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Abstract: Learning to program requires diligent practice and creates room for discovery, trial and
error, debugging, and concept mapping. Learners must walk this long road themselves, supported
by appropriate and timely feedback. Providing such feedback in programming exercises is not
a humanly feasible task. Therefore, the early and steadily growing interest of computer science
educators in the automated assessment of programming exercises is not surprising. The automated
assessment of programming assignments has been an active area of research for over a century, and
interest in it continues to grow as it adapts to new developments in computer science and the resulting
changes in educational requirements. It is therefore of paramount importance to understand the work
that has been performed, who has performed it, its evolution over time, the relationships between
publications, its hot topics, and open problems, among others. This paper presents a bibliometric
study of the field, with a particular focus on the issue of automatic feedback generation, using
literature data from the Web of Science Core Collection. It includes a descriptive analysis using
various bibliometric measures and data visualizations on authors, affiliations, citations, and topics.
In addition, we performed a complementary analysis focusing only on the subset of publications on
the specific topic of automatic feedback generation. The results are highlighted and discussed.

Keywords: automated assessment; programming education; programming exercises; computer
science; bibliometrics; data visualizations; feedback

1. Introduction

Practice is the key to learning how to program. Practical programming skills can
only be acquired through extensive and varied experience in solving programming chal-
lenges [1,2]. Such an experience should provide the learner with room for discovery, trial
and error, debugging, and concept generation while supporting the learner with individu-
alized, accurate, rich, and rapid feedback to unlock their progress. Obviously, feedback that
meets these requirements cannot be guaranteed by a human instructor [3,4]. Automated
assessment tools for programming tasks have emerged as a solution to this problem. They
have been part of computer science (CS) education almost since learners began being asked
to develop software, and their value is already unanimously recognized by practitioners.
Nevertheless, interest in assessing various program properties (e.g., quality, behavior, read-
ability, and security), in adapting feedback, and in developing better and more powerful
tools has not waned since then [5].

Several studies have been carried out to synthesize the latest advancements in au-
tomated assessment for computer science (CS) education [4–7]. There are studies that
focus on comparing the tools’ features [7], exploring the methods and techniques applied
in the different facets of the automated assessment tools [4,6], and other wider studies
covering both [5]. To the best of the authors’ knowledge, a single bibliometric study [8] was
conducted to analyze the quantitative aspects of scientific publications in the area and their
relationships [9]. Such a study identifies the authors currently worth following and their
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affiliations, explores the evolution of publications and citations over time, establishes rela-
tionships between emerging topics in publications, computes the co-occurrence of topics
and corresponding clusters, builds the citation networks, and elects the research trends.

This paper is an extension of the bibliometric study of Paiva et al. [8], previously intro-
duced. This extension is twofold. Firstly, we extended the time span of the bibliometric
research up to the end of the past year (2022). Lastly, we presented a complementary biblio-
metric analysis focusing on a specific topic within the area: automatic feedback generation.
Our goal was to answer the following six groups of research questions, considering the
interval 2010–2022. The first group of research questions, RQ1, aims to summarize the
collected data, including the annual scientific production (RQ1-1); the average time interval
for a new publication to obtain the first citation (RQ1-2); and the main journals/conferences
for finding literature in the area (RQ1-3). The second group (RQ2) concerns authors. It
aims to find the common team size per publication (RQ2-1), the most productive, active,
and impactful authors during the time span (RQ2-2), whether those authors publish alone
or in groups (RQ2-3), the most evident collaboration partnerships (RQ2-4), and the main
affiliations (RQ2-5). The third group (RQ3) targets citations; in particular, we want to
identify the most influential (RQ3-1) and the most relevant (RQ3-2) co-citations. The fourth
group (RQ4) investigates the topics being discussed in publications, including which are
the basic, niche, motor, and emerging (RQ4-1), their evolution during the analyzed time
span (RQ4-2), the frequent terms being used (RQ4-3), and whether those vary during
the years (RQ4-4). The fifth group (RQ5) concentrates on feedback-specific questions;
particularly, we want to know what are the active sub-topics (RQ5-1) and research lines
(RQ5-2). Table 1 lists the research questions addressed in this study.

Table 1. List of research questions addressed in this study.

