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Abstract: In recent years, localization has become a hot issue in many applications of the Internet
of Things (IoT). The distance vector-hop (DV-Hop) algorithm is accepted for many fields due to its
uncomplicated, low-budget, and common hardware, but it has the disadvantage of low positioning
accuracy. To solve this issue, an improved DV-Hop algorithm—TWGDV-Hop—is put forward in this
article. Firstly, the position is broadcast by using three communication radii, the hop is subdivided,
and a hop difference correction coefficient is introduced to correct hops between nodes to make
them more accurate. Then, the strategy of the square error fitness function is spent in calculating the
average distance per hop (ADPH), and the distance weighting factor is added to jointly modify ADPH
to make them more accurate. Finally, a good point set and Levy flight strategy both are introduced
into gray wolf algorithm (GWO) to enhance ergodic property and capacity for unfettering the local
optimum of it. Then, the improved GWO is used to evolve the place of each node to be located,
further improving the location accuracy of the node to be located. The results of simulation make
known that the presented positioning algorithm has improved positioning accuracy by 51.5%, 40.35%,
and 66.8% compared to original DV-Hop in square, X-shaped, and O-shaped random distribution
environments, respectively, with time complexity somewhat increased.

Keywords: Internet of Things; DV-Hop; multi-communication radius; distance-weighted; grey wolf
algorithm; levy flight strategy

1. Introduction

IoT refers to a network that connects any item to the Internet through information
sensing devices, under agreed protocols, for autonomous information exchange, and
provides useful information for people to achieve intelligent identification, positioning,
tracking, monitoring, and management of things [1,2]. IoT is considered the world’s next
wave of information technology and new economic engine, which will have an immensely
significant impact on the world economy, politics, culture, military, and society. IoT provides
the potential for the development and design of a large number of applications. Currently,
only a few applications have been promoted in our production and daily life. At present,
most applications only have relatively primitive intelligence, but in the future, there will
be many applications based on the IoT to improve our quality of life and production
environment. The intelligent objects in these applications can communicate with each
other, perceive information from the surrounding environment, and be deployed in various
environments, including transportation and logistics, healthcare, production and life, and
personal social media [3-6], as shown in Figure 1.

There are various aspects of [oT technology that are worth studying, and node local-
ization is one of them. Accurate effective node positioning is the foundation for providing
various monitoring location information services [7]. In addition, location information

Electronics 2023, 12, 3220. https://doi.org/10.3390/ electronics12153220

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics12153220
https://doi.org/10.3390/electronics12153220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics12153220
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12153220?type=check_update&version=2

Electronics 2023, 12, 3220

2 0f23

can also improve the efficiency of routing in the network and achieve network topology
self-configuration [8,9]. Figure 2 shows the importance of localization in many applications.
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Figure 1. Application of IoT.

o

Y

; Data
Drone investigation FE
@
= Smart offic g ¢ w—,
. Drone investigation
- i Online officer
= : Online fire truck . « .. ==

Wireless technologies [+ X

Wi-fidG.5G Intenet -

* S - g .-.?. Smart ambulance &ﬂ
Online firefighter

.,9'% Ready to call

Q
k_ Smart car

Pedestrian with loT

Fire detection o aq

Online officer Traffic accident

Mine disarter -
Figure 2. Localization in Various Applications.

According to Figure 2, a key aspect in IoT applications is determining the true location
of devices. GPS determines the position of nodes mainly by using GPS receivers installed
on the nodes to receive signals from multiple satellites, but this method is too expensive,
bulky, and feasible. Therefore, many researchers adopt positioning methods that use known
nodes (anchor nodes) to take stock of the place of unknown nodes. How to estimate the
coordinates of unknown nodes through efficient and low-cost positioning algorithms has
become a research focus. Su discussed various underwater localization algorithms [10].
Ullah proposed an EKF-based localization algorithm by edge computing, and a mobile
robot is used to update its location concerning landmarks [11].

The most common localization classification method is chopped into ranging and
ranging-free localization algorithms [12]. The former uses external hardware devices to
obtain distance information between nodes, which has high localization accuracy. Common
algorithms include Time of Arrival [13,14], Time Difference of Arrival [15,16], Received
Signal Strength Intensity [17-19], Angle of Arrival [20,21], and so on. The latter determines
the position of unknown nodes through anchor nodes, which has relatively high positioning
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error but is more economical and energy-saving. There are commonly used algorithms
such as Proximate PITTest [22], centroid localization algorithm [23], DV-Hop [24-26], etc.
In applications that do not require high localization accuracy, ranging-free algorithms are
more popular.

As a typical representative of nonranging algorithms, the DV-Hop algorithm has
become a research hotspot in the engineering and academic fields. This algorithm is less
affected by the environment and has low hardware requirements, which makes it for WSN
with low cost, broadscale and simple node configuration [27]. Nevertheless, its localization
accuracy is low. To overcome the problem, a new improved DV-Hop called DV-Hop is put
forward in this paper. The contributions of this paper are:

(1) Use three communication radii to broadcast messages and decimate the hops to lessen
errors created by varying hop lengths. Calculate the distance between nodes within
onehop using the virtual intersecting circle geometry method. Then, a jump difference
correction coefficient is introduced to further correct the minimum number of hops;

(2) ADPH of anchor node is calculated by using the square criterion to minimize various
errors and introduce a distance weighting factor to cut down the bearing of broken
lines on jump distance, which jointly correct nodes of ADPH.

