The nodes’
attributed information and labels are created in the same way as in Amazon-Clothing.
However, the edges are created with a complementary relationship “bought together”
between two products.

The statistical information that can be found in the aforementioned datasets is summa-
rized and presented in Table 1.

https://www.amazon.com/
https://www.amazon.com/
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Table 1. Statistics of datasets.

Datasets No. of Nodes No. of Edges No. of
Attributes No. of Labels

Cora 2708 5429 1433 7
CiteSeer 3327 4732 3703 6
DBLP 40,672 288,270 7202 41
Amazon-Clothing 24,919 91,680 9034 77
Amazon-Electronics 42,318 43,556 8669 167

4.2. Evaluation Metrics

For the node classification problem, we employed the measurements that are most
often used: accuracy (ACC) and F1. Based on the classification results, we had TP to
represent the number of true positives, TN to represent the number of true negatives, FP to
represent the number of false positives, and FN to represent the number of false negatives.
Thus, the formal definition of the ACC is

Acc =
TP + TN

TP + TN + FP + FN
(9)

To obtain F1, we needed the definitions of Precision and Recall:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Thus, the definition of the F1 score is

F1 = 2× Precision× Recall
Precision + Recall

(12)

4.3. Compared Methods

The proposed ICELN was evaluated by comparing it with several different baseline
models from different encoders:

• DeepWalk [33] acquires the node embedding by making use of the local data obtained
through a truncated random walk around the graph.

• Node2vec [34] extends DeepWalk. With a given node, its diverse neighborhoods are
explored, and the random walk then becomes biased.

• GCN [10] uses the spectral graph convolution as the basis for obtaining node repre-
sentations. The graph’s topology information and nodes’ features are aggregated and
passed through the layer-wise propagation pipeline.

• SGC [13] follows the learning paradigm of the GCN while simplifying the extra
complexity of the convolution function. There are no nonlinearities and collapsing
weight matrices between the layers that boost the training process.

• PN [19] presents a metric-based space for meta-learning. The prototypes learned from
the encoder are used for distance computing when performing classification in a
limited-data regime.

• MAML [14] is known as a general optimization-based meta-learning framework. It is
model-agnostic and can be expanded with a number of similar meta-training tasks
beyond classification problems. The universal model may easily be fine-tuned to
accommodate new unseen tasks within only a few simple stages of optimization.

• Meta-GNN [1] proposes a meta-learning approach as a solution for the few-shot node
classification problem. It is trained and optimized based on the training paradigm of
MAML, and the classification is learned based on the parameter initialization of GNNs.
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• GPN [3] combines the training strategy from Meta-GNN and the idea of prototypes
from PN to generate class prototypes as anchors to perform node classification tasks on
attributed graphs. This semi-supervised model generalized well in testing scenarios.

The aforementioned baseline models may be classified into one of three groups:
(1) conventional random walk-based methods that do not use GNN techniques (DeepWalk
and Node2vec); (2) GNN-based methods not designed for few-shot scenarios (GCN and
SGC); and (3) few-shot methods that especially consider the small sample problem (PN,
MAML, Meta-GNN, and GPN).

4.4. Experimental Settings

We use two layers of GNNs to construct the network encoder fθ with dimension
sizes of 32 and 16. We used ReLu in each GNN layer as the activation function. For the
task-specific classifier in each few-shot task, we used a trainable linear layer with an Adam
optimizer. For the discriminator, we made use of a trainable bilinear layer that had a
logistic sigmoid nonlinearity as the scoring function. The readout function is an average
operation for node representations and is activated with logistic sigmoid nonlinearity. The
proposed ICELN model utilizes an Adam optimizer for training whose learning rate is set
to α = 0.005 in the beginning and whose weight decay factor is set to 0.0005. The dropout
technique was used to fine-tune the model in order to prevent the overfitting problem.
It would be terminated to accelerate the training process when the validation accuracy
had not been increased in 20 consecutive steps. The initialized training episodes E for
each training set were set to be 1500 but may have stopped early with the early-stopping
strategy. The value of the balance parameter λ was initialized to be 0.5. All the training
and evaluation was carried out with PyTorch and executed on a system running Ubuntu
18.04 equipped with four Nvidia GeForce RTX 2080 Ti GPUs.