Group No. Question

RQ1

1 What is the annual scientific production?

2
What is the average time interval for a new publication to obtain
the first citation?

3 Which are the main journals/conferences for finding literature
in the area?

RQ2

1 What is the common team size per publication?
2 Which are the most productive, active, and impactful authors?
3 Do those authors publish alone or in a group?
4 Which are the most evident author collaboration partnerships?
5 What are the authors’ main affiliations?

RQ3 1 Which are the most influential citations?
2 Which are the most relevant co-citations?

RQ4

1 Which are the basic, niche, motor, and emerging topics?
2 How did topics evolve during the analyzed time span?
3 Which are the frequent terms being used?
4 What is the yearly frequency of the most frequent terms?

RQ5 1 Which are the active sub-topics within feedback?
2 Which are the active research lines within feedback?

The remainder of this paper is organized as follows. Section 2 presents the methodology
used to conduct this study. Section 3 presents the results of the bibliometric analysis and
answers each of the research questions. Section 4 discusses the results and compares them to a
recent literature review [5]. Finally, Section 5 summarizes the major contributions of this study.
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2. Methodology

The data for this study were collected from the Web of Science (WoS) Core Collection
during the third week of March 2023. To this end, a query [10] was built to search all fields of
a publication for the following combination of keywords: (automatic OR automated) AND
(assessment OR evaluation OR grading OR marking) AND (programming OR computer
science OR program).

The query includes a filter to limit results to those published from 2010 up to end of 2022.
In addition to that, two refinements were needed. The first was needed to narrow down search
results to the adequate WoS categories for this area, namely: Computer Science Information
Systems, Computer Science Artificial Intelligence, Computer Science Interdisciplinary Appli-
cations, Computer Science Software Engineering, Education Educational Research, Education
Scientific Disciplines, Multidisciplinary Sciences, and Education Special. Even though some
of these categories may still include out-of-scope publications, excluding them could result in
the loss of important publications. The result was a set of 16,471 publications.

For these publications, we extracted their full record, including cited references. A total
of thirty-three BibTeX exports were necessary for obtaining the data from all 16,471 pub-
lications due to the limitations of WoS on the number of records allowed to be exported
in a single request (in these conditions, the limit is 500). Finally, the BibTeX files obtained
were merged into a single BibTeX file. Having this set in a single file, we imported it into R
using bibliometrix [11]—an open-source R-tool for quantitative research in scientometrics and
bibliometrics—and proceeded with a pre-processing phase. This phase aims to identify the
relevant publications for analysis by applying inclusion/exclusion criteria identical to those
used by Paiva et al. [5] after carefully reading the titles and abstracts of each paper. The result
from this phase is a set of 779 publications, which we used for further analysis.

After filtering, we extracted the 2-grams terms from both the abstract and the title into
two new columns of the dataset, reducing a few synonyms to a single term (e.g., “grading
tool”, “assessment tool”, and “marking tool” to “aa tool”) and eliminating general terms (e.g.,
“automated assessment” or “computer science”). Then, the resulting dataset was analyzed
using R and traditional data processing and visualization packages, except for bibliometrix
package [11]. Bibliometrix is an R package specifically designed to support bibliometric
analyses. In particular, it can import bibliographic data both directly and indirectly from
SCOPUS, Clarivate Analytics’ WoS, PubMed, Digital Science Dimensions, and Cochrane
databases, and perform a wide range of bibliometric analysis methods, including citation, co-
citation, bibliographic coupling, scientific collaboration, co-word, and co-authorship analysis.

From these analyses, some visualizations of the data were produced using R and a few
libraries, particularly ggplot, VOSViewer, and Bibliometrix. Additional visualizations were
produced in Biblioshiny, a shiny app providing a web interface for bibliometrix. Finally,
we curated a bibliometric summary and compiled a brief report of the findings, which we
interpreted to answer the research questions presented in Table 1. Figure 1 presents the
steps performed in this research.

Figure 1. Schema of the steps performed in this research.
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3. Results

The results of the analysis are detailed in this section, where each subsection answers
one of the groups of research questions presented in Section 1. Section 3.1 provides a sum-
mary of the data used in the analysis, including answers to RQ1. Section 3.2 encompasses
the results related to the authors’ analysis (i.e., RQ2). Section 3.3 demonstrates the results
regarding the analysis of citations (i.e., RQ3). Section 3.4 presents answers to RQ4, which
pertains to topics and keywords. Section 3.5 presents answers to RQ5, which contains
questions about the feedback on the automated assessment of programming assignments.