(3) Introducing a set of good points to improve the uniformity of the initial population
of the GWO, introducing a flight strategy to ameliorate the convergence and exclude
local optima of the GWO and using the improved GWO to evolve the coordinate
positions of unknown nodes to improve the accuracy of place.

The rest of this paper is structured as follows. Section 2 briefs the related research of
the localization algorithms. In Section 3, the localization procedure of DV-Hop and error
analysis are detailed. TWGDV-Hop is presented in Section 4 and simulation results are
discussed and localization performances are deliberated in Section 5. Finally, Section 6
presents conclusions and future research.

2. Related Research

Since its introduction, DV-Hop has been improved in many literatures. Generally,
node localization consists of three steps: the first is improving the hops, the second is
distance estimation and the third is coordinate estimation. When using these three steps
to determine the coordinate of unknown nodes, error is inevitable, and the smaller the
error, the higher the location accuracy. Recently, scholars improved the hops and distance
estimation or used nature-inspired methods to optimize coordinate estimation to achieve a
certain degree of accuracy improvement.

2.1. Improved Hops and Distance Estimation

Zhang et al. [28] proposed a beacon filtering-based localization algorithm that com-
bines DV-Hop and multioutput support vector regression MSVR. The algorithm combines
received signal strength indicator (RSSI), MSVR, and weighted least squares (WLS) to
estimate unknown node coordinates. Gao et al. [29] designed a modified localization algo-
rithm that increases hops by introducing communication distance, calculates the optimal
hop distance by using the weighted average of anchor nodes and the minimum mean
square error criterion (MMSE), and estimates node place by adopting WLS. Xue et al. [30]
proffered a modified DV-Hop, which refines hops and emends distance. The minimum
hops is emended by ushering RSSI, and ADPH is amended by the weighted ADPH error
and estimated distance inaccuracy. Shikai [31] proffered a modified DV-Hop that uses the
disparity between the genuine distance and evaluated the distance between beacon nodes
in WSN to determine the corrected ADPH of beacon nodes and adopts two-dimensional
hyperbolic functions to predict the place of unknown nodes. Hadir [32] proffered four
new improved DV-Hops. MSE is employed to improve the jumping distance of anchor
nodes, the two-dimensional hyperbola is employed to calculate the coordinates of unknown
nodes, and particle swarm optimization (PSO) is employed to optimize the coordinates of
unknown nodes. Jia et al. [33] proffered a novel localization algorithm in view of moving
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anchor nodes and modifying hops. ADPH between the three closest anchor nodes to
the unknown node is employed as the ADPH for the unknown node, and the position
of different unknown nodes is calculated using multiple moving anchor nodes and their
average value is the position of the unknown node. Lin et al. [34] proffered a distributed
iterative refinement in view of correction vectors, which utilizes the fake stadiometry range
and positioning range between nodes and their neighbors to construct a position-adjusted
vector and a straightforward iterative hunt algorithm is used to figure out the minimum
value of the sum of squares of the differences between these two ranges of the adjusted
vector. Liouane et al. [35] proffered an improved DV-Hop algorithm that uses least squares
localization methods and statistical filtering optimization strategies to reduce localization
errors. Wan et al. [36] proffered a WLS loop DV-Hop combining the idea of optimal weight
function and guideline picked anchors. Messous et al. [37] proffered a novel DV-Hop that
used RSSI and polynomial approximation to gauge the space between unknown nodes and
anchors and uses recursive calculations in the process of localization.

2.2. Use Nature-Inspired Methods to Optimize Coordinate Estimation

Huang et al. [38] proffered an advanced DV-Hop, which advances the weighted pro-
cessing of anchor node’s jump distance by introducing an ADPH error Q-Tcd and uses
differential evolution (DE) to optimize the positioning results of unknown nodes. Liu
et al. [39] proffered the HDCDV-Hop algorithm, which amended the evaluated distance
between unknown nodes and various anchor nodes in view of fractional hops and an-
chor node coordinates and adopted an amended DE to obtain the evaluated position of
unknown nodes. Shi et al. [40] provided an improved DV-Hop, which uses revised PSO
and simulated an annealing hybrid algorithm to boost the positioning accuracy of the
initial place of unknown nodes. Chen et al. [41] proffered CWDV-Hop, which calculates
ADPH by ushering distance weighting factor and ADPH of single node. The position of
unknown nodes is attained by using a two-dimensional hyperbolic format and optimized
by using chicken swarm optimization algorithm (CSO). Cao et al. [42] proffered DANSIDV-
Hop, which locates the dynamic anchor node set (DANS) based on binary particle swarm
optimization (BPSO) and further optimizes the unknown node place using continuous
PSO. Huang et al. [43] proffered MA*-3DV- Hop, which optimizes the hops values of nodes
and corrects the error of the ADPH. Yu et al. [44] proffered a novel DV-Hop, which uses a
correction factor to correct hops, selects ADPH of unknown nodes based on the weight of
each anchor node and calculates node coordinates using the cuckoo bird search algorithm.
Sun et al. [45] proffered GDV-Hop that optimizes the place of unknown nodes by adopting
modified GWO with adaptive strategies.

