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Abstract: A novel tuning fork-shaped tri-band planar antenna (NTTPA) for the LTE 2.3/3.8-GHz
band, WLAN 2.4/5.2/5.8-GHz band, and WiMax 2.5/3.5/5.5-GHz band is presented in this letter.
By introducing an asymmetrical turning fork-shaped patch and an inverted L-shaped patch, three
notched bands can be generated to form a triple-band operation. The antenna is fabricated on an FR4
board and excited by an SMA connector using a microstrip line. The antenna structure is simple and
has a compact size of 45 mm × 40 mm. The measured operating frequency covers 2.2–2.63, 2.73–3.8,
and 5.13–6.3 GHz, and the percentage bandwidth is close to 53.3% (S11 <−9.8 dB from 2.2 to 3.8 GHz)
and 20.5% (S11 < −10 dB from 5.13 to 6.3 GHz). The calculated and experimental results suggest that
the proposed antenna is one of the best candidates for wireless communication systems in terms of
multi operating bands, broad percentage bandwidth (BW), compactness, stable radiation pattern,
easy processing, and low cost.

Keywords: multiband planar antenna; wireless communication; impedance bandwidth (BW); return
loss (RL); radiation pattern

1. Introduction

In recent years, wireless communication technology has made great achievements
and has been widely used in all kinds of electronic equipment. The antenna, which plays
a key role in wireless communication systems, should be capable of operating at multi-
frequencies simultaneously. The microstrip antenna is an attractive candidate for wireless
applications, owing to its characteristics of low profile, low cost, easy processing, and
manufacturing [1,2].

Over the past decades, numerous microstrip patch antennas with multi operating
frequencies have been reported on for wireless communication, particularly for Long
Term Evolution (LTE 2.3/3.8-GHz), wireless local area networks (WLAN 2.4/5.2/5.8-GHz),
and worldwide interoperability for microwave access (WiMAX 2.5/3.5/5.5-GHz). These
include asymmetric m-shaped antennas with vias [3], dielectric-loaded monopoles with
shorted loops [4], proximity-coupled dual-substrate antennas with corner-truncated rect-
angular patches and defected ground planes [5], dumb-bell-shaped defected structure
monopoles [6], open slot antennas [7], uniplanar dipole complementary capacitively loaded
loop (CCLL) slots [8], rectangular ring monopoles with fork-shaped strips [9], dipoles
with two electrical shorts and reflecting ground planes [10], D-shaped monopoles [11],
patch antennas with inner patches and outer rings [12], and multi feed antennas [13–16]
covering different wireless frequencies. The majority of the designs mentioned above only
cover parts of the bands of LET, WLAN, and WiMax [3–7,9,12–25]. The designs are in the
references. The examples in [8,10,11] can basically meet all frequency band requirements,
but these antennas have a relatively large size. Hence, it is a huge challenge to design
a multiband microstrip antenna not only covering the all the LTE (2.3–2.4, 3.6–3.8 GHz),
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WLAN (2.4–2.484, 5.15–5.35, 5.725–5.825 GHz), and WiMAX (2.5–2.69, 3.4–3.69, 5.25–5.85 GHz)
bands but also maintaining a compact size.

This letter presents a novel tuning fork-shaped tri-band planar antenna (NTTPA) for
LTE (2.3/3.8-GHz), WLAN (2.4/5.2/5.8-GHz), and WiMAX (2.5/3.5/5.5-GHz) applications.
The proposed antenna is composed of an asymmetrical turning fork-shaped patch and
an inverted L-shaped patch connected to the middle of an rectangular ground, which can
achieve a good performance of multi operation bands, enhanced percentage bandwidth,
stable radiation patterns at different operating bands, and low cost. The proposed antenna
has a compact size of 45 mm × 40 mm and is much smaller than [8,10,11]. That is to say,
the antenna mentioned in Table 1 and in this paper can keep good performance in three
frequency bands while realizing the miniaturization of size. The details of the design,
parameter studies, and calculated and experimental results such as RL characteristics,
surface current distributions, radiation patterns, and gains are also discussed and presented
in the following chapters.

Table 1. Comparison of proposed NTTPA with previous antennas.