3.1. Data Summary

Literature on the automated assessment of programming assignments has had a
continually growing interest during the analyzed period (2010–2022), as depicted in Figure 2
through a visualization of the number of publications per year with a linear trend and the
associated confidence interval. The trend line reflects a growth rate of approximately 7.1%
in the annual scientific production during the timespan 2010–2022. Nevertheless, a slight
decrease in the number of publications between 2019 and 2020 is noticeable, an exceptional
situation that can be associated with the COVID-19 pandemic crisis. The years with the
highest number (99) of publications, i.e., the peak years, were 2018 and 2021. This responds
to RQ1-1.

Figure 2. Number of publications per year with a linear trend (blue line) and its confidence interval.

Each of the collected documents was cited by an average of 7.254 other publications,
with an average rate of 1.045 per year. Thus, in response to RQ1-2, it takes an average of
11.483 months to receive the first citation. The year with the most citations per publication
on average was 2014, with a mean of 14.31 citations per publication. However, the year
in which publications were most cited per citable year (i.e., following years captured
in the analysis) was 2017, with an average of 1.81 citations per publication and citable
year. Figure 3 shows the average citations of a document per citable year for each year of
publication. For example, a publication of 2010 (i.e., with 13 citable years) has 0.624 citations
on average per year (the lowest of this dataset if we exclude the last year, whose information
may not be complete).
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Figure 3. Average publication citations per document in citable years.

The set of 779 selected publications consists of 7 review papers, 222 journal articles,
545 proceedings papers, and 5 classified as other editorial material. These come from
455 different sources, including journals and books, among others. The top 20 publication
sources (RQ1-3), presented in the tree map of Figure 4, account for almost one-fifth of the
total publications. The Proceedings of the 51st ACM Technical Symposium on Computer
Science Education is the source with the highest number of articles collected (15), followed
by ACM Special Interest Group on Programming Languages (SIGPLAN) Notices with
12 publications, ACM Transactions on Software Engineering and Methodology with 11 pub-
lications, and Information and Software Technology with 10. Computers & Education,
Empirical Software Engineering, Journal of Systems and Software, Science of Computer
Programming, and the Proceedings of the 49th ACM Technical Symposium on Computer
Science Education, with 8 publications each, complete the top 5 sources.

Figure 4. Top 20 sources of publications in a tree map.
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3.2. Authors

The set of publications selected for analysis contains documents from 2120 distinct
authors, of which 56 authored at least 1 of the 62 single-authored documents that are
part of this set. The average number of authors per document is 3.26, whereas, excluding
the 62 single-authored publications, there are 3.47 co-authors per document on average.
From these co-authorships, we can identify that 20.28% are international co-authorships.
Figure 5 shows a histogram of the number of authors per publication that responds to
RQ2-1. The most common are publications with 2 to 4 authors (72.5% of all publications),
where 3-author publications are the ones in the majority.

Figure 5. Distribution of publications by the number of authors.

With respect to the “most prolific authors” (i.e., the authors who have made more
publications) as asked in RQ2-2, Figure 6 shows the top 10, sorted in descending order
from top to bottom, of authors who have made more contributions to the field and, for
those, the number of publications and citations per year. From this perspective, the authors
who are more active recently, such as Fraser G. and Edwards S. H., and those who were
more active at the beginning of the timespan, such as Kim M., Queirós R., and Leal J. P.,
are easier to identify. Nevertheless, the most impactful works are those of Monperrus M.,
who studies mostly automated program repair techniques. The work of Fraser G., which
concentrates on software testing techniques, and Kim D., which investigates techniques for
the automated generation of feedback, complete the podium regarding authors’ impact.
This can be confirmed by measuring the authors’ h-index (6, 5, and 5, respectively).

Figure 6. Productivity of authors over time (TC stands for times cited).
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Having the most prolific authors, we constructed a histogram of the number of authors
per publication for each of them separately to answer RQ2-3. Figure 7 illustrates the result.
Among the most prolific authors, the only authors who have worked alone are Queiros
R. (1) and Monperrus M. (1), whereas all others have no single-authored publications.
Nevertheless, Edwards S. H. and Marchisio M. publish mostly in small groups with one
or two co-authors. Interestingly, Mao X., Wang S., and Kim D. have only worked in large
groups of four or more authors.

