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Abstract: Underwater target detection is widely used in various applications such as underwater
search and rescue, underwater environment monitoring, and marine resource surveying. However,
the complex underwater environment, including factors such as light changes and background noise,
poses a significant challenge to target detection. We propose an improved underwater target detection
algorithm based on YOLOv8n to overcome these problems. Our algorithm focuses on three aspects.
Firstly, we replace the original C2f module with Deformable Convnets v2 to enhance the adaptive
ability of the target region in the convolution check feature map and extract the target region’s features
more accurately. Secondly, we introduce SimAm, a non-parametric attention mechanism, which can
deduce and assign three-dimensional attention weights without adding network parameters. Lastly,
we optimize the loss function by replacing the CIoU loss function with the Wise-IoU loss function.
We named our new algorithm DSW-YOLOv8n, which is an acronym of Deformable Convnets v2,
SimAm, and Wise-IoU of the improved YOLOv8n(DSW-YOLOv8n). To conduct our experiments, we
created our own dataset of underwater target detection for experimentation. Meanwhile, we also
utilized the Pascal VOC dataset to evaluate our approach. The mAP@0.5 and mAP@0.5:0.95 of the
original YOLOv8n algorithm on underwater target detection were 88.6% and 51.8%, respectively,
and the DSW-YOLOv8n algorithm mAP@0.5 and mAP@0.5:0.95 can reach 91.8% and 55.9%. The
original YOLOv8n algorithm was 62.2% and 45.9% mAP@0.5 and mAP@0.5:0.95 on the Pascal VOC
dataset, respectively. The DSW-YOLOv8n algorithm mAP@0.5 and mAP@0.5:0.95 were 65.7% and
48.3%, respectively. The number of parameters of the model is reduced by about 6%. The above
experimental results prove the effectiveness of our method.

Keywords: underwater target detection; deformable convnets v2; SimAm; Wise-IoU

1. Introduction

The efficient use of computer vision technology to explore the unknown underwater
domain is one of the most active research fields for many researchers. Due to the dynamic
and changeable underwater visual environment, we must promote visual recognition
tracking and dynamic perception algorithms to deal with the complex challenges [1,2].
Effectively utilizing these resources can help prevent the overexploitation and destruction of
terrestrial resources. In underwater engineering applications and research exploration, an
efficient and accurate target detection and recognition algorithm is needed for underwater
unmanned vehicles or mobile devices [3,4]. Of course, the more robust target detection
algorithm can be applied not only to underwater target detection, but also to other scenarios,
including automatic driving and unmanned aerial vehicles [5,6].

However, the complex underwater environment can affect the detection results. Fac-
tors such as a lack of light due to weather conditions and changes in underwater brightness
caused by water depth increase the difficulty of underwater target detection [7,8]. Some
researchers have considered using artificial light sources to compensate for these challenges,
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but this approach may result in the presence of bright spots and worsen the scattering of
underwater suspended objects under certain conditions, which can have a negative impact.

Considering the complexity of the underwater environment, we need to develop a tar-
get detection algorithm suitable for underwater equipment which requires a high precision
and low computation as its advantages [9–11]. The YOLO series target detection algorithm
is known for achieving a good balance between detection accuracy and speed [12–15]. This
paper focuses on improving and enhancing the performance of the YOLOv8n algorithm by
making improvements in three aspects:

(1) To improve adaptability to object deformations and enable more precise convolu-
tional operations, we replace certain C2f modules in the YOLOv8n backbone feature
extraction network with deformable convolutional v2 modules.

(2) We introduce an attention mechanism (SimAm) to the network structure, which
does not introduce external parameters but assigns a 3D attention weight to the
feature map.

(3) Resolving a problem with the loss function in which discrepancies between the
direction of the prediction boxes and the ground truth bounding boxes may result in
oscillations in the position of the prediction box during training, slowing convergence
and lowering prediction accuracy. We suggest using the WIoU v3 loss function to
better improve the network structure in order to get around this.

2. Related Work
2.1. Objection Detection Algorithm

YOLOv8 can flexibly support a variety of computer vision tasks; especially in the
field of target detection, the YOLOv8 object detection model stands out as one of the
top-performing models. YOLOv8 was built upon the YOLOv5 model, introducing a new
network structure and incorporating the strengths of previous YOLO series algorithms and
other state-of-the-art design concepts in target detection algorithms [16]. While YOLOv8
still utilizes the DarkNet53 structure in its network architecture, certain parts of the structure
have been fine-tuned. For instance, the C3 module in the feature extraction network is
replaced by C2f with a residual connection, which includes two convolution cross-stage
partial bottlenecks. This modification allows for the fusion of advanced features and
contextual information, resulting in enhanced detection accuracy. Additionally, the model
structure of YOLOv8 sets different channel numbers for each version to enhance the model’s
robustness in handling various types of detection tasks. In the Head section, YOLOv8
continues the Anchor-free mechanism found in YOLOv6 [17], YOLOv7 [18], YOLOX [19],
and DAMO-YOLO [20]. This mechanism reduces the computational resources required
by the model and decreases the overall time consumption. YOLOv8 draws inspiration
from the design ideas of YOLOX, using Decoupled Head for decoupling, so the accuracy of
model detection is improved by about 1%. This design allows each branch to focus on the
current prediction task, thereby improving the performance of the model. The loss function
in YOLOv8 consists of two parts, sample matching and loss calculation. The loss function
includes category loss and regression loss, among which the regression loss includes two
parts: Distribution Focal Loss and CIoU loss [21].