From the above analysis, all modified algorithms are based on the three processes of
DV-Hop, but there are still certain defects and accuracy needs to be improved. This paper
proposed a novel location algorithm based on DV-Hop and optimized GWO to improve the
location accuracy of unknown nodes in WSN, to meet the needs of applications.

3. DV-Hop
3.1. The Process of DV-Hop

The process of DV-Hop is divided into three stages [24].

Step 1: Each anchor node spreads a group to the network with flood normal. All nodes
acquire the minimum hops in this step.

Step 2: Calculate the ADPH for every anchor node by Equation (1).

HopS; = Ei#j \/<Xi =)+ (v~ Yj)Z/Zi#j Hij M

where (x;, ¥;),(x;,y;) are the coordinates of nodes i,j. Hjj is the minimum hops between
the two nodes.

Then, spread HopS; to the network.

Step 3: Estimate the coordinate of unknown nodes.
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The unknown node only receives HopS from the closest anchor node and calculates
its distance between it and anchor nodes. For example, unknown node N first receives
HopS;, and the range between it and i is:

D, = Hops; x Hy; @)
Use the maximum likelihood method to list the equations, as shown in Equation (3):

(x=x1)°+ (y — y1)* = D2

(x—x2)* + (y—'.vz)z = D)? 3

(x — Xn)2 + (v _yn)z =D,?

where D1, D5, - - -, Dy, represent the estimated distance between N and each anchor node.
The matrix expression of Equation (4) is: AX = D, where

(xl _xn) (]/1 _]/n) xlz_xn2+y12 _]/n2+Dn2_D12
e (x2—xn) (y2—yn) X_[x} b X% — X2 + 2% — yn® + Dn® — D2
B : : ol :
(x2—xn) (Y2 —yn) Xn—12 = Xn® + Yu_12 — Yn> + Dn® — Dyy_1?

X = (ATA) ~'ATD can be obtained by using the least squares method.

3.2. Analyze Positioning Error of DV-Hop

The DV-Hop estimates the position of the unknown node by multiplying minimum
hops between each node by ADPH of the anchor node through broadcast grouping of
anchor nodes in the network. The error mainly comes from three aspects.

3.2.1. Hops Error

When calculating the hops, the DV-Hop counts all neighboring nodes in the transmis-
sion range of the anchor node as one hop. As represented in Figure 3, let nodes B, C and D
be one hop nodes in communication range of node A. Node E is outside communication
range of A and can receive place information of anchor node forwarded by node D. There-
fore, hops of node E are two. As shown in Figure 3, the different distance of nodes B and A,
Cand A, D, and A are relatively large, while the distance between E and A, and D and A is
similar, but the hops are not the same. In this case, using traditional DV-Hop positioning
algorithms will cause significant errors.

Figure 3. Hops Error Analysis.

3.2.2. Error of ADPH

The localization accuracy of the DV-Hop mainly rests with whether ADPH is reasonable.
In the case of multiple hops, let the hops between nodes B and A be four, and the line
distance between B and A is approximated distance of the DV-Hop algorithm. It can be
intuitively made out that there is a large deviation from the actual distance shown by
the dashed line, as shown in Figure 4. Therefore, as hops increase, there is a significant
localization error in areas with low node density.
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Figure 4. ADPH Error.

3.2.3. Error of Coordinate Estimation

Step three inevitably exhibits errors in step 2, which adds up when extracting the coor-
dinate equation, begetting significant errors between localization results and the real place.

4. The TWGDV-Hop Algorithm
4.1. Correct Minimum Hops

When estimating hops between nodes by using the DV-Hop, all neighboring nodes in
the communication region are considered as onehop. As shown in Figure 3 of Section 2.2
above, B, C and D are onehop nodes to A, yet their homologous true distances are distinct.
If these nodes are dealt in the light of DV-Hop, it will result in significant positioning errors.
To address such situations, first improve hops of nodes in the communication range of
anchor nodes.

Broadcast messages by using anchor nodes with three different communication radii:
R/3,2R/3, and R and hops recorded as 1/3,2/3 and 1. Divide the nodes in the region into a
set of three regions, and the hops of unknown nodes are also real-coded accordingly. When
the region is chopped up into three subareas in light of R/3, 2R/3, and R, the unknown
nodes are marked as virtual circles with R/3. As shown in Figure 5, the nodes Ny, N, are
unknown nodes within the region and A is an anchor node. The cross zones between the
virtual circle of unknown nodes and the anchor node are denoted as S11(1/3H), S12(1/3H),
$21(2/3H), S»(2/3H), S31(H), and S3(H), where H is the hops.

Figure 5. Regional Calculation Model.

Given the space between the node and anchor node, the zone of the intersecting
space can be calculated. Assuming space between the node and the anchor node is
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Di(i=1,2,---,N), where N is the number of anchor nodes, then adopting geometric
Equations (4)—(6) to calculate the area of each intersecting domain [44].