4.5. Performance Comparison

Due to the different magnitudes of numbers of the node classes in these datasets,
we conducted experiments with different settings for each data set. For DBLP, Amazon-
Clothing, and Amazon-Electronics, there were sufficient node classes to sample different
tasks, so we devised four distinct types of tasks: 5-way 3-shot, 5-way 5-shot, 10-way 3-shot,
and 10-way 5-shot. Following the settings in [3], for all three datasets, we randomly divided
them into meta-train/meta-validation/meta-test sets, and there were 80/27/30, 40/17/20,
and 90/37/40 classes of nodes for each dataset, respectively.

For Cora and CiteSeer, we designed two distinct forms of few-shot node classification
tasks, known as the two-way one-shot task and two-way three-shot task, using random
selection to pick two classes for use as meta-testing tasks and the other classes for use
as meta-training tasks. In order to make the comparison more impartial and reduce the
unstable interference caused by the limitations of the number of training classes, five
cross-validations were conducted on Cora and CiteSeer.

All kinds of few-shot node classification tasks were evaluated with the metrics in-
troduced in Section 4.2. When evaluating, the ACC and F1 score were reported with 50
meta-testing tasks on each method with DBLP, Amazon-Clothing, and Amazon-Electronics,
and the ACC was reported on 50 nodes’ classifications with Cora and CiteSeer. We reused
the results reported in [1–3] since our experimental settings were consistent with theirs.
The node classification results on Cora and CiteSeer are presented in Table 2, and the
classification results on DBLP, Amazon-Clothing, and Amazon-Electronics are presented
in Tables 3–5, respectively. The larger number, the better performance in this task setting.
The bold font indicates the best performance. Based on these tables, the following are some
observations that we made:

• On each of the five datasets, our proposed ICELN delivered performance that was
competitive for the few-shot node classification tasks. The high accuracies and F1
scores demonstrate that the ICELN was able to extract the meta-knowledge across
diverse tasks and could achieve a better generalization ability in unseen target tasks. In
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general, the classification accuracies of the ICELN outperformed the most comparative
method (GPN) by 12.7% under the 5-way 3-shot task on Amazon-Electronics.

• We found that the accuracies and F1 scores of DeepWalk and Node2vec were not at the
same level as other methods. These two random walk-based methods are supervised
and rely largely on sufficient training samples to obtain good node representations.
Meanwhile, the GCN and SGC are GNN-based models and use an end-to-end training
paradigm, which fluctuates in different task settings. The fact that standard GNN
models are susceptible to overfitting when the training instances are restricted to a
small number and tasks are distinct from one another demonstrates the requirement
for a meta-learning architecture for the low-data challenge.

• Classic meta-learning approaches such as PN and MAML provided results that per-
formed pretty well when used for the classification of few-shot images, while they
were only passable for few-shot node classification. Images and graphs are inherently
different, and the nodes’ correlation and attributed features are the most crucial in-
formation during graph learning. Thus, these two models failed to characterize the
topological and semantic information, resulting in unsatisfactory performance.

• Both the Meta-GNN and the GPN are two correlative approaches that were developed
for the few-shot node classification problem. They are capable of achieving significant
gains in comparison with other baselines. Meta-GNN is an optimization-based model
that needs to be fine-tuned on target tasks. The GPN learns the informative prototypes
for each class while neglecting to pass the support set’s class-specific information
to the query set. However, by taking full advantage of the handful support set
and performing InfoMax classification-enhanced learning, the proposed ICELN was
capable of providing better results than these baselines in the majority of situations.

• The following are some of the reasons why the proposed ICELN was successful in
achieving outstanding results in few-shot node classification: (1) The ICELN trains a
task-specific classifier with the finite support set nodes and successfully passes this
valid information to the query set nodes. (2) The ICELN maximizes the information
transferred from the support class representation to the query nodes representation,
which in turn improves the learning ability of the node representation.

Table 2. The few-shot node classification ACC results on Cora and CiteSeer.