Ref. Antenna Reponse Dimensions
(λ0 × λ0)

Working Bands
(GHz)

Radiation
Effciency (%) Gain (dBi)

[3] Triple-band 0.25λ0 × 0.53λ0

2.38–2.53 GHz
3.08–3.80 GHz
5.00–6.90 GHz

88%
85%
75%

1.1–1.5 dBi
4.6–5.6 dBi
2.0–3.6 dBi

[8] Triple-band 0.17λ0 × 0.32λ0

2.10–2.49 GHz
3.22–4.30 GHz
4.89–6.12 GHz

72%
69%
80%

2.7–3.2 dBi
3.1–3.5 dBi
2.8–3.3 dBi

[11] Triple-band 0.23λ0 × 0.27λ0

2.29–2.88 GHz
3.26–3.88 GHz
4.17–6.07 GHz

85%
84%
83%

3.8–4.4 dBi
4.0–4.7 dBi
1.9–3.5 dBi

[15] Triple-band 0.21λ0 × 0.25λ0

2.33–2.55 GHz
3.00–3.88 GHz
5.15–5.90 GHz

62%
70%
79%

1.1–1.4 dBi
2.4–3.5 dBi
2.5–3.3 dBi

[26] Triple-band 0.2λ0 × 0.25λ0

2.50–2.71 GHz
3.37–3.63 GHz
5.20–5.85 GHz

98%
96%
94%

1.3–2.5 dBi
1.4–2.4 dBi
1.3–2.6 dBi

[27] Triple-band 0.33λ0 × 0.37λ0

2.47–2.65 GHz
3.27–3.63 GHz
5.20–5.83 GHz

/
/
/

1.8–2.4 dBi
1.8–2.4 dBi
1.7–2.4 dBi

Pre. Triple-band 0.33λ0 × 0.29λ0

2.20–2.63 GHz
2.73–3.80 GHz
5.13–6.30 GHz

80%
85%
90%

0.9–2.0 dBi
2.0–3.8 dBi
4.8–5.7 dBi

2. Antenna Topology

The geometry of the proposed novel tuning fork-shaped tri-band planar antenna
(NTTPA), including the top view, side view, and bottom view, is depicted in Figure 1. The
proposed NTTPA is fabricated on a single-layer FR4 substrate with a height of h = 1.6 mm,
a relative dielectric constant of 4.4, and a loss tangent of 0.02. As shown in Figure 1,
the proposed NTTPA is composed of an asymmetrical tuning fork-shaped patch and an
inverted L-shaped monopole combined with a rectangular ground plane fed by an SMA
connector using a microstrip line. Table 2 displays the overall dimensions of the proposed
antenna. To facilitate processing, all line widths are designed to be the same W = 3 mm.
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Figure 1. Geometrical design of the proposed antenna. (a) Top view. (b) Side view. (c) Bottom view.

Table 2. Dimensions of the proposed antenna (all values are in mm).

Parameter Value Parameter Value Parameter Value

L0 45 L1 12 L5 26
W0 40 L2 6.5 L6 11
W 3 L3 6.5 L7 6
h 1.6 L4 16 L8 20.5

3. Theory and Design

Here, in this section, geometrical progress to achieve the proposed antenna design is
outlined as shown in Figure 2. In the beginning, a simple monopole strip is printed on the
upper surface of the FR-4 substrate whose one end is connected with SMA connector, as
shown in Figure 2a. To achieve omnidirectional operating characteristics in the XOZ plane,
a partial ground plane is taken on backside of the substrate (Ant. I).

For a microstrip monopole on a substrate, the wave is transmitted through both the
medium and free space, thus the actual wavelength should be between the conduction
wavelength of the medium and the operating wavelength of the free space. In this case, the
electrical length Lm of the microstrip monopole can be calculated by [28,29]:
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where c is the speed of light, fo is the operating frequency, h is the thickness of the substrate,
εr is the dielectric constant of the substrate, and Wm is the width of the monopole.