Figure 7. Number of authors per publication for the most productive authors.

There are several researchers collaborating on projects that publish together very often.
RQ2-4 aims to identify them. To this end, we created a graph of the authors’ collaboration
networks, presented in Figure 8. Bolder edges indicate a stronger partnership relation
between authors, i.e., the authors participated together in the same publications more often.
For instance, Leal J. P. and Queiros R. authored many of their publications together. The
same applies for Tonisson E. and Sade M., who also collaborated less frequently with Lepp
M. and Luik P.

Figure 8. Authors’ collaboration networks.

Regarding RQ2-5, which aims to find the main affiliations from the authors, there are
636 distinct identified affiliations within the collected publications. Note that a publication
can count as more than 1 affiliation if it involves either authors with multiple affiliations
or documents with multiple authors resulting from a collaboration between different
institutions. The top 20 most prolific affiliations, alone, account for more than 39% of
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the identified affiliations. Carnegie Mellon University is the institution with the most
publications (25), followed by North Carolina State University (20) and the University
of Porto (19). The Nanjing University and the University of Tartu, both appearing with
18 publications, complete the top 5. The top 20 most prolific affiliations are presented in
Figure 9, which alone account for more than 37.5% of the identified affiliations.

Figure 9. Top 20 authors’ affiliations by productivity in a tree map.

3.3. Citations

The most influential publications (RQ3-1) are those that have more citations, but
the year of publication and the area of the publication citing it should also be taken into
consideration (i.e., a citation from a publication in the same area has a different weight
from one in another area). In order to handle the former, we used the normalized citation
score (NCS) of a document, which is calculated by dividing the actual number of cited
publications by the expected citation rate for publications of the same year. In order to
address the latter, we came up with a twofold answer.

On the one hand, the local NCS (i.e., citations within the collected data) determines
the most influential publications within the area. The top 5 publications under such
conditions are: “Context-Aware Patch Generation for Better Automated Program Repair”
by Wen et al. [12]; “Marking student programs using graph similarity” by Naudé et al. [13];
“A distributed system for learning programming on-line” by Verdú et al. [14]; “TBar:
revisiting template-based automated program repair” by Liu et al. [15]; and “A system to
grade computer programming skills using machine learning” by Srikant S. [16].

On the other hand, looking at all the citations provides a global perspective on the most
influential publications. The top 5 publications in this regard are: “PerfFuzz: automatically
generating pathological inputs” by Lemieux et al. [17]; “Automated Feedback Generation
for Introductory Programming from Assignments” by Singh et al. [18]; “Context-Aware
Patch Generation for Better Automated Program Repair” by Wen et al. [12]; “Automated
Assessment in Computer Science Education: A State-of-the-Art Review” by Paiva et al. [5];
and “Precise Condition Synthesis for Program Repair” by Xiong et al. [19].

When two publications are cited together by other documents (co-citations) frequently,
it indicates that they are likely to address the same topic, i.e., they are semantically related.
RQ3-2 aims to identify the most relevant of those co-citations. The answer is provided
in the historiographic map proposed by E. Garfield [20] (see Figure 10), which presents a
chronological network map of the most relevant co-citations from a bibliographic collection.
This map identifies six separate groups corresponding to different topics, namely: Group I
(Light Blue) includes advancements in automated program repair techniques [12,15,21];
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Group II (Pink) contains two studies analyzing difficulties faced by novice program-
mers in automated assessment tools [22,23]; Group III (Green) encompasses works on
automated feedback for CS projects [24,25]; Group IV (Yellow) includes publications on
automated program repair techniques and tools [26,27]; Group V (Red) captures works
exploring the automated assessment of the computational thinking skills of novice program-
mers [16,28,29]; Group VI (Blue) captures a group of works aiming to improve feedback
on automated assessment [13,30,31].