D +R2+(1/9R)?
Stii/3H) = Rzarccos(Ti(R))

2 R
+(1/9R)2arcc05% 4)

—%\/4DF(1/9R)2 _ (D2~ R2 4 (1/9R)?)’

D2+R?+(1/3R)>
S2i(2/3H) = Rzarccos(Ti%))

2 _ap3
—=Sii1yan) + (1 /3R)2arccos%£1{m 5)

—%\/4Di2(1/3R)2 — (D2 - R2 + (1/3R)?)*

2 2 2
Ssir) = mR? — R2arccos Pt FQ/IRT)

+(1 /3R)2arccos%§’km (6)

—%\/4Di2(1/3R)2 — (D2 - R2+ (1/3R)*)

Assuming that nodes are unevenly arranged in an area with a total number of nodes
M and area S, the nodes in each subarea are denoted as M;(1 /311), Mj(2/31), and M.
Assume gli(l /3H)s §2[(2 /3H), and §31~( 1) are the estimated areas of each region, calculated as
shown in Equations (7)—(9).

The space between node and anchor node can be gained adopting the estimated area
value. After that, a hop difference correction coefficient is introduced to correct the hops of
nodes. Define the ratio of true distance D;; between nodes to the communication radius as
the relative optimal hops.

BH;; = D;;j/R @)

Contrast distinction between estimated hops H;; and BH;j, and define the deviation
coefficient 7;; using Equation (8).

vij = (Hij — BH;j)/ H;j ®)

7ij can mirror the distinction between H;; and BH;; between nodes that communicate
with each other. The larger v;; is, the greater the deviation between the two. Under the
condition of a constant communication radius, H;; will be greater than or equal to BH;;. For
such situations, a difference correction coefficient 7;; is defined by using Equation (9) to
optimize hops and reduce the accumulation of errors.
nij=1-=" )
By using Equation (10), the modified hops between nodes can be obtained.

Hj; = n;;Hjj (10)

The corrected hops are closer to the relative optimal hops, and the error in hops will
be smaller.

4.2. Correct the ADPH of Nodes

The original DV-Hop algorithm adopted unbiased estimation [46] to compute ADPH.
The fitness function is as follows:

. 1
fzt = mZZ#](Dl] — HOpSi X HZ]) (11)
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If fit = 0, is computed as:

where H;; is the hops between nodes i and j, and both have i # j, D;; is distance between i
and j. However, this approach cannot accommodate that the error is randomly distributed
and positive and negative phases, which leads to the minimization of global error but not
the minimization of all errors. Therefore, the square error criterion is adopted in this paper
to minimize the overall error. The fitness function is:

. 1 2
fit = mE#(Dﬁ — Hop$S; x Hyj) (13)
Take the partial derivative of HopS for fit and take it as zero to obtain HopS!.

Lizj DijHij

HopS/ = 5
Lizj Hij

(14)

However, when computing ADPH of anchor nodes, it does not think about the distance
of the broken line is the notional distance, as represented in Figure 4, which clearly has a
significant error compared to the true distance shown by the dashed line. Therefore, this
article refers to reference [36] and introduces a distance weighting factor to further modify
to reduce impact of the line distance on ADPH.

According to Equation (1), we can infer:

§ (xi—x,)*+(yi—y;)°
HopS; == v Hj;

_ 7 ' — Di+Dipt++Djy
Y Hjj = Huy+Hp+-+Hum

i#]

H, D H, D H, D (15)
_ _Ha Diy 2 Dip 4 ... iM iM
— L Hjj X Hy + Y. Hjj X Hy + + Y Hj X Him

- # i
= it X gy T P2 X g+ Pim X

M H. D, M
= ¥ (v < 7)) = L (¢ x HopS;;)

= i ij =

=17 j=1

where M is the number of beacon nodes. ¢;; is denoted as the hop-weighted factor.

As shown in Figure 6, Hops between anchor node A and B are Hp, ¢;; increases as it
increases. The distance between the two nodes has curved, changing from a direct line to a
polyline, resulting in a significant error from the true distance. To reduce the impact of this
error on ADPH, a distance weighting factor is introduced. Transform Equation (14) into
Equation (15):

]
HopSi" = L. Hij
i#]
L. Dij
_i# ~ _ Din+Dpt-+Diy
L Hij = Ha+Hp+-+Him
i#j
_ _Di Dy Di Dp Diym Dim (16)
_ZDUX ilJrEDinHiz+ T LDy X Hu
i b z#jD Di#/
— i Zi2 4 L5 iM
=0i1 % Hi +0ip % 2 + dim X Hipp
= ¥ (2 % Diy = 5 (5 x Hops
=X (_Z_Dz] X HT]) = 2 ( ij X HHop z])
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d;j is denoted as the distance weighting factor (DWF). From the figure, it can be seen
that ;; is not affected by the increase in Hp, which implies the DWF can diminish influence
of twisted paths on ADPH.

To avoid that a single ADPH cannot reflect the ADPH of the entire network situation
well and to diminish error accumulation brought by inaccurate data, ADPH computed
by adopting the square error criterion and corrected by introducing a distance weighting
factor will be equalized twice to obtain the corrected one.