According to Equation (1), in order to cover the operating band of 2.2 GHz, the
electrical length Lm of the microstrip monopole should be between 17.5 mm and 34.1 mm.
At the same time, the antenna’s higher-order operating mode should also cover 5.5 GHz
frequency points. We optimized the parameters of the monopole in the CST simulator to
meet both of the above requirements. The final values of Lm and Wm were 34 mm and 3 mm,
respectively, and the dimension of the partial ground plane was 40 × 11 mm2. Figure 3
shows the surface current distribution of the antenna under two different operating modes,
including the surface current Jsm1, Jsg1, Jsg2 in low-order operating mode and the surface
current Jsm2, Jsm3, Jsg3, Jsg4 in high-order operating mode. Due to the symmetrical structure
of antenna I, Jsg1 and Jsg2 present mirror image distribution and so does Jsg3 and Jsg4. It can
be seen that the path length of Jsm1 was about twice that of Jsm2, and the path length of
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Jsg1 was more than twice as much as that of Jsg3. Therefore, the frequency of the antenna
in high-order mode should be more than twice that in low-order mode and higher than
4.4 GHz. The analysis results were consistent with the simulation results in Figure 4. We
can see that the proposed monopole antenna (Ant I) operated at 2.22 GHz (2.1–2.34 GHz,
S11 = −12.9 dB) and 5.51 GHz (5.34–5.73 GHz, S11 = −24.8 dB). This fabricated prototype
showed good dual frequency performance and a simple structure, but its drawback was
that the operating frequency did not fully cover the 5.25 GHz bands. If we optimize the
antenna structure so that its high-frequency operating band covers 5.25 GHz, the volume
of the antenna will increase, and we will need to change the antenna’s prototype.
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Then, the monopole strip (Ant. I) is converted to a symmetrical turning fork-shaped
patch antenna (STPA) with a rectangular ground, which is referred to Ant. II, shown in
Figure 2b. One advantage of the dual-L-shaped design is that the L-shaped structure can
increase the equivalent electrical length of the antenna in a finite volume, which will make
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the operating frequency of the antenna move to the low frequency band. Additionally, the
dual-L structure is equivalent to a double element array, which can effectively enhance the
radiation of the antenna and improve the S11 characteristics of the antenna. To make the
comparison more meaningful and simplify the design process, we adopted the following
principles: (1) the overall dimensions and ground size of the STPA shall be consistent
with the design of Ant. I; (2) only the length of L4 was changed to optimize the operating
frequency band of STPA, while keeping other parameters constant. According to the above
design principles, the parameters were designed as follows: L1 = 12 mm, L2 = L3 = 6.5 mm,
L6 = 11 mm. Then, we optimized the operating frequency band of the antenna by adjusting
the length of L4 and L5 in the U-shaped structure (L4 = L5).

Figure 5 shows the change in |S11| over the operating frequency range for step 2 with
the change in L4. It can be seen that the operating band always decreased significantly
with the increasing L4. When the length of L4 was equal to 16 mm, this design had a good
wideband characteristic with an impedance BW (S11 < −10 dB) covering 3.22–6.54 GHz,
which covered the LTE (3.8-GHz), WLAN (5.2/5.8-GHz) and WiMAX (3.5/5.5-GHz) bands.
Furthermore, the S11 at the resonant point of the antenna was almost better than −30 dB,
which verified the radiation-enhanced effect of the double-L structure proposed above.

Figure 6 exhibits the simulated radiation patterns of the proposed STPA at two orthog-
onal cut planes. The calculated gains were 3.7, 5.5, and 5.9 dBi at 3.5, 5.2, and 5.8 GHz,
respectively. It was concluded that the STPA antenna could meet most frequency bands of
LTE, WLAN, and WiMAX applications based on the S11 characteristics and radiation direc-
tion characteristics. However, it’s worth noting that this design misses the LTE (2.3-GHz),
WLAN (2.4-GHz), and WiMAX (2.5-GHz) bands. It is possible to further increase the length
of L4 to cover 2.3~2.5 GHz, but this approach will cause the operating band to shift to lower
frequencies and miss the high frequency point of the operating band, as the green line
(L4 = 20 mm) shows in Figure 5.
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In order to improve its return loss of low frequency (2–3 GHz), we take the method of
asymmetric designing and only increase the length of L5, which can not only broaden the
operating band by Superposition of resonant frequency points but also avoids the whole
band moving to the low frequency region caused by increasing the length of both sides (L4
and L5). Thus, the symmetrical turning fork-shaped patch antenna (STPA) evolves into the
asymmetrical turning fork-shaped patch antenna (ATPA).

Figure 7 shows the change in |S11| over the operating frequency range with the
change in L5 of the new design. It can be seen that the ATPA prototype shows the excellent
characteristics of ultra-wideband. When the L5 is optimized and properly selected as 26 mm,
the ATPA achieves a −10 dB bandwidth of 5.05 GHz (2.95–7 GHz), which is enough for
the majority of frequency points of wireless application. Figure 8 illustrates the calculated
radiation patterns of the ATPA (L5 = 26 mm) in the xoz and yoz planes under 2.4, 3.5, 5.2,
and 5.8 GHz, and the corresponding simulated gains (L5 = 26 mm) can reach 1.37, 3.62, 4.84,
and 4.76 dBi, respectively. In the xoz plane, the radiation pattern is omnidirectional at 2.4,
3.5, and 5.2 GHz and shows a little bit of inomnidirectivity at 5.8 GHz. It can be seen that
the radiation patterns are comparatively stable within the operating band and the same to
radiation patterns in the yoz plane, which is convenient for the practical application.