Target detection algorithms can be categorized into one-stage and two-stage algo-
rithms. The one-stage algorithm, represented by Faster R-CNN [22], is known for its slower
processing speed, which makes it unsuitable for real-time target identification and detec-
tion. On the other hand, the two-stage algorithms, including the YOLO series and DETR
series, offer significant advantages, while the DETR [23] network model is large, difficult to
train, and exhibits a poor detection effect on small targets. To some extent, YOLO series
algorithms excel in underwater target detection. Currently, in the YOLO series of object
detection algorithms, some researchers do a lot of research work. Lou et al. [24] proposed a
new method of downsampling on the basis of YOLOv8, which better retains the feature
information of the context and improves the feature network to better combine shallow
information and deep information. Zhang et al. [25] proposed to introduce the global
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attention mechanism into the YOLOv5 model to strengthen the feature extraction ability
of the backbone network for key regions and introduce a multi-branch reparametrized
structure to improve the multi-scale feature fusion. Lei et al. [26] used Swin transform
as the backbone network of YOLOv5 and then improved the PAnet multi-scale feature
fusion method and confidence loss function, which effectively improved the object detec-
tion accuracy and the robustness of the model. In this paper, we improved the network
structure of YOLOv8n with Deformable Convnets v2, added a parameter-free attention
mechanism, and finally optimized the loss function. The DSW-YOLOv8n can be divided
into three parts: Backbone, Neck, and Detect. The Backbone consists of various convolu-
tional modules. The Neck includes upsampling and concatenation operations in addition
to the convolutional module. The network provides three prediction outputs for objects
of different sizes. Finally, the predicted results are used to calculate the loss. The network
structure of DSW-YOLOv8n is shown in Figure 1.
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2.2. Fusion of Deformable Convolutional Feature Extraction Network

Deformable Convolution v2 [27] is an improved version of Deformable Convolution
v1 [28], which further enhances and optimizes the previous method. In a common convolu-
tion module, fixed-size and shape convolution filters are used. However, during the feature
extraction process, there may be interference where the convolution kernel does not align
perfectly with the target region and includes excess background noise. In comparison, De-
formable Convolution v2 introduces additional offsets, allowing the convolution operations
to better align with the target region in the feature map. This enhancement in Deformable
Convolution v2 provides improved modeling capabilities in two complementary forms.
Firstly, it extends the use of deformable convolutional layers throughout the network. By
incorporating more convolutional layers with adaptive learning, Deformable Convolution
v2 can effectively control sampling across a wider range of feature levels. Secondly, an
adjustment mechanism is introduced which not only enables each sample to experience
learning shifts but also adaptively adjusts the learning target feature amplitude.
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Compared with traditional convolution modules, deformable convolution is superior
to traditional convolution in feature extraction accuracy. In the network structure of
YOLOv8n, we adjusted some nodes in the network structure and replaced C2f modules at
positions six and eight in the backbone network structure with Deformable Convnets V2
modules. The robustness of the model is effectively enhanced. The difference between the
common convolution module and deformable convolution v2 is shown in Figure 2.
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The calculation formula for the output of the feature map obtained by the common
convolution is shown in Equation (1). R represents the size of the convolution kernel, it also
represents the area where convolution operations can be performed on the feature map. p0
represents the position of the center point of the convolution kernel, while pn represents
the position of other pixel points relative to p0. w(pn) represents the weight value at the n
position, and x(p0 + pn) represents the pixel value at the n position.

y(p0) = ∑
pn∈R

w(pn)·x(p0 + pn) (1)

The calculation formula of Deformable Convnets v2 is shown in Equation (2). The
common convolution region R is fixed, the deformable convolution region changes as the
target changes so that K is a variable kernel size, p represents the position of the center point
of the convolution kernel, pk is the position of the position of other pixel points relative to
p. ∆pk and ∆mk in the formula represent the learnable offset and modulation range at the k
position. As ∆pk is a real number with an unconstrained range, we used ∆mk to limit it.
The range of ∆mk is [0, 1]. From p + pk + ∆pk we may obtain a decimal, in which case, a
bilinear interpolation will be used to change the number from a decimal to an integer. pn
and pk have the same property; they, respectively, represent the position of pixels in the
convolution region during their respective convolution operations.

y(p) =
k

∑
k=1

wk · x(p + pk + ∆pk) · ∆mk (2)

2.3. Simple and Efficient Parameter-Free Attention Mechanism

Attention mechanisms are widely applied in both computer vision and natural lan-
guage processing. In particular, high-resolution image processing tasks often face infor-
mation processing bottlenecks. Drawing inspiration from human perception processes,
researchers have been exploring selective visual attention models. We compare common
attention mechanisms with SimAm, which includes CBAM [29,30], SE [31], and ECA [32].
The better attention mechanism of SimAm improves model accuracy without adding extra
redundancy to the network. CBAM and SE increased by 9.23% and 9.6%, respectively, on
ResNet101 [33]. Even worse, ECA’s increase in the number of parameters is nearly three
times that of the model. The channel attention mechanism compresses global information
and learns from each channel dimension. It assigns different weights to different channels
using an incentive method. On the other hand, the spatial attention mechanism combines
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global information to process important parts, transforming various spatial data and auto-
matically selecting the more important area feature. Two attention mechanisms represent
the 1D or 2D attention mechanisms, respectively. Underwater target detection differs
from conventional target detection due to its susceptibility to illumination changes. One
contributing factor is the varying light intensity caused by different weather conditions and
time. Then, light transmission in the water will be affected by water absorption, reflection
and scattering, and serious attenuation, which will directly result in the underwater image
visible range being limited and blurred, with low contrast, color incongruity, background
noise, and other problems. In order to reduce the impact of the above situation, we added
the SimAm attention mechanism [34] to backbone’s layer 10. The parameter-free attention
mechanism is simple and efficient. Most of the operators are selected based on the energy
function; no additional adjustments to the internal network structure are required [35]. The
features with full 3D weights are shown in Figure 3.
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SimAm is inspired from neuroscience theory; the parameter-free attention mechanism
establishes the energy function in order to obtain the importance of each neuron. The
calculation formulate is shown in Equation (3).