(17)

X o
AVGHopS; = HopS,; —;HopSl

Using Equation (17) to obtain the corrected ADPH can be closer to tangible ADPH in
the whole network, further reducing the influence of hop distance error accumulation and
improving positioning accuracy.

4.3. Optimization of GWO
4.3.1. Standard GWO

The GWO is a biomimetic population algorithm for optimization proffered by Aus-
tralian researcher Mirjalili et al. [47]. It has preponderances of strong convergence, minor
parameters and being likely to be implemented, which makes it a research hot spot in
localization algorithms in recent years.

Grey wolves belong to the canine family of social animals. They strictly adhere to
social hierarchical dominance at the peak of the food chain, as shown in Figure 7.

Wolf ,B

Wolf  §

Wolf @

Figure 7. Gray wolf hierarchy diagram.

The grey wolf with the highest social level is called &, which has the highest ruling
status and absolute dominance over other wolves. The second- and third-ranked gray
wolves in a social hierarchy are called B wolf and J wolf. The lowest-level wolf in society is
called w wolf, which needs to obey the other levels of wolves with the role of preventing
self-killing within wolf packs. The stages of GWO are [47]:
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@)

Social Hierarchy. Tag the three wolves with the best fitness as « wolf, g wolf, and §
wolf when designing the grey wolf algorithm. The remaining gray wolves are called
w wolf. GWO optimization is completed by the process of iteratively updating the
best three solutions «, § and 4.

Encircling prey. When gray wolf packs search for prey, they gradually form a circle to
surround the quarry target. The mathematical pattern of the deed is:

X(t+1)=Xp(t)—AxD

where t and t + 1 express two consecutive iterations, * is the Hadamard product
operator, X}, is the location of optimization objective; and X; represents the positioning
vector of the wolf at this time. A and C are synergistic coefficient vector values; and
D represents the distance between gray wolves. The diminished range between the
wolves and their quarry count upon vectors A and C. They are computed as below:

A=2axr—a

C= 27’2 (19)

From the beginning to the end of the iteration, A lessens linearly from two to zero; B

and r, are stochastic vectors in 0~1.

®)

Venery. Grey wolves have the talent to distinguish potential target localization and
the search process is mainly led by «, 3 and & wolf. However, due to the unknown
characteristics of the solution space, the wolf pack cannot determine the perfect
positioning of the optimal target. To better simulate the chasing deed of gray wolves,
it is presumed that «, 3 and & have good discriminative target localization talents,
which are retained during each iteration. Then, update the place of the w wolf. The
mathematical model for this act is as below:

Dy = |Cp*Xalt) — X(t)]
Dg = [CoxXg(t)—X(t)| (20)
D; = |CaxXs(t) — X(t)]

X]IXafAl*Du
Xz :Xﬁ—Az*Dﬁ (21)
X3:X(5—A3*D(5

X(t4+1) = %(x1 X+ X3) 22)

where X,, Xﬁ and X; are the azimuth vectors of «, § and J in the gray wolf pack. X
stands for the place of the gray wolf. Dy, Dg and Ds and C, respectively, represent
the distances between «, B, and J and the current gray wolf. When |A| > 1, members
of the gray wolf pack disperse in various areas and search for targets. When |A| < 1,
members of the gray wolf pack will concentrate on searching for prey targets in a
specific area.

From Figure 8, we can make out that the final place of the candidate wolf is located

within the stochastic circle positions defined by «, § and . w wolf is behind the general
orientation of the prey target predicted by the three higher-order gray wolves «, § and ¢ at
this time, which is the position of any new higher-order gray wolf around the prey.

4)

©)

Attacking target. When creating the model, according to step 2, a decrease will change
A, where A is a random vector in [—a,a]. When A is on interval [—a, 4], the place
between the gray wolf and the target is the next moment of the agent search.

Look for prey. Mainly relying on «, § and J three high-order gray wolves to search for
prey. They disperse to find the target direction of the prey and then focus on attacking.
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In the decentralized model, when |A| > 1, the agent search is kept away from the
prey, which allows the algorithm to perform global optimization.

|
\
\

~ Wolf © position

@ vor « @ worr p () Wolf 5

Figure 8. Diagram of choose wolf movement hen hunting.

GWO is a new bionic collective smarts algorithm that simulates the gray wolf group
hunting heuristic with the advantage of a high convergence performance and being easy to
implement, which means it can be used for WSN node location to reduce algorithm error.
But like many bionic algorithms, it has problems, for instance, immature convergence and
frail global search faculty, which lead to inferior accuracy of the final solution.

4.3.2. The Improved GWO
(1) Initialize the population of the best point set

The quality of the initial population distribution immediately affects the convergence
and level of GWO. An initial population with good distribution characteristics can make
the majorization performance of it better. In the GWO algorithm, the initialization of the
population adopts a random distribution, which cannot fully cover the space of the solution,
so it is difficult to traverse various possible situations of the solution, which can affect
the quality of the final solution due to premature convergence. However, this article uses
the set of good points proposed by Hua et al. for population initialization to avoid this
problem [48].