Figure 10. Historiographical representation of a network map of most relevant co-citations. Ref-
erences included: wen m, 2018 [12]; liu k, 2019 [15]; bader j, 2019 [21]; pettit r, 2017 [22]; prather j,
2018 [23]; sridhara s, 2016 [25]; denero j, 2017 [24]; monperrus m, 2014 [26]; motwani m, 2018 [27];
srikant s, 2014 [16]; von wangenheim cg, 2018 [28]; da cruz alves n, 2019 [29]; naude ka, 2010 [13];
falkner n, 2014 [30]; insa d, 2015 [31].

3.4. Topics and Keywords

Information about current issues, trends, and methods in the field can be derived
from keywords. Keywords are mandatorily provided by authors for each publication but
are also assigned automatically by the indexing database, or even extracted as n-grams
from the title or abstract. Therefore, for the group of research questions RQ4, these are the
properties that are the subject of analysis. For the first question of the group (RQ4-1), the
answer is provided in Figure 11 through a thematic map based on the analysis of co-word
networks and clustering using the authors’ keywords. This approach is similar to the
proposal of Cobo et al. [32]. It identifies four types of topics (themes) based on density
(i.e., degree of development) and centrality (i.e., degree of relevance), namely: emerging or
declining (low centrality and low density), niche (low centrality and high density), motor
(high centrality and high density), and basic (high centrality and low density) topics. In
emerging or declining topics, a cluster with “Android” is worth noticing as it is an indicator
of the increasing interest in the automatic assessment of mobile development assignments.
Niche themes include some interesting topics, such as graph similarity, which is a technique
used in automated assessment for comparing source code semantically (e.g., compare to a
known solution and derive feedback), and automatic question generation, as well as other
topics related to tools of the domain itself (e.g., virtual programming lab, systems, and
framework). Motor themes include topics such as fault localization, debugging, program
analysis, and learning analytics. Finally, among the basic themes, the clusters of static
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analysis—analyzing source code rather than its runtime behavior—automated program
repair—a technique used to automatically correct programs, which is applied to generate
feedback—and test generation are the most notable.

Figure 11. Thematic map based on authors’ keywords.

In order to answer RQ4-2 and the questions that follow, the analysis focused on 2-
grams extracted from the abstract. Figure 12 divides the decade into three equal-length
sections (2010–2014, 2015–2018, and 2019–2022) and shows the thematic evolution between
the three sections based on an analysis of the co-word network and the clustering of the
authors’ keywords [32]. From the first slice, the high interest in test generation and the
evident importance of machine learning in the area already are noticeable. The second slice
includes a wide range of topics with a strong relation to attempts to improve feedback,
such as static analysis, automated program repair (e.g., apr techniques and program repair),
and symbolic execution. Finally, in the third slice, the emphasis on topics such as static
analysis, automated program repair, and test generation is maintained.

Figure 12. Thematic evolution based on authors’ keywords.
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As for RQ4-3, Figure 13 presents a conceptual structure map created using multiple
correspondence analysis (MCA)—a data analysis method used to measure the association
between two or more qualitative variables—and the clustering of a bipartite network of the
extracted terms. Using this approach, 2-grams are divided into four clusters, which can
be described as follows: Group I (Blue) includes terms related to feedback and learning
analytics; Group II (Green) seems related to static analysis; Group III (Red) contains
2-grams related to fault localization and test generation (e.g., fault localization and test
generation); and Group IV (Purple) captures terms related to automated program repair
(e.g., repair apr and program repair).

Figure 13. Conceptual structure map of abstract 2-grams obtained through MCA.

With respect to RQ4-4, Figure 14 shows the ten most frequent abstract 2-grams by year,
in which colors vary from blue (low occurrence in publications) to red (high occurrence), i.e.,
using a color temperature scale. The increasing interest in static analysis, automated program
repair, and automated test generation is readily apparent. Although less visible, machine
learning and learning analytics have also increased slightly over the years. This indicates a
large growing interest in improving automated feedback generation, as most topics gaining
popularity are related to source code analysis (static analysis and machine learning—in the
current context) and fixing (automated program repair, automated test generation—including
a counter examples—fault localization, and machine learning) techniques. Moreover, feed-
back for teachers through learning analytics seems to now be a topic of interest within the
area of automated assessment. Note that, for this visualization, the set of generated 2-grams
was preprocessed to remove common terms (e.g., science, introductory, programming, paper,
work, result, etc.) and match synonyms (e.g., apr tool, repair tool, and program repair count
for the same 2-gram). Each publication counts at maximum once for any 2-gram.