The only drawback is that the S11 around 2.4 GHz only reaches −2.92 dB and still
needs to be improved. What we should be concerned about is that continuing to increase
the electrical length may enhance its low-frequency transmission characteristics, but it will
result in a larger antenna size, which is clearly not an optimal approach. Thus, we need to
find a new path to solve it.
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For the ATPA, there are two main current paths on either side of the asymmetric
tuning fork structure, the equivalent electrical lengths of which are approximately equal
to (L2 + L4) and (L3 + L5), respectively. According to the formula [17]: f = c/4 L (c is
the speed of light in free space; and L is the electrical length.), it can be calculated that
the two resonant points of the antenna are about 2.31 and 3.3 GHz, which are consistent
with the simulation results in Figure 7. Therefore, we need to design a new current path
with a length between 22.5 mm and 32.5 mm to enhance the low frequency resonance
characteristics. However, the return loss only reaches −10 dB in the range of 5 to 6 GHz,
and thus the introduction of a new structure is likely to worsen the return loss in this
range. Thus, we need to subtly design a new structure, which could not only improve
the reflection characteristics of both low and high frequency regions but also maintain the
current size.

Based on the analysis above, we proposed a novel tuning fork-shaped tri-band planar
antenna (NTTPA) by meticulously adding an inverted L-shaped radiation patch on the
ground of the ATPA. In addition, the L-shaped patch is designed on the short side of
the turning fork-shaped patch to compensate for the radiation asymmetry caused by the
asymmetric turning fork structure. The antenna is optimized by adjusting L7 and L8, and
the final structure size is shown in Table 1.

The simulated surface current distributions under 2.4 and 5.8 GHz are given in Figure 9
to illustrate the operating mechanism for the ATPA and NTTPA. The larger value of the
current distribution is indicated in red, and the smaller value is in blue. It can be seen that
the introduction of the inverted L-shaped structure not only provides a new current path
but also enhances the circuit density in the existing paths on the asymmetric turning fork
patch. Additionally, the same effect could be observed at 5.8 GHz.
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Figure 9. Simulation results of the surface current distributions. (a) ATPA at 2.4 GHz. (b) NTTPA at
2.4 GHz. (c) ATPA at 5.8 GHz. (d) NTTPA at 5.8 GHz.

Figure 10 illustrates the S11 characteristic of different designs from the microstrip
monopole to the NTTPA (Antenna I refers to the monopole, Antenna II refers to the
STPA, Antenna III refers to the ATPA, and Antenna IV refers to the NTTPA). It is obvious
that the addition of inverted L-shaped structures reduces the low frequency return loss,
which is consistent with the above analysis above. The simulation results shows that
−10 dB bandwidth of the proposed novel tuning fork-shaped tri-band patch antenna
(NTTPA) covers 2.28–3.7 and 4.7–6.2 GHz, which is enough for LTE (2.3–2.4, 3.6–3.8), WLAN
(2.4–2.484, 5.15–5.35, 5.725–5.825), and WiMAX (2.5–2.69, 3.4–3.69, 5.25–5.85) applications.
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Figure 10. Simulated reflection coefficient of different proposed antenna.

4. Results and Discussion

To confirm the predicted radiation-enhanced and multiband operating characteristics
exhibited in Figures 9 and 10, a novel tuning fork-shaped tri-band planar antenna (NTTPA)
was fabricated and tested. The physical picture of the proposed antenna is shown in
Figure 11. The performance of the proposed antenna was tested in an anechoic chamber,
shown in Figure 12, including return loss, gain, and radiation pattern. The measured
return loss tested by Agilent vector network analyzer-E8363B was compared by the simu-
lation results. As shown in Figure 13, a strong agreement was observed. The measured
impedance BW over −10 dB was 17.8% (2.2–2.63 GHz), 32.8% (2.73–3.8 GHz), and 20.5%
(5.13–6.3 GHz), and the maximum value could reach −20.9 dB (at 2.42 GHz), −24.5 dB (at
3.29 GHz), and −23.1 dB (at 5.98 GHz). It can be noted that the −9.8 dB impedance BW
covered 2.2–3.8 GHz with a percentage BW of 53.3%.