Presuming a population size of 100, Figures 9 and 10 are populations initialized using
stochastic distribution and a set of good points, respectively. We can find Figure 10 is
evener, which sufficiently swathes the understanding space and increases the diversity of
the population, so the algorithm will have better ergodicity. In theory, it has been proven
that the weighted sum of n good points yield smaller errors than any other n points.

(2) Levy Flight Strategy

Because GWO has the characteristics of premature convergence and low global opti-

mization ability, the Levy flight algorithm with the random walk performance is integrated

into GWO to upgrade the global optimization ability of the GWO and enrich the population
discrepancy of GWO in this paper.
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Levy flight is a special stochastically wander strategy [49] that adopts the random walk
method and focuses on short distance search and occasionally conducts long distance search,
which is shown in Figure 11. Using this strategy in swarm intelligence algorithms can make
individuals widely distributed in the search space when searching for the optimal solution
in a large range, increase multiplicity of the population, boost the whole optimization
capacity and avert sinking into the localized optimal solution prematurely.

Levy flight strategy follows the Levy distribution, usually represented by a power-law
distribution: L(S) ~|S|~17F(0 < B < 2), where S is step, and L(S) is the probability of
moving step S. Due to the complexity of Levy distribution, the Mantegna algorithm is
usually used to simulate it [49]:

0

where 0 and ¢ follow a normal distribution [49]:

0~ N(o, 02), 9 ~N(0,1) (24)

: 1/B
o {Z(T(l + B)sin(7tP /2) } 25)
P

B-1/21[(1+8)/2]
where 7 is a standard gamma function and f usually takes a value of 1.5.
Although this strategy boosts the global optimization ability of the algorithm, if all
individuals use this strategy to update positions in each iteration, the amount of calculation
will be greatly increased. Therefore, when the fitness value does not change significantly
for consecutive limit times (that is, the change value is less than 0.0001), we determine
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that the algorithm is trapped in a local optimum, and then use Levy flight Equation (26) to
perform a flight optimization.

0
X =Xt 4 oL(S) = X! + ¢ x o7F (26)
where ¢ is a step scaling factor, as shown in the Equation (27).

where X; and X; are arbitrarily different solutions.

120
100+
80|
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20F

_Ju il L L 1 1 4
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Figure 11. Levy Flight Strategy Simulation.

4.3.3. The Improved GWO Correct Unknown Node Positions

The third stage of this algorithm is identical to DV-Hop. Use the maximum likelihood
estimation algorithm to determine the coordinate position of the desired node. Because
of the limitations of this method, it cannot effectively improve the calculation accuracy.
Therefore, TWGDV-Hop adds a fourth stage, which uses the improved GWO to optimize
the position of the unknown nodes obtained. The steps are:

Step 1: Initialize three high-order gray wolves «, 3 and 6. Set the relevant parameters
including population size N, maximum number of iterations Tmax and continuous number
of iterations /imit. Initialize the grey wolf population using the set of good points from the
previous section {X; : X1, Xp, - - - ,Xn} and make the current f = 0.

Step 2: Calculate the fitness values of all gray wolves according to Equation (28) and
sort them. Set the top three ranking results as «, 3 and 9, respectively.

. 1 «—nN
fit = ﬁzz':l

where (x,y) and (x;,y;) are the coordinates of the unknown node and the anchor node,
respectively. D; is the actual distance between the unknown node and the anchor node.

V=12 + (y—y)? ~ D 28)
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Step 3: Use Equations (19)—(22) to update the space of the gray wolf population and
update the coefficient vector A, C.

Step 4: Judge whether the algorithm is trapped in the local optimum. If it iterates limit
times in succession, the fitness value does not change significantly, and Levy flight strategy
is ushered in the gray wolf population.

Step 5: Determine whether the algorithm has clocked up the stop condition. If the
stop condition is clocked up, the output position of & wolf is the final improved place of
the unknown node.

5. Simulation Experiments and Result Analysis
5.1. Simulation Experiment Settings

For verifying the performance of TWGDV-Hop proffered in this paper, simulations
were conducted in Matlab2014a to reckon and study their positioning errors and accu-
racy. Through simulation, the validity of our proffered algorithm was compared with
DV-Hop, WDV-Hop, CWDV-Hop proposed in reference [41], HWDV-HopPSO proposed in
reference [32] and GDV-Hop proposed in reference [45].

To diminish the influence of stochastic errors on the results in the tentative experiment,
the final result is the mean of 100 tentative experiments to evaluate the localization accuracy
and localization error of every way. Three distinct network topologies were chosen, as
shown in Figure 12. Namely, square random, O-shaped, and X-shaped. Square random
is one of the most used topologies in WSN, in which nodes are stochastically distributed
in square regions. The O-shaped topology is an irregular network topology, while the
X-shaped topology is also based on the random deployment of nodes in the four sides
empty area. For each topology, the system parameters are set as shown in Table 1. The
network deployment area is a two-dimensional plane of 500 m x 500 m. All nodes
with the same structure and communication radius are randomly arranged to form a
self-forming network.

500 T 7 = 500 ¢
. 4 o + amchor node - + anchor node 0.
® Tou - J L *  unks ode A
Rt - © ot e L 50 “ v B ‘2 =
. - d:
* LS » V4
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- .
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(c) O-shaped random network

Figure 12. Nodes deployment according to network topologies.