Cora CiteSeer

Methods 2-Way 1-Shot 2-Way 3-Shot 2-Way 1-Shot 2-Way 3-Shot

ACC ACC ACC ACC

DeepWalk 16.1 25.7 14.5 21.2
Node2vec 15.2 25.7 13.0 20.0
GCN 60.3 75.2 58.4 68.0
SGC 61.6 75.7 56.9 65.7

PN 56.2 63.5 54.3 58.4
MAML 58.3 68.2 56.9 62.8
Meta-GNN 65.3 77.2 61.9 69.4
GPN 64.3 67.5 62.2 64.2
ICELN 71.4 81.9 67.6 72.9

Table 3. The few-shot node classification ACC and F1 results on DBLP.

DBLP

Methods 5-Way 3-Shot 5-Way 5-Shot 10-Way 3-Shot 10-Way 5-Shot

ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 44.7 43.1 62.4 60.4 33.8 30.8 45.1 43.0
Node2vec 40.7 38.5 58.6 57.2 31.5 27.8 41.2 39.6
GCN 59.6 54.9 68.3 66.0 43.9 39.0 51.2 47.6
SGC 57.3 55.2 65.0 62.1 40.2 36.8 50.3 46.4
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Table 3. Cont.

DBLP

Methods 5-Way 3-Shot 5-Way 5-Shot 10-Way 3-Shot 10-Way 5-Shot

ACC F1 ACC F1 ACC F1 ACC F1

PN 37.2 36.7 43.4 44.3 26.2 26.0 32.6 32.8
MAML 39.7 39.7 45.5 43.7 30.8 25.3 34.7 31.2
Meta-GNN 70.9 70.3 78.2 78.2 60.7 60.4 68.1 67.2
GPN 74.5 73.9 80.1 79.8 62.6 62.6 69.0 69.4
ICELN 76.8 75.7 82.9 82.5 63.4 62.6 70.8 69.9

Table 4. The few-shot node classification ACC and F1 score results on Amazon-Clothing.

Amazon-Clothing

Methods 5-Way 3-Shot 5-Way 5-Shot 10-Way 3-Shot 10-Way 5-Shot

ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 36.7 36.3 46.5 46.6 21.3 19.1 35.3 32.9
Node2vec 36.2 35.8 31.9 40.7 17.5 15.1 32.6 30.2
GCN 54.3 51.4 59.3 56.6 41.3 37.5 44.8 40.3
SGC 56.8 55.2 62.2 61.5 43.1 41.6 46.3 44.7

PN 53.7 53.6 63.5 63.7 41.5 41.9 44.8 46.2
MAML 55.2 54.5 66.1 67.8 43.3 46.8 45.6 53.3
Meta-GNN 74.1 73.6 77.3 77.5 61.4 59.7 64.2 62.9
GPN 75.4 74.7 78.6 79.0 65.0 66.1 67.7 68.9
ICELN 77.0 75.8 82.1 81.4 67.2 66.2 71.0 70.0

Table 5. The few-shot node classification ACC and F1 score results on Amazon-Electronics.

Amazon-Electronics

Methods 5-Way 3-Shot 5-Way 5-Shot 10-Way 3-Shot 10-Way 5-Shot

ACC F1 ACC F1 ACC F1 ACC F1

DeepWalk 23.5 22.2 26.1 25.7 14.7 12.9 16.0 14.7
Node2vec 25.5 23.7 27.1 24.3 15.1 13.1 17.7 15.5
GCN 53.8 49.8 59.6 55.3 42.4 38.4 47.4 48.3
SGC 54.6 53.4 60.8 59.4 43.2 41.5 50.0 47.6

PN 53.5 55.6 59.7 61.5 39.9 40.0 45.0 44.8
MAML 52.1 59.0 58.3 37.4 36.1 43.4 43.4 41.4
Meta-GNN 63.2 61.5 67.9 66.8 58.2 55.8 60.8 60.1
GPN 64.6 62.9 70.9 70.6 60.3 60.7 62.4 63.7
ICELN 77.3 76.8 82.9 82.5 63.4 62.6 70.8 69.9