Figure 14 shows the calculated and measured gains for the proposed antenna. The
measured ranges of the antenna gains were 0.8–1.9, 2–3.6, and 4.7–5.6 dBi in Band-I
(2.2–2.63 GHz), band-II (2.73–3.8 GHz), and band-III (5.13–6.3 GHz), respectively. Small
variations were observed between calculated and test results for both bands, which can be
attributed to possible cable effect and tolerance in measurement.

Figure 15 shows the normalized radiation patterns at 2.4, 3.5, 5.2, and 5.8 GHz, re-
spectively. The difference between the simulated and experimental results was small. We
can see that the proposed NTTPA showed good omnidirectional radiation property in the
xoz plane and directional radiation property in the yoz plane. It is worth noting that the
radiation direction of the antenna was very close at a different frequency, which is very
conducive to the industrial application. The efficiency and front-to-back ratio plots are
displayed in Figures 16 and 17, respectively. Compared with the same tri-band antenna in
the references, the S11 proposed in this paper is lower [19,20].

Electronics 2023, 12, x FOR PEER REVIEW 9 of 13 
 

 

and 20.5% (5.13–6.3 GHz), and the maximum value could reach −20.9 dB (at 2.42 GHz), 

−24.5 dB (at 3.29 GHz), and −23.1 dB (at 5.98 GHz). It can be noted that the −9.8 dB im-

pedance BW covered 2.2–3.8 GHz with a percentage BW of 53.3%. 

Figure 14 shows the calculated and measured gains for the proposed antenna. The 

measured ranges of the antenna gains were 0.8–1.9, 2–3.6, and 4.7–5.6 dBi in Band-I (2.2–

2.63 GHz), band-II (2.73–3.8 GHz), and band-III (5.13–6.3 GHz), respectively. Small vari-

ations were observed between calculated and test results for both bands, which can be 

attributed to possible cable effect and tolerance in measurement. 

Figure 15 shows the normalized radiation patterns at 2.4, 3.5, 5.2, and 5.8 GHz, re-

spectively. The difference between the simulated and experimental results was small. We 

can see that the proposed NTTPA showed good omnidirectional radiation property in 

the xoz plane and directional radiation property in the yoz plane. It is worth noting that 

the radiation direction of the antenna was very close at a different frequency, which is 

very conducive to the industrial application. The efficiency and front-to-back ratio plots 

are displayed in Figure 16 and Figure 17, respectively. Compared with the same tri-band 

antenna in the references, the S11 proposed in this paper is lower [19,20]. 

 

Figure 11. The physical picture of the proposed antenna. 

 

Figure 12. Calculated and experimental S11 of the proposed NTTPA. 

Transmitting 

antenna

Antenna under 

test

Foamed 

plastics

Figure 11. The physical picture of the proposed antenna.



Electronics 2023, 12, 1081 9 of 12

Electronics 2023, 12, x FOR PEER REVIEW 9 of 13 
 

 

and 20.5% (5.13–6.3 GHz), and the maximum value could reach −20.9 dB (at 2.42 GHz), 

−24.5 dB (at 3.29 GHz), and −23.1 dB (at 5.98 GHz). It can be noted that the −9.8 dB im-

pedance BW covered 2.2–3.8 GHz with a percentage BW of 53.3%. 

Figure 14 shows the calculated and measured gains for the proposed antenna. The 

measured ranges of the antenna gains were 0.8–1.9, 2–3.6, and 4.7–5.6 dBi in Band-I (2.2–

2.63 GHz), band-II (2.73–3.8 GHz), and band-III (5.13–6.3 GHz), respectively. Small vari-

ations were observed between calculated and test results for both bands, which can be 

attributed to possible cable effect and tolerance in measurement. 

Figure 15 shows the normalized radiation patterns at 2.4, 3.5, 5.2, and 5.8 GHz, re-

spectively. The difference between the simulated and experimental results was small. We 

can see that the proposed NTTPA showed good omnidirectional radiation property in 

the xoz plane and directional radiation property in the yoz plane. It is worth noting that 

the radiation direction of the antenna was very close at a different frequency, which is 

very conducive to the industrial application. The efficiency and front-to-back ratio plots 

are displayed in Figure 16 and Figure 17, respectively. Compared with the same tri-band 

antenna in the references, the S11 proposed in this paper is lower [19,20]. 