Electronics 2023, 12, 3220 15 of 23
Table 1. Simulation Parameter Settings.
Parameter Value
Network
Network topology Square random, O-shaped, X-shaped
Total runs 100
Length of area 500 x 500
Total number of nodes 300, 350, 400, 450, 500
Number of anchor nodes 30, 35, 40, 45, 50, 55, 60
Communication range R 60, 70, 80, 90, 100
GWO
Number of iterations 100
Size of wolfs 80
Limit 70
a 2—0
rl, r2 Rand [0, 1]

We change parameters based on three network topologies, such as the number of
anchor nodes, the total number of sensor nodes and the communication radius of nodes, to
explore the performance of algorithms under distinct network topologies. The Localization
Accuracy (LA) is adopted to evaluate the function of the algorithm. It can be expressed [32]
as follows:

N ()2 (v - i)
o N xR

LA

x 100% (29)

where (xi,y!) is the actual coordinates of the unknown node. (xi,y.) are the estimated
coordinates. N is the number of unknown nodes.

The localization error (LE) reflects the deviation between the true position of unknown
nodes and the estimated coordinates. The equation is [30]:

LE = /(3] — 20)2 + (v} - yi)? 0)

5.2. Analysis of Simulation Results
(1) The impact of the number of anchor nodes

The total number of nodes is fixed at 300. The communication radius is 60 m and the
number of anchor nodes have grown from 30 to 60. The simulation results are manifested
in Figures 13a, 14a and 15a.

Typically, the trend of LA of most localization algorithms diminishes little by little
along with the number of anchors added in the three networks. The LA of DV-Hop, WDV-
Hop, CWDV-Hop, HWDV-HopPSO, GDV-Hop, and TWGDV-Hop is approximately 0.52R,
0.42R, 0.27R, 0.32R, 0.34R, and 0.25R, respectively. Compared with other algorithms, the
proposed TWGDV-Hop achieves a lower localization error. The localization accuracy of
TWGDV-Hop algorithm has been improved by approximately 51.6%, 39%, 7%, 23%, and
24%, respectively. The localization accuracy of DV-Hop, WDV-Hop, CWDV-Hop, HWDV-
HopPSO, GDV-Hop and TWGDV-Hop is approximately 1.01R, 0.62R, 0.61R, 0.72R, 0.62R and
0.59R, respectively, in the X-shaped network, and the LA of TWGDV-Hop has been improved
by approximately 42.2%, 9.4%, 4.7%, 18.9% and 5.8%, respectively. The localization accuracy
of DV-Hop, WDV-Hop, CWDV-Hop, HWDV-Hop, GV-Hop and TWGDV-Hop is approximately
1.15R, 1.11R, 0.39R, 0.62R, 0.60R and 0.36R, respectively, in the O-shaped network, and the
localization accuracy of TWGDV-Hop has been improved by approximately 68.6%, 67.6%,
6.9%, 41.9% and 40.2%, respectively.
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(2) The Influence of the total number of nodes

The fixed communication radius is 60 m, the proportion of anchor nodes is 10%,
and the total number of nodes has been increased from 300 to 500, which are shown in
Figures 13b, 14b and 15b. When the density altitude of the network increases, the perfor-
mance is greatly improved because the network has higher connectivity as many master
nodes are deployed. The LA of DV-Hop, WDV-Hop, CWDV-Hop, HWDV-HopPSO, GDV-Hop
and TWGDV-Hop is approximately 0.47R, 0.36R, 0.23R, 0.28R, 0.25R, and 0.21R, respectively,
in a square network. The LA of TWGDV-Hop has been raised by 53.4%, 40.1%, 33.9%, 7.1%,
23.4%, and 14.2%, respectively. The LA of DV-Hop, WDV-Hop, CWDV-Hop, HWDV-HopPSO,
GDV-Hop and TWGDYV -Hop is approximately 1.01R, 0.66R, 0.63R, 0.72R, 0.64R, and 0.61R,
respectively, in the X-shaped network. The LA of the TWGDV-Hop has been boosted by
39.7%, 8.4%, 3.1%, 15.2%, and 4.7%., respectively. It increased by 70.1%, 69.5%, 10%, 48%,
and 47.7%, respectively, in the O-shaped network. Obviously, TWGDV-Hop surpasses other
algorithms and exhibits better positioning accuracy.

(3) The impact of the communication radius

The whole number of nodes is fixed at 300. The proportion of anchor nodes is 10%
and the communication radius has been increased from 60 m to 100 m. The results are
presented in Figures 13c, 14c and 15c. The results show that as the network becomes more
connected, the localization errors of the three networks decrease with communication
range growing. In the square network, compared with the other algorithms, the LA of
TWGDV-Hop has been improved by 50.3%, 36.1%, 7.2%, 25.8% and 15.9%, respectively. In
the X-shaped random network, the LA has been improved by 38.9%, 4.3%, 2.4%, 9.3% and
5.1%, respectively. In the O-shaped network, the LA has been improved by 61.9%, 59.4%,
8.5%, 41.7%, and 28.4%, respectively.