4.6. Parameter Analysis

InfoMax classification-enhanced learning has two critical parts: the task-specific clas-
sifier trained with the support set nodes and the mutual information constraint trained
with the query set nodes. The final objective L is obtained from these two parts, and λ
is the balance parameter that controls how important the mutual information constraint
loss is in the final objective. In order to determine how selecting λ impacts the outcome,
we performed sensitivity analysis on three different datasets using four distinct sorts of
settings, and the accuracy (ACC) results are reported in Figures 2–4. From Figure 2 through
Figure 4, we were able to conclude that the optimal performance on DBLP was accom-
plished by setting λ to 0.3 while using the 5-way 5-shot set-up, while the second-highest
accuracy was obtained when λ = 0.7 on Amazon-Electronics using the same set-up. On
the Amazon-Clothing dataset, the accuracy reached its peak when λ = 0.7. Under other
few-shot settings, the highest accuracies were obtained when λ = 0.3, λ = 0.6, and λ = 0.8.
Based on the above observations, we set λ = 0.7 in the other experiments.
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Figure 2. Node classification results based on choosing the balancing parameter λ on DBLP.

Figure 3. Node classification results based on choosing the balancing parameter λ on Amazon-Clothing.

Figure 4. Node classification results based on choosing the balancing parameter λ on Amazon-Electronics.

4.7. Ablation Study

The task-specific classifier and the mutual information constraint in InfoMax
classification-enhanced learning jointly promoted the network encoding performance.
To validate each component’s effectiveness, we introduced two abbreviated versions
of the ICELN for an ablation study: ICELN-classify and ICELN-constraint. ICELN-
classify contained the task-specific classifier only, and ICELN-constraint contained
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the mutual information maximization only. We conducted four kinds of few-shot set-
ting node classification on three relatively larger datasets, and the performances are
reported in Figures 5–7. As we can see from Figures 5–7, the integrated ICELN per-
formed consistently better than the two variant models, which validates the necessity
of the task-specific classifier module and the mutual information maximization con-
straint module in the whole ICELN model. Additionally, we were able to deduce from
Figures 5 and 6 that ICELN-classify largely fell behind the full ICELN model, which
proves the importance of the mutual information maximization component.

Figure 5. Ablation study on DBLP.

Figure 6. Ablation study on Amazon-Clothing.
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Figure 7. Ablation study on Amazon-Electronics.

4.8. Visualization

Figures 8 and 9 show the similarity matrices of the raw node feature and the node
representation learned by our approach on DBLP with the five-way five-shot task, respec-
tively. The horizontal coordinate is the nodes’ index from the support set in five classes,
and the vertical coordinate is the random five query nodes’ index in each query set. Each
grid indicates the negative Euclidean distance between two nodes, and the color of the
grid demonstrates the divergence between their classes. Figure 8 shows that the nodes
were mixed together and had no distinct class patterns. The learned node similarity metric
obtained by the ICELN network encoder in Figure 9 demonstrates that the similarities
within classes increased while the similarities across classes were decreasing. These two
figures display that the ICELN has the capacity to capture class-specific characteristics even
when there is only a handful of positive samples in each class.

Figure 8. Visualization on DBLP (raw features).
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Figure 9. Visualization on DBLP (learned node embeddings).

5. Conclusions

The non-Euclidean domain network structure embedding and the restricted training
samples for training are the two primary challenges in the process of node classification,
which is an important but not yet fully studied subject. This paper proposes an InfoMax
classification-Enhanced Learnable Network (ICELN) to address the few-shot node clas-
sification problem. ICELN starts with the process of obtaining node representation by
utilizing a GNN-based network encoder and then trains with an episodic strategy to extract
knowledge across diverse tasks. Then, the InfoMax Classification-Enhanced Learnable
Network trained a task-specific classifier with support set nodes and maximized the mutual
information between the class prototype representation and a query node’s representation.
With these two modules, the ICELN can learn from previous experience, adapt the meta-
knowledge to unseen target tasks, and maximize the amount of information transferred
across different tasks. The performance over five datasets derived from the real-world
demonstrates that the ICELN outperformed other baseline models in the few-shot node
classification problem.
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