et(wt, bt, y, xi) =
(
yt − t̂

)2
+

1
M− 1

M−1

∑
i=1

(
y0 − x̂i

)2 (3)

The linear transformations of t and xi are represented by t̂ = (ωtt + bt) and x̂i = ωtxi + bt,
respectively. Here, ωt and bt denote the weights and biases after transformation. To simplify
the formula, binary labels are used and regular terms are added to the equation. The energy
function is defined as shown in Equation (4).

et(wt, bt, y, xi) = 1
M−1

M−1
∑

i=1
(−1− (ωtxi + bt))

2

+(1− (wtt + bt))
2 + λw2

t

(4)

Theoretically, each channel has M energy functions where M = H × W. However,
iteratively solving this equation requires a lot of computational resources; there is a better
optimization of the computation with wt and bt, which is shown in Equation (5).

wt =
2(t− µt)

(t− µt)
2 + 2σ2

t + 2λ
, bt = −

1
2
(t + µt)wt (5)

The mean value µt and variance σ2
t of other neurons in the channel can be calculated

using the formulas µt = 1
M ∑M−1

i=1 xi and σ2
t = 1

M ∑M−1
i=1 (xi − µt)

2. The λ represents the
regularization parameter. The existing solution in formula (5) is obtained on a single
channel, so it is reasonable to assume that the pixels in the channel all follow the same
distribution. We can calculate the mean value and variance of all neurons and use it for all
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neurons on the channel. The method can reduce the computation amount well. Therefore,
the calculation formula of minimum energy function is shown in Equation (6).

emin =
4
(
σ̂2 + λ

)
(t− µ̂)2 + 2σ̂2 + 2λ

(6)

If the value of emin is lower, it means that the difference between neuron t and other
neurons is more obvious; it also means that it’s more important. The importance of
each neuron can be obtained by emin. Our approach treats each neuron individually and
integrates this linear separability into an end-to-end framework, as shown in Equation (7).

∼
X = sigmoid

(
1
E

)
� X (7)

The value of E is the energy function on each channel. Meanwhile, E groups are all emin

across channels and dimensions. Using the sigmoid activation function to prevent the value
of E from getting too large. SimAm can be flexibly and easily applied to other target object
algorithms, integrating it into the backbone network of YOLOv8n, effectively refining the
characteristics of the channel domain and spatial domain, thereby significantly improving
the accuracy of object detection without increasing the complexity and computing resources
of the network [36].

2.4. Loss Function with Dynamic Focusing Mechanism

The loss function is essential for improving the performance of the model. The re-
gion between the predicted and ground truth bounding boxes is not taken into account
by traditional loss functions, which only consider the overlap between them. If there is
no intersection between the predicted and ground truth bounding boxes, this constraint
becomes troublesome for small target identification because the loss function cannot be
discriminated. Because of this, it is unable to optimize the network model, which causes
variations in the evaluation results [37,38]. In the YOLOv8n network model, the Distri-
bution Focal Loss and CIoU loss functions are employed as the loss functions. The CIoU
loss function incorporates the loss in detection box scale and the loss in length and width
ratio, in addition to the DIoU loss function. These enhancements contribute to improved
accuracy in regression prediction. However, it is worth noting that the CIoU loss function
requires more computational resources during model training within the original YOLOv8n
network structure. Second, the datasets may contain low quality data samples, which may
contain other background noise, an uncoordinated ratio of length to width, and other
geometric factors which may further aggravate the negative impact of its training that
cannot eliminate the negative impact of geometric factors. So, we improved our model by
using Wise-IoU [39] to replace CIoU.

2.4.1. WIoU v1

Low quality datasets will inevitably have a negative impact on the model, which
usually comes from geometric factors such as distance and aspect ratio, etc. Therefore, we
used the WIoU v1 with two layers of attention based on the distance metric, as follows
Equations (8) and (9) [40].

LWIoUv1 = RWIoULIoU (8)

RWIoU = exp


((

x− xgt
)2

+
(
y− ygt

)2
)

(
W2

g + H2
g

)∗
 (9)

whereRWIoU∈ [1, e), which can significantly enlarge the LIoU of the anchor box. Wg and Hg
are the minimum width and height of the enclosing box. By separating Wg and Hg from the
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computed graph, gradients that hinder convergence can be prevented without introducing
new conditions such as aspect ratio. (The superscript * indicates this operation) [39].

2.4.2. WIoU v2

WIoU v2 borrows the design method of Focal Loss to construct a monotonic focusing
coefficient on the basis of WIoU v1. However, it also has another problem with the
introduction of this monotonic focusing coefficient, which will cause a gradient change
when the model is backpropagated. The gradient gain decreases with the decrease in
LIoU , which causes the model to take more time to converge at a later stage. Therefore,
we take the mean of LIoU as a normalization factor, which is a good way to speed up the
later convergence of the model, where LIoU acts as the exponential running average with
momentum [41].