We can make out that TWGDV-Hop method has better LA than other methods in
isotropic and anisotropic networks from the simulation results because the improved
algorithm uses a hop difference correction coefficient to make the minimum hos between
nodes more accurate. Introducing a distance-weighting factor to modify the ADPH of
anchor nodes effectively alleviates the impact of curve paths on the ADPH and adopting
an improved GWO makes the coordinate positions of unknown nodes more accurate.

(4) Localization error analysis

The localization errors of all above algorithms are presented in Tables 2-4. Nodes
are stochastically laid out in an area of 500 x 500. There are 30 anchor nodes and a
communication radius of 60 m for nodes. We have compared our improved algorithm with
other algorithms in minimum, maximum, and average localization errors.

Table 2. The minimum, maximum and average localization errors in square random network.

Algorithm Min Max Mean
DV-Hop 1.78 92.31 35.78
WDV-Hop 0.49 88.08 23.17
CWDV-Hop 0.51 88.94 16.23
HWDV-HopPSO 0.8 77.73 24.48
GDV-Hop 0.83 84.01 23.18
TWGDV-Hop 0.49 82.21 15.79

It can be made out that the LE of TWGDV-Hop is smaller than that of other localization
algorithms. This is because the hop deviation factor is introduced in the TWGDV-Hop
algorithm to cause hops between nodes to be more accurate and the distance-weighting
method introduced greatly reduces the impact of curved paths on ADPH. In addition, the
improved GWO applied to TWGDV-Hop also effectively optimized the coordinate accuracy
of unknown nodes. Based on these three advantages, the proffered TWGDV-Hop has better
localization performance than the other five algorithms.
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Table 3. The minimum, maximum and average localization errors in X-shaped random network.

Algorithm Min Max Mean
DV-Hop 1.37 163.52 63.01
WDV-Hop 3.58 131.76 39.57
CWDV-Hop 0.82 71.62 39.01
HWDV-HopPSO 0.52 127.3 50.01
GDV-Hop 0.84 76.55 43.25
TWGDV-Hop 0.76 68.13 36.89

Table 4. The minimum, maximum and average localization errors in O-shaped random network.

Algorithm Min Max Mean
DV-Hop 7.42 139.26 61.02
WDV-Hop 2.01 130.31 53.65
CWDV-Hop 1.14 81.8 23.56
HWDV-HopPSO 1.4 85.63 36.98
GDV-Hop 1.54 103.58 29.92
TWGDV-Hop 1.09 77.8 22.54

(5) Time complexity analysis

In WSN, sensor nodes have limited computing power and energy, so the time com-
plexity of the algorithm should be considered. Hypothesizing that the total number of
sensor nodes in WSN is S, the number of anchor nodes is M, the maximum iterations for
CSO, PSO and GWO are Iy, I, and I3, respectively, and the population size is Py, P» and P,
respectively. DV-Hop, WDV-Hop, CWDV-Hop, HWDV-Hop, GDV-Hop and TWGDDV-Hop
algorithms all need to calculate the minimum hops matrix, so the time complexity is O(S?).
In step 2, DV-Hop and GDV-Hop use the same way to calculate ADPH of anchor nodes,
resulting in a time complexity of O(M?). Although other proposed algorithms, such as
WDV-Hop, HWDV-HopPSO, CWDV-Hop and TWGDV-Hop use different weighted tech-
niques, their time complexity is O(M?). In step three, although the six algorithms use
different methods to estimate the coordinate positions of unknown nodes, their time com-
plexity is still the same, all of which are O(M x (S — M)). In the final stage of optimizing
the location of unknown nodes, the time complexities of CWDV-Hop and HWDV-Hop are
O(L1 x Py x (S—M)) and O(I, x P, x (S — M)), respectively, while the time complexi-
ties of GDV-Hop and TWGDDV-Hop are O(I3 * P3 x (S — M)). Generate additional time
complexity O(I3 * P3) to compute the fitness function, and require O(I3x ) to update the
position of the gray wolf. Thus, the time complexity of TWGDV-Hop has somewhat grown
since the use of improved GWO to optimize the node positions in WSN. Sustained by cur-
rent high-performance data processing platforms, the somewhat grown time consumption
of the algorithm in this paper can be omitted, but it significantly improves localization
accuracy.

6. Conclusions

The location in WSN is a very important topic. To increase the localization accuracy
of DV-Hop, this paper proposed TWGDV-Hop. Considering the error caused by varying
hop lengths, three communication radius broadcast messages were adopted, and a hop
difference correction coefficient was introduced to further correct the minimum hops. In
light of the influence of distance on different anchor points, TGWDV-Hop adopts a square
quasi-measurement strategy to calculate ADPH of anchor nodes, and introduces distance
weighted hop distance to jointly correct ADPH. On this basis, an improved GWO is
adopted to reduce the error in estimating coordinates. Although the time complexity
during the optimization operation increases slightly, it is acceptable. The experimental
results display that TGWDV-Hop can minimize node positioning errors to the maximum
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extent. Expanding the proposed scheme to estimate the position of unknown 3D sensor
nodes is our future research direction.
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