Figure 14. Top 10 most frequent abstract 2-grams by year.
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3.5. Feedback

The fifth group of research questions, RQ5, targets the subset of publications related to
feedback. To this end, we filtered the dataset to include only publications whose keywords,
title, or abstract contain the term “feedback”. The result is a set of 340 publications from
980 distinct authors, with an annual scientific production growth rate of 12.92%.

On this set of publications, we aimed to re-analyze the topics to discover what exactly
is being discussed about automatic feedback generation for programming assignments
(RQ5-1). Figure 15 shows the most impactful/central clusters of 2-grams extracted from the
abstract of these publications. The Purple cluster includes automated program repair and
fault localization. Cluster Red and Blue refer mostly to common terms in the area of the
automated assessment of programming assignments, such as “programming assignments”,
“automated assessment”, or “assessment tool”. Nevertheless, the Blue cluster also includes
terms related to the use of data for feedback purposes, namely “data-driven feedback” and
“heatmaps”. Finally, the Green cluster includes some interesting branches, such as “test
generation” and “symbolic execution” (e.g., for generating counter-example test cases), and
interactive feedback.

RQ5-2 asks what the research lines are within the feedback topic. In order to answer
this question, we rebuilt the historiographic map proposed by E. Garfield [20] for the new
data. Figure 16 presents the result. The following were the relevant co-citations networks:
Green captures feedback on exercises to stimulate the computational thinking skills of novice
programmers [28,29]; Purple involves works evaluating the effects of feedback [33–36]; Light
Blue encompasses works about automated program repairing [12,15,21,37]; Pink contains
works comparing human and machine-generated feedback [38,39]; Light Green involves
works providing feedback on student-developed test cases [40,41]; Orange has another
series of works providing feedback on the accuracy of student-developed test cases [42–44];
Red includes efforts on exploring patterns of source code for feedback purposes [45,46];
Blue includes publications evaluating automated program repair techniques [26,27,47].

Figure 15. Frequent terms under feedback topic.
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Figure 16. Historiographical representation of a network map of most relevant co-citations under
feedback topic. References included: von wangenheim cg, 2018 [28]; da cruz alves n, 2019 [29]; benotti
l, 2018 [34]; ho vw, 2018 [35]; lee hs, 2019 [36]; deeva g, 2021 [33]; wen m, 2018 [12]; liu k, 2019 [15];
bader j, 2019 [21]; ye h, 2021 [37]; parihar s, 2017 [38]; leite a, 2020 [39]; pape s, 2016 [40]; wrenn j,
2019 [41]; de souza dm, 2015 [42]; smith r, 2017 [43]; buffardi k, 2019 [44]; blikstein p, 2014 [45]; tahaei
n, 2018 [46]; monperrus m, 2014 [26]; motwani m, 2018 [27]; majd a, 2019 [47].

4. Discussion

The automated assessment of programming assignments is a research area with several
years of investigation, but it is still an increasing research interest as demonstrated by the
significant and growing number of publications in the analyzed years. The only exception
coincides with (and can be justified by) the COVID-19 pandemic situation, which occurred
between the start of 2020 and the start of 2022. Most of these publications appear in journals
and conference proceedings, with shares of nearly 30% and 70%, respectively. The number
of citations has maintained a nearly constant rate over the years (see Figure 3).

4.1. Authors

Authors of publications in this area are typically active computer science educators.
They explore new ways of facilitating their tasks of creating and assessing programming
assignments and, at the same time, provide students with a richer and more personalized
practising experience to soften the difficulties of learning how to program. The research
teams are mostly small, with two to four authors, and publish several times together. For
instance, Queirós R. and Leal J. P. have authored six of their seven publications in the area
together (one of each is separate). Nevertheless, works with more than four authors are
common in publications introducing techniques from static source code analysis [12,48,49].

4.2. Citations

The top five most influential citations, both local and global, were identified, having
one common publication. The total nine most influential citations include a systematic
literature review [5], an assessment tool [14], a technique for the assessment using graph
similarity [13], a technique for the assessment using machine learning on graph represen-
tations of source code [16], three techniques for automated program repair [12,15,19], a
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worst-case test generation approach [17], and a technique for generating feedback given
a reference solution and an error model [16]. This highlights the great interest among
researchers in generating better feedback, as seven out of nine most influential citations
have that end goal.