LWIoUv2 =

(L∗IOU

LIoU

)γ

LWIoUv1 , γ > 0 (10)

2.4.3. WIoU v3

The quality of the anchor box is reflected by defining an outlier value. A high quality
anchor box has a smaller outlier value. Utilizing a higher quality anchor box to match
a smaller gradient gain can better focus the bounding box regression frame more on the
ordinary quality anchor box, and the small gradient gain can match the anchor frame with
large outliers, which can better reduce the large harmful gradient produced by low-quality
samples. Based on WIoU v1, a non-monotonic focusing coefficient β is constructed and the
gradient gain is highest when the value of the β is constant. Due to LIoU it is dynamic, so
the quality evaluation criteria of the anchor box is also dynamic, which allows WIoU v3 to
dynamically adjust the gradient gain distribution strategy.

LWIoUv3 =
β

δαβ−δ
LWIoUv1 (11)

β =
L∗IOU

LIoU
∈ [0,+∞) (12)

3. Experiment
3.1. Underwater Target Detection Dataset

Using the Pascal VOC dataset and a self-built dataset for underwater target detection,
we validate our methods in this experiment. The Target Recognition Group of China Un-
derwater Robot Professional Competition (URPC) provided the majority of the 585 photos
that make up our underwater target identification dataset. The remaining images were
gathered from the publicly accessible collection on the whale community platform. There
are seven different categories in the dataset, including jellyfish, fish, sea urchins, scallops,
sea grass, sharks, and sea turtles. LabelImg software was used to annotate every image
in the collection and they are all in yolo format. The dataset is arbitrarily split into a 7:2:1
training set, test set, and validation set. We created a complete presentation of the under-
water target detection dataset, which is presented in Table 1. It includes the total number
of trial sets and samples for each category. Figure 4 displays a sample of the 1585 image
collection for underwater target detection. We thoroughly examined the training sets in
the experiment’s training phase. We can see the training set in the dataset graphically in
Figure 5. The quantity of samples for each category is shown in Figure 5a, and the size
and quantity of ground truth boxes in the target area are shown in Figure 5b. It is evident
that the dataset has a disproportionately higher percentage of small targets. Figure 5c,d,
respectively, assesses the distribution of the target area’s center points and the aspect ratio
of the image label for the entire image.
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Table 1. Quantity of images and samples in underwater target detection dataset.

Experiment Set Train Test Validation Total

Quantity of images 1109 317 159 1585
Category jellyfish fish Sea urchin Scallop Sea grass Shark Sea turtle

Quantity of samples 356 1939 3335 1537 271 527 340
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3.2. Experimental Configuration and Environment

Our experiment made use of the Python programming language and the PyTorch deep
learning framework, along with Ubuntu18.4 as the operating system. The hardware setup
is displayed in Table 2 below. The following hyperparameters are used during training:
the image’s input size is 640 × 640, the training epoch total is 200, and the batch size is 16.
Using the Stochastic Gradient Descent (SGD) to optimize the model, the initial learning rate
is set to 0.01, the momentum is set to 0.973, and the weight attenuation is set to 0.0005. For
trained dataset processing, we used a Mosaic data augment strategy and turned it off for
the last ten epochs [19]. This strategy randomly cuts four images and changes the length to
form an image.
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Table 2. Experimental configuration and environment.

Environment Version or Model Number

Operating System Ubuntu18.04
CUDA Version 11.3

CPU Intel(R) Xeon(R) CPU E5-2620 v4
GPU Nvidia GeForce 1080Ti×4
RAM 126G

Python version Python 3.8
Deep learning framework Pytorch-1.12.0

3.3. Model Evaluation Metrics

We used the recall rate, average detection time, mean average precision (mAP),
number of parameters, and floating-point operations per second (FLOPS) to evaluate
the performance of the DSW-YOLOV8n model. Precision and Recall are as shown in
Equations (13) and (14).

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

TP and FP are the proportion of positive samples in the dataset that are correctly
predicted and incorrectly predicted, and FN is the quantity of samples in the negative
sample that are incorrectly predicted. Average precision (AP) represents the average
accuracy in the model. Mean average precision (mAP) is the average of AP values for all
classes. x denotes the number of classes in the dataset. The calculation formulas are shown
in Equations (15) and (16), respectively.

AP =
∫ 1

0
p(r)dr (15)

mAP =
1
x

x

∑
i=1

APi (16)

4. Analysis and Discussion of Experimental Result
4.1. Comparison of Experimental Results of Different Model

To demonstrate the superiority of the DSW-YOLOv8n, we conducted a comparative
experimental study using a YOLO series detection model. The performances of the DAMO-
YOLO, YOLOv7, YOLOX, and the original YOLOv8n versions were specifically contrasted.
Table 3’s experimental findings contain metrics like Flops (the number of floating-point
operations per second) and Params (the quantity of model parameters). At various IoU
levels, we also assessed the mean average precision (mAP). When the IoU threshold is set to
0.5, the mAP@0.5 reflects the average across all categories and the mAP@0.5:0.95 represents
the average mAP for each category at various thresholds ranging from 0.5 to 0.95 with a
step size of 0.05.

Table 3. The result of comparative experiments of different models.