 

Figure 11. The physical picture of the proposed antenna. 

 

Figure 12. Calculated and experimental S11 of the proposed NTTPA. 

Transmitting 

antenna

Antenna under 

test

Foamed 

plastics

Figure 12. Calculated and experimental S11 of the proposed NTTPA.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 13. Calculated and experimental S11 of the proposed NTTPA. 

 

Figure 14. Calculated and experimental Gain of the proposed NTTPA. 

Band-I Band-II Band-III

2.2

2.63 2.73

3.8 5.13 6.3

Band-I Band-II Band-III

Figure 13. Calculated and experimental S11 of the proposed NTTPA.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 13 
 

 

 

Figure 13. Calculated and experimental S11 of the proposed NTTPA. 

 

Figure 14. Calculated and experimental Gain of the proposed NTTPA. 

Band-I Band-II Band-III

2.2

2.63 2.73

3.8 5.13 6.3

Band-I Band-II Band-III

Figure 14. Calculated and experimental Gain of the proposed NTTPA.



Electronics 2023, 12, 1081 10 of 12Electronics 2023, 12, x FOR PEER REVIEW 11 of 13 
 

 

-50

-40

-30

-20

-10

0
30

60

90

120

150

180

210

240

270

300

330

360

-50

-40

-30

-20

-10

0

YOZ-plane

-50

-40

-30

-20

-10

0
30

60

90

120

150

180

210

240

270

300

330

360

-50

-40

-30

-20

-10

0

XOZ-plane

(a)

-70

-60

-50

-40

-30

-20

-10

0 30

60

90

120

150

180

210

240

270

300

330

360

-70

-60

-50

-40

-30

-20

-10

0

 

-50

-40

-30

-20

-10

0
30

60

90

120

150

180

210

240

270

300

330

360

-50

-40

-30

-20

-10

0

 

XOZ-plane YOZ-plane

(b)

-50

-40

-30

-20

-10

0
30

60

90

120

150

180

210

240

270

300

330

360

-50

-40

-30

-20

-10

0

XOZ-plane

-50

-40

-30

-20

-10

0
30

60

90

120

150

180

210

240

270

300

330

360

-50

-40

-30

-20

-10

0

YOZ-plane

(c)

-50

-40

-30

-20

-10

0
0

30

60

90

120

150

180

210

240

270

300

330

-50

-40

-30

-20

-10

0

-50

-40

-30

-20

-10

0
0

30

60

90

120

150

180

210

240

270

300

330

-50

-40

-30

-20

-10

0

XOZ-plane YOZ-plane

(d)
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Figure 17. Front-to-back ratio of the proposed antenna. 

5. Conclusions 

A novel tuning fork-shaped tri-band planar antenna (NTTPA) for LTE (2.3/3.8-GHz), 

WLAN (2.4/5.2/5.8-GHz), and WiMAX (2.5/3.5/5.5-GHz) applications has been success-

fully reported with a compact size of 45 mm × 40 mm. The evolution of achieving this 

proposed antenna has been discussed in detail. The antenna mentioned in this paper can 

keep good performance in three frequency bands while realizing the miniaturization of 

its size. It has a wide bandwidth and a high gain, relatively. Besides exhibiting desirable 

impedance BW and overall size, the proposed antenna has also shown very stable radia-

tion patterns across the three bands of interest, which is suitable for wireless communi-

cation applications. At the same time, it also provides useful inspiration for 5G antenna 

designs. Work can be performed in the future to further realize miniaturization. 
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5. Conclusions

A novel tuning fork-shaped tri-band planar antenna (NTTPA) for LTE (2.3/3.8-GHz),
WLAN (2.4/5.2/5.8-GHz), and WiMAX (2.5/3.5/5.5-GHz) applications has been success-
fully reported with a compact size of 45 mm × 40 mm. The evolution of achieving this
proposed antenna has been discussed in detail. The antenna mentioned in this paper can
keep good performance in three frequency bands while realizing the miniaturization of
its size. It has a wide bandwidth and a high gain, relatively. Besides exhibiting desirable
impedance BW and overall size, the proposed antenna has also shown very stable radiation
patterns across the three bands of interest, which is suitable for wireless communication
applications. At the same time, it also provides useful inspiration for 5G antenna designs.
Work can be performed in the future to further realize miniaturization.
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