4.3. Topics

The systematic literature review on automated assessment by Paiva et al. [5] is the
most closely related to the one and recent review. This review identified a new era of
automated assessment in computer science, the era of containerization, among other
interesting findings; in particular, the growing interest in static analysis techniques for
assessing not only the correct functionality of a program but also the code quality and
presence of plagiarism. Furthermore, it notices the efforts made toward better feedback
primarily by introducing techniques from other research areas, such as automated program
repair, fault localization, symbolic execution, and machine learning. Regarding automated
assessment tools, more than half of the mentioned tools are open source. Finally, the
increasing interest in incorporating learning analytics into automated assessment tools
to help teachers understand student difficulties is also mentioned. A technical report by
Porfirio et al. [50] presents a systematic literature mapping of the research literature on
automatic source code evaluation until 2019, which also had similar findings. In particular,
it (1) shows the increasing number of publications; (2) notices a few attempts to extract
knowledge and visualize information about students from data produced during the
automated assessment of source code (i.e., first attempts on learning analytics); and (3)
demonstrates that functional correctness is the aspect receiving the most attention.

The responses given in Section 3.4 to research questions of group RQ4 confirm most
of the findings of previous works, namely the recent focus on static analysis approaches
and the introduction of techniques from other research areas, such as automated program
repair, fault localization, and machine learning. Traditional automated assessment based
on running the program against a set of test cases is still the dominating strategy. Moreover,
the high frequency of some keywords related to learning analytics corroborates the interest
in integrating outcomes from this research area into automated assessment tools. Never-
theless, this research could not capture enough information to confirm the trend of the
containerization of automated assessment. As the conducted analysis had minimal human
interference, if “docker” (or a related term) was neither a frequent keyword nor part of
a frequent abstract 2-gram, then it was not identified. In contrast, in the aforementioned
review [5], a number of publications were manually annotated with a predetermined set of
tags after reading.

4.4. Feedback

Automatic feedback generation is the most explored topic in the area, representing
more than 43% of the collected publications and with an annual scientific production
growth rate of almost 6 percentage points higher than the area itself. Works under this
topic range from the introduction of static analysis, machine learning, and source code
analysis techniques to experiments assessing the quality of the tools/techniques against a
dataset, experiments comparing the use of a tool/technique against either manual or before
treatment feedback, and learning analytics approaches.

5. Conclusions

This paper presents a bibliometric study of the literature on automatic assessment
in computer science from 2010 up to the end of 2022 based on the WoS Core Collection.
The collected data show the ever-increasing research interest in the area, particularly in
integrating and developing techniques to improve automatically generated feedback. Static
analysis, machine learning, and source code analysis techniques used in other research
areas opened room for the improvement of current solutions, so it is important to continue
pursuing this area in the coming years.
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The analysis performed allowed us to answer all the research questions posed at the
beginning of this study and presented in Section 1. Results regarding topics are identical to
those reported in a recently published systematic literature review on automated assessment
in computer science [5] and thus validate each other. Novel results include, for instance,
the identification of the most active/productive researchers in the field, their groups and
affiliations, the collaborations between them, the most impactful publications, the evolution
of important research lines, and the sources with most publications in the area. Moreover,
the analysis of the subset of research related to automatic feedback generation allowed us
to identify the different branches being explored in this topic, as well as the research lines.

Admittedly, this study has some limitations. In particular, the WoS Core Collection
does not include publications from all sources. Second, the names of some authors and
affiliations appear in different forms over the decade, which may introduce some bias
into the analysis. In this case, the work of a database such as the WoS Core Collection to
standardize affiliations and authors is important.

In the upcoming years, we expect research in this area to continue growing. We foresee
that the development of static analysis techniques to assess different aspects and types
of programming assignments and the integration of source code analysis and machine
learning techniques to improve automatically generated feedback will drive research in
the area. Furthermore, we recommend another bibliometric study of this type (at least) in
the next decade as, in such an active area, it is important to understand where research is
heading and for new researchers in the field to know the paths of research and authors
to follow.
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