Model Backbone Flops/G Params/M mAP@0.5 mAP@0.5:0.95

DAMO-YOLO CSP-Darknet 18.1 8.5 72.5 37.2
YOLOX Darknet53 26.8 9.0 81.45 42.7
YOLOv7 E-ELAN 105.2 37.2 83.5 46.3

YOLOv8n Darknet53 3.0 8.2 88.6 51.8
DSW-YOLOv8n Darknet53(Our) 3.13 7.7 91.8 55.9
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In the comparison experiment, all models used default parameters and the input image
size for all models was set to 640 × 640. Notably, the DSW-YOLOv8n model exhibited
a 3.2% increase in mAP@0.5 and a 4.1% increase in mAP@0.95, compared to the original
YOLOv8n model. Furthermore, the number of parameters in the improved model was
reduced by 6.1%. When compared to other mainstream target detection algorithms, the
mAP@0.5 of the DSW-YOLOv8n was found to be 8.3%, 10.3%, and 19% higher than that
of YOLOv7, YOLOX, and DAMO-YOLO, respectively. Similarly, the mAP@0.95 of the
DSW-YOLOv8n was 9.6%, 13.2%, and 18.7% higher than that of YOLOv7, YOLOX, and
DAMO-YOLO, respectively [17–20].

4.2. Comparison of Ablation Experiments

We tested each module in the DSW-YOLOv8n and examined how it affected the
model in the ablation experiment. The loss function chooses the ideal WIoU v3 for the
ablation experiment from among them. Table 4 presents the outcomes. According to
the experiment’s findings, Deformable Convnets v2, SimAm, and WIoU v3 have each
increased the model’s mAP@0.5 accuracy by 2.4%, 1.6%, and 3%, respectively. Additionally,
by 2.2%, 3.4%, and 2%, mAP@0.5:0.95 increased. SimAm, on the basis of WIoU v3 and
Deformable Convnets v2 in combination, increased the accuracy of mAP@0.5 by 2.9% and
0.1%, respectively. Additionally, mAP@0.5:0.95 went up by 2.5% and 3%, respectively [25].
Overall, Deformable Convnets v2 has increased the model detection accuracy. We used
the Grad-CAM [41] image depicted in Figure 6 to visually contrast the effect before and
after the SimAm module. Figure 6a depicts the initial input image, Figure 6b the standard
output image, Figure 6c the thermal image following the addition of the SimAm module,
and Figure 6d the thermal image output of the last layer of the backbone network. It can be
seen that after adding the SimAm module, the information about the target area becomes
more prominent in the output image by comparing the thermal effect plots of Figure 6b,c.
Thus, it will be easier to see the heat effect [34].

Table 4. Ablation experiments of each method.

Model Flops/G Params/M Average Detection
Time/ms Recall mAP@0.5 mAP@0.5:0.95

YOLOv8n 3.0 8.2 5 84.8 88.6 51.8
YOLOv8n + DefConv2 3.13 7.7 7.4 86.1 91.0 54

YOLOv8n + SimAm 3.0 8.2 10.1 87.5 90.2 55.2
YOLOv8n + WIoUv3 3.0 8.2 5.4 85.9 91.6 53.8

YOLOv8n + DefConv2 + SimAm 3.13 7.7 10.6 80.4 91.6 53.5
YOLOv8n + DefConv2 + WIoUv3 3.13 7.7 8.1 85.8 91.5 54.3

YOLOv8n + SimAm + WIoUv3 3.0 8.2 5 81.4 88.5 54.8
DSW-YOLOv8n 3.13 7.7 8.7 85.1 91.8 55.9

In the second ablation experiment, we specifically targeted the Wise-IoU function
to observe its enhancement effect on the model. Table 5 displays the outcomes of the
experiment. The addition of WIoU v1, WIoU v2, and WIoU v3 was based on the addition
of Deformable Convnets v2 and SimAm to the model, respectively. In comparison to
WIoU v1 and WIoU v2, the experimental results demonstrate that mAP@0.5 of WIoU
v3 increases by 0.86% and 0.7%, and mAP@0.5:0.95 by 0.1% and 0.6%, respectively. The
average detection speed of each image is simultaneously slowed down by 0.03 ms and
1.9 ms, respectively. With the help of the aforementioned comparison analysis, WIoU v3 can
enhance the performance of our model. For the purpose of displaying the prediction results,
we have selected four situations that represent various object categories. Figure 7a,b shows
the detection of small targets and objects with low visibility and high density, respectively.
Target detection and recognition were depicted in Figure 7c,d in a general situation. The
outcomes in Figure 7 demonstrate that no missed detections or errors were made, proving
the reliability of DSW-YOLOv8n.



Electronics 2023, 12, 3892 11 of 15Electronics 2023, 10, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 6. Grad-CAM image of the DSW-YOLOv8n. (a) Represents original image with the fish and 
sea turtle; (b) before adding the SimAm; (c) result after adding SimAm; and (d) the last layer output 
of the backbone. 

In the second ablation experiment, we specifically targeted the Wise-IoU function to 
observe its enhancement effect on the model. Table 5 displays the outcomes of the experi-
ment. The addition of WIoU v1, WIoU v2, and WIoU v3 was based on the addition of 
Deformable Convnets v2 and SimAm to the model, respectively. In comparison to WIoU 
v1 and WIoU v2, the experimental results demonstrate that mAP@0.5 of WIoU v3 in-
creases by 0.86% and 0.7%, and mAP@0.5:0.95 by 0.1% and 0.6%, respectively. The average 
detection speed of each image is simultaneously slowed down by 0.03 ms and 1.9 ms, 
respectively. With the help of the aforementioned comparison analysis, WIoU v3 can en-
hance the performance of our model. For the purpose of displaying the prediction results, 
we have selected four situations that represent various object categories. Figure 7a,b 
shows the detection of small targets and objects with low visibility and high density, re-
spectively. Target detection and recognition were depicted in Figure 7c,d in a general sit-
uation. The outcomes in Figure 7 demonstrate that no missed detections or errors were 
made, proving the reliability of DSW-YOLOv8n. 

Table 5. Wise-IoU ablation experiment. 

YOLOv8n Average Detection 
Time/ms mAP@0.5 mAP@0.5:0.95 

DefConv2 SimAm WIoUv1 WIoUv2 WIoUv3 
√ √ √   8.73 90.94 55.8 
√ √  √  10.6 91.01 55.3 
√ √   √ 8.7 91.8 55.9 

 

Figure 6. Grad-CAM image of the DSW-YOLOv8n. (a) Represents original image with the fish and
sea turtle; (b) before adding the SimAm; (c) result after adding SimAm; and (d) the last layer output
of the backbone.

Table 5. Wise-IoU ablation experiment.

YOLOv8n
Average Detection Time/ms mAP@0.5 mAP@0.5:0.95

DefConv2 SimAm WIoUv1 WIoUv2 WIoUv3
√ √ √

8.73 90.94 55.8√ √ √
10.6 91.01 55.3√ √ √
8.7 91.8 55.9
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for a typical situation are shown in (c,d).

4.3. Pascal VOC Dataset Experimental Results

The PASCAL Visual Object Classes is an open world-class computer vision challenge.
The dataset can be applied to classification, localization, detection, segmentation, and action
recognition tasks. To validate our method further, we utilized the Pascal VOC dataset which
consists of 17,125 images across 20 categories. We used Pascal VOC2012 to further verify
and analyze our model. Our experiment involved dividing the dataset into a training set
(12,330 images), a test set (3425 images), and a validation set (1370 images), following a 7:2:1
ratio. The hyperparameters used during model training were consistent with experiment of
the underwater target detection dataset. Due to the larger quantity of the Pascal VOC2012
dataset and slower model convergence, we increased the number of epochs trained to
300. The detailed experimental results are presented in Table 5, where the inclusion of
the Deformable Convnets v2, SimAm, and WIoU v3 modules led to improvements of
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2.5%, 1.9%, and 1.3%, respectively. This demonstrates that these three methods effectively
enhance the detection accuracy. Additionally, when comparing the number of parameters
in the model, the addition of Deformable Convnets v2 resulted in a 4.8% reduction, while
the inclusion of the SimAm module improved the detection accuracy and recall without
altering the number of parameters in the model. The effectiveness of WIoU v1, WIoU v2,
and WIoU v3 on the model based on Deformable Convnets v2 and SimAm was analyzed.
Table 6 shows that WIoU v3 achieved the highest detection accuracy, with mAP@0.5 and
mAP@0.95 being 3.5% and 2.4% higher than the original model, respectively.

Table 6. The experimental result of Pascal VOC dataset.

Dataset Model Flops/G Params/M Recall mAP@0.5 mAP@0.95

Pascal
VOC
2012

YOLOv8n 3.0 8.2 55.1 62.2 45.9
YOLOv8n + DefConv2 3.13 7.8 56.3 64.7 48

YOLOv8n + SimAm 3.0 8.2 58.3 64.1 47.5
YOLOv8n + WIoUv1 3.0 8.2 55.2 63.3 46.5
YOLOv8n + WIoUv2 3.0 8.2 56.8 63.9 46.7
YOLOv8n + WIoUv3 3.0 8.2 55.5 63.5 46.5

YOLOv8n+DefConv2 + SimAm 3.13 7.8 55.8 64.4 48.2
YOLOv8n+DefConv2 + WIoUv1 3.13 7.8 58.6 65.4 48.4
YOLOv8n+DefConv2 + WIoUv2 3.13 7.8 56.9 65.1 48.1
YOLOv8n+DefConv2 + WIoUv3 3.13 7.8 57.8 64.9 47.6

YOLOv8n+SimAm + WIoUv1 3.0 8.2 57 63.8 46.8
YOLOv8n+SimAm + WIoUv2 3.0 8.2 53.6 62.8 45.6
YOLOv8n+SimAm + WIoUv3 3.0 8.2 54.5 64.2 46.4

YOLOv8n + DefConv2 + SimAm + WIoUv1 3.13 7.8 56.5 64.5 47.7
YOLOv8n + DefConv2 + SimAm + WIoUv2 3.13 7.8 59.8 64.7 47.3

DSW-YOLOv8n 3.13 7.8 59.5 65.7 48.3

To visually observe the impact of the three versions of Wise-IoU on the model, we
plotted the mAP@0.5 accuracy and DFL-loss curves in Figure 8. The red curve represents the
performance after integrating Deformable Convnets v2, SimAm, and WIoU v3, indicating
that the model has reached an optimal state. Compared to WIoU v1, mAP@0.5 and
mAP@0.5:0.95 were improved by 1.2% and 0.6%, and there was a 1% improvement relative
to WIoU v2. The experimental results on the Pascal VOC2012 dataset align with the results
of our own underwater target dataset, confirming the effectiveness of DSW-YOLOv8n.
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5. Conclusions

In this paper, the difficulties caused by subpar underwater image quality and intri-
cate environmental changes are discussed in this research. We suggest three methods to
YOLOv8n to address these problems. We conducted comparison studies, ablation exper-
iments, and validation on two datasets using various methods and combinations. The
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experimental findings show that the three methods further optimize the model and have a
good effect on its accuracy.

Firstly, we enhance the feature extraction capability of the backbone network by replac-
ing the two-layer convolutional module with Deformable Convnets v2. This improvement
has significantly increased the mAP@0.5 accuracy of both datasets by 2.4% and 2.5%, re-
spectively. Although the number of parameters in the model has been reduced by 6%, the
floating-point computation has increased by 4%, which is not the desired outcome. We
provide a detailed analysis of the principle and formula of Deformable Convnets v2, in
Equation (2), which involves adding an extra offset ∆pk calculated through forward infer-
ence and back propagation. The process of getting ∆pk slightly increases the computational
effort of the DSW-YOLOv8n. Secondly, we introduce a flexible and efficient SimAm module
in the last layer of the backbone. The core idea behind SimAm is to assign attention weight
vectors to different positions of the input feature map. By refining the channel weight
allocation, the model becomes more focused on the target region without adding extra
parameters. The performance of the model is significantly improved, with a mAP@0.5 in-
crease of 1.9% on both the underwater target detection dataset and the Pascal VOC dataset.
Finally, we optimize the loss function by using the dynamic non-monotonically focused
bounding box loss instead of the original CIoU. This modification effectively mitigates
the negative impact of low-quality data on the model. Through ablation experiments, we
demonstrate that WIoU v3 outperforms WIoU v1 and WIoU v2 in terms of the improve-
ment effect, average detection speed, and detection accuracy of the model. As a result,
mAP@0.5 improves, by 3.3% and 1.3%, the underwater target detection dataset and Pascal
VOC dataset, respectively.

However, there are some imperfections in our work and the computational require-
ments of the model have slightly increased. In future work, we will continuously optimize
our algorithm of DSW-YOLOv8n. Considering the potential application on mobile devices,
the computational load is an important factor to consider. Therefore, our future goal is to
explore methods for effectively reducing the amount of floating-point computation in the
model and developing a more lightweight object detection model.

Author Contributions: Conceptualization, Q.L.; Methodology, W.H.; Software, Q.L.; Formal analysis,
Q.L.; Investigation, J.W. and J.Y.; Resources, W.H. and T.H.; Data curation, X.D., T.H. and J.H.;
Writing—original draft, Q.L.; Visualization, J.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Hubei Province Science and Technology Innovation
Talents Project (grant number 2023DJC070).

Data Availability Statement: No applicated.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, Y.; Zheng, W.; Du, X.; Yan, Z. Underwater small target detection based on yolox combined with mobilevit and double

coordinate attention. J. Mar. Sci. Eng. 2023, 11, 1178. [CrossRef]
2. Zvarikova, K.; Rowland, Z.; Nica, E. Multisensor fusion and dynamic routing technologies, virtual navigation and simulation

modeling tools, and image processing computational and visual cognitive algorithms across web3-powered metaverse worlds.
Anal. Metaphys. 2022, 21, 125–141.

3. Kovacova, M.; Oláh, J.; Popp, J.; Nica, E. The algorithmic governance of autonomous driving behaviors: Multi-sensor data fusion,
spatial computing technologies, and movement tracking tools. Contemp. Read. Law Soc. Justice 2022, 14, 27–45.

4. Yan, J.; Zhou, Z.; Zhou, D.; Su, B.; Xuanyuan, Z.; Tang, J.; Lai, Y.; Chen, J.; Liang, W. Underwater object detection algorithm based
on attention mechanism and cross-stage partial fast spatial pyramidal pooling. Front. Mar. Sci. 2022, 9, 1056300. [CrossRef]

5. Wang, X.; Xue, G.; Huang, S.; Liu, Y. Underwater object detection algorithm based on adding channel and spatial fusion attention
mechanism. J. Mar. Sci. Eng. 2023, 11, 1116. [CrossRef]

6. Novak, A.; Sedlackova, A.N.; Vochozka, M.; Popescu, G.H. Big data-driven governance of smart sustainable intelligent trans-
portation systems: Autonomous driving behaviors, predictive modeling techniques, and sensing and computing technologies.
Contemp. Read. Law Soc. Justice 2022, 14, 100–117.

https://doi.org/10.3390/jmse11061178
https://doi.org/10.3389/fmars.2022.1056300
https://doi.org/10.3390/jmse11061116


Electronics 2023, 12, 3892 14 of 15

7. Wen, G.; Li, S.; Liu, F.; Luo, X.; Er, M.-J.; Mahmud, M.; Wu, T. Yolov5s-ca: A modified yolov5s network with coordinate attention
for underwater target detection. Sensors 2023, 23, 3367. [CrossRef]

8. Zhang, C.; Zhang, G.; Li, H.; Liu, H.; Tan, J.; Xue, X. Underwater target detection algorithm based on improved yolov4 with
semidsconv and fiou loss function. Front. Mar. Sci. 2023, 10, 1153416. [CrossRef]

9. Lei, Z.; Lei, X.; Zhou, C.; Qing, L.; Zhang, Q. Compressed sensing multiscale sample entropy feature extraction method for
underwater target radiation noise. IEEE Access 2022, 10, 77688–77694. [CrossRef]

10. Li, W.; Zhang, Z.; Jin, B.; Yu, W. A real-time fish target detection algorithm based on improved yolov5. J. Mar. Sci. Eng. 2023,
11, 572. [CrossRef]

11. Zhang, Y.; Ni, Q. A novel weld-seam defect detection algorithm based on the s-yolo model. Axioms 2023, 12, 697. [CrossRef]
12. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
13. Redmon, J.; Farhadi, A. Yolo9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
14. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
15. Terven, J.; Cordova-Esparza, D. A comprehensive review of yolo: From yolov1 to yolov8 and beyond. arXiv 2023, arXiv:2304.00501.
16. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W. Yolov6: A single-stage object detection

framework for industrial applications. arXiv 2022, arXiv:2209.02976.
17. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object

detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023; pp. 7464–7475.

18. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
19. Xu, X.; Jiang, Y.; Chen, W.; Huang, Y.; Zhang, Y.; Sun, X. Damo-yolo: A report on real-time object detection design. arXiv 2022,

arXiv:2211.15444.
20. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-iou loss: Faster and better learning for bounding box regression.

In Proceedings of the AAAI Conference on Artificial Intelligence, New York Hilton Midtown, NY, USA, 7–12 February 2020;
pp. 12993–13000.

21. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 1137–1149. [CrossRef]

22. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229.

23. Lou, H.; Duan, X.; Guo, J.; Liu, H.; Gu, J.; Bi, L.; Chen, H. Dc-yolov8: Small-size object detection algorithm based on camera
sensor. Electronics 2023, 12, 2323. [CrossRef]

24. Zhang, J.; Chen, H.; Yan, X.; Zhou, K.; Zhang, J.; Zhang, Y.; Jiang, H.; Shao, B. An improved yolov5 underwater detector based on
an attention mechanism and multi-branch reparameterization module. Electronics 2023, 12, 2597. [CrossRef]

25. Lei, F.; Tang, F.; Li, S. Underwater target detection algorithm based on improved yolov5. J. Mar. Sci. Eng. 2022, 10, 310. [CrossRef]
26. Zhu, X.; Hu, H.; Lin, S.; Dai, J. Deformable convnets v2: More deformable, better results. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9308–9316.
27. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable convolutional networks. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773.
28. Guo, M.-H.; Xu, T.-X.; Liu, J.-J.; Liu, Z.-N.; Jiang, P.-T.; Mu, T.-J.; Zhang, S.-H.; Martin, R.R.; Cheng, M.-M.; Hu, S.-M. Attention

mechanisms in computer vision: A survey. Comput. Vis. Media 2022, 8, 331–368. [CrossRef]
29. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
30. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
31. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. Eca-net: Efficient channel attention for deep convolutional neural networks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp.
11534–11542.

32. Yang, L.; Zhang, R.-Y.; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks. In
International Conference on Machine Learning; PMLR: Westminster, UK, 2021; pp. 11863–11874.

33. Lai, Y.; Ma, R.; Chen, Y.; Wan, T.; Jiao, R.; He, H. A pineapple target detection method in a field environment based on improved
yolov7. Appl. Sci. 2023, 13, 2691. [CrossRef]

34. Dong, C.; Cai, C.; Chen, S.; Xu, H.; Yang, L.; Ji, J.; Huang, S.; Hung, I.-K.; Weng, Y.; Lou, X. Crown width extraction of metasequoia
glyptostroboides using improved yolov7 based on uav images. Drones 2023, 7, 336. [CrossRef]

35. Mao, R.; Wang, Z.; Li, F.; Zhou, J.; Chen, Y.; Hu, X. Gseyolox-s: An improved lightweight network for identifying the severity of
wheat fusarium head blight. Agronomy 2023, 13, 242. [CrossRef]

36. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss
for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 15–20 June 2019; pp. 658–666.

https://doi.org/10.3390/s23073367
https://doi.org/10.3389/fmars.2023.1153416
https://doi.org/10.1109/ACCESS.2022.3193129
https://doi.org/10.3390/jmse11030572
https://doi.org/10.3390/axioms12070697
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.3390/electronics12102323
https://doi.org/10.3390/electronics12122597
https://doi.org/10.3390/jmse10030310
https://doi.org/10.1007/s41095-022-0271-y
https://doi.org/10.3390/app13042691
https://doi.org/10.3390/drones7060336
https://doi.org/10.3390/agronomy13010242


Electronics 2023, 12, 3892 15 of 15

37. Zhang, Y.-F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and efficient iou loss for accurate bounding box regression.
Neurocomputing 2022, 506, 146–157. [CrossRef]

38. Tong, Z.; Chen, Y.; Xu, Z.; Yu, R. Wise-iou: Bounding box regression loss with dynamic focusing mechanism. arXiv 2023,
arXiv:2301.10051.

39. Zhu, Q.; Ma, K.; Wang, Z.; Shi, P. Yolov7-csaw for maritime target detection. Front. Neurorobot. 2023, 17, 1210470. [CrossRef]
40. Zhao, Q.; Wei, H.; Zhai, X. Improving tire specification character recognition in the yolov5 network. Appl. Sci. 2023, 13, 7310.

[CrossRef]
41. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.neucom.2022.07.042
https://doi.org/10.3389/fnbot.2023.1210470
https://doi.org/10.3390/app13127310

	Introduction 
	Related Work 
	Objection Detection Algorithm 
	Fusion of Deformable Convolutional Feature Extraction Network 
	Simple and Efficient Parameter-Free Attention Mechanism 
	Loss Function with Dynamic Focusing Mechanism 
	WIoU v1 
	WIoU v2 
	WIoU v3 


	Experiment 
	Underwater Target Detection Dataset 
	Experimental Configuration and Environment 
	Model Evaluation Metrics 

	Analysis and Discussion of Experimental Result 
	Comparison of Experimental Results of Different Model 
	Comparison of Ablation Experiments 
	Pascal VOC Dataset Experimental Results 

	Conclusions 
	References

