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1 National Institute of Applied Sciences and Technology, Tunis 625 00, Tunisia
2 Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno-Královo Pole,

616 00 Brno, Czech Republic
3 Faculty of Military Technology, University of Defence, Brno-Střed, 662 10 Brno, Czech Republic
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Abstract: In this communication, artificial neural networks are used to estimate the initial structure
of a multiband planar antenna. The neural networks are trained on a set of selected normalized
multiband antennas characterized by time-efficient modal analysis with limited accuracy. Using the
Deep Learning Toolbox in Matlab, several types of neural networks have been created and trained
on the sample planar multiband antennas. In the neural network learning process, suitable network
types were selected for the design of these antennas. The trained networks, depending on the desired
operating bands, will select the appropriate antenna geometry. This is further optimized using
Newton’s method in HFSS. The use of the neural pre-design concept speeds up and simplifies the
design of multiband planar antennas. The findings presented in this paper will be used to refine and
accelerate the design of planar multiband antennas.

Keywords: multi-band antennas; feed-forward neural network; cascade-forward neural network;
probabilistic neural network; full-wave analysis

1. Introduction

When designing a conventional multi-band planar antenna, a proper patch geometry
has to be selected to obtain resonant frequencies in the requested operational bands [1]. In
the next step, a full-wave numerical model of the antenna is developed in an electromag-
netic simulator, and the model is optimized to meet the required parameters of the antenna
as accurately as possible.

A proper antenna geometry is selected by a designer experienced with it. In this
communication, we train artificial neural networks (ANN) to represent the designer’s
experience. ANNs are trained on a set of normalized multi-band antennas characterized
by modal analysis, which efficiently produces approximate training patterns. The modal
analysis itself and the way of creating training sets are described in Section 2.1.

When designing a planar antenna on a prescribed substrate for requested operation
bands, normalization related to the wavelength in the substrate is performed, and normal-
ized resonant frequencies are mapped by ANN to the optimum antenna geometry. For
mapping, three types of ANN are used:

• Feed-forward back-propagation ANN [2].
• Cascade-forward back-propagation ANN [3].
• Probabilistic ANN [4].

In Section 2.2, ANN are briefly introduced, and the process of their training is described.
In Section 3, we present a design example to illustrate the functionality of the neural

pre-design. Section 4 concludes the paper.
In the open literature, several papers on an ANN-enhanced antenna design have been

published. The papers cover the following topics:
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• On-line neural synthesis of radiation patterns. In an article about the design of a
cognitive antenna array [5], the radiation pattern of a conformal patch array has been
adapted to a complex environment by a proper phasing of elements. A used deep
reinforcement learning was based on an on-line network, which updated parameters
for training, and a target network, which calculated the loss function exploiting data
from an experience pool. In a paper investigating the synthesis of conformal phased
array antenna (PAA) patterns using deep synthesis [6], the on-line ANN and the target
ANN created a tandem network structure that minimized the difference between the
requested pattern and the current one.

In the described approaches, antenna geometries are fixed, and input signals are
optimized to reach requested radiation patterns. In this communication, the neural network
selects the optimum shape of the patch to form the optimum current distribution related to
multiple resonances in the requested operational bands.

• Black-box modeling of antenna structures. Computer processing unit (CPU)-time
moderate ANNs are trained to approximate the results of CPU-time expansive full-
wave analysis over a limited definition space. This approach can be applied both to
canonical structures [7] and advanced ones. A patch antenna with a ground plane
defected by split-ring resonators was modeled by a multi-layer perceptron and opti-
mized by a particle swarm algorithm in [8]. A high-gain quasi-Yagi antenna with a
parabolic reflector was modeled by a pyramidal deep regression network in [9].

For multi-physics modeling of microwave filters, the authors used a deep hybrid
neural network [10]. The network was conceived as a cascade of ANNs with different
parameters. For resonant structures like filters, this modeling approach was shown to
be beneficial.

Neural black-box models usually face the problem of sufficient generality and accept-
able accuracy being reached with reasonable efforts [11]. A sufficiently general model
should cover a sufficiently large definition space of an optimum dimension, which is
given by the number of state variables. A sufficiently accurate model usually requires
time-expansive simulations of training patterns.

In order to overcome these difficulties, we propose an approximate classifier that
maps normalized operation frequencies to the optimum layout of an antenna element.
The definition space is reduced by working with normalized frequencies and dimensions,
and the CPU time needed to create training sets is minimized by using a time-moderate
modal analysis. If the pre-designed structure is sufficiently accurate, then conventional
local optimization can be quick and inexpensive.

• Antenna design by ANN and optimizer. If the efficient and accurate black-box model
is completed by an optimization algorithm, a simple design tool can be developed.
In [12], a patch is divided into pixels. The shape of the patch is synthesized by
combining a convolutional ANN in the role of a forward model (geometry at the input
and performance at the output) and a genetic algorithm in the role of the optimizer.

The described approach can be used even for a multi-objective design of antennas.
In [13], a deep neural model was combined with Thomson sampling for efficient multi-
objective optimization to reveal the Pareto front of optimal solutions.

In [14], planar ultra-wideband antennas were designed by combining deep structures
(the cascade of an extreme learning machine, a deep belief network, and a restricted
Boltzmann machine) and a particle swarm optimization as a global optimizer.

Since properly trained ANNs can provide the response very quickly (only a few
arithmetic operations are needed to be executed in parallel), neural models are advan-
tageous when combined with evolutionary algorithms [15,16], swarm-intelligence ap-
proaches [17,18], and other CPU-time expensive global optimizers. But the question of the
development of a sufficiently general and sufficiently accurate neural model remains.

The approach presented in this communication is based on neural classifiers. A pure
classification of planar microwave filters was presented in [19]. At the input of a deep
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network, a bitmap with a photo of the filter was introduced. ANN classified the filter as a
low-pass or band-pass one and determined the order of the filter.

In [20], the classifier considered the requested gain, impedance bandwidth, and opera-
tion frequency and selected among a patch antenna, a spiral antenna, or a horn antenna.
Then, the selected antenna was designed by an inverse neural model that mapped re-
quested antenna parameters to antenna dimensions. Antenna geometries were given, and
dimensions were computed.

In the presented approach, the operational frequencies of a planar multiband antenna
are mapped by the trained neural network to the optimum normalized geometry of the
patch. Consecutively, the selected geometry is modeled in the High Frequency Structure
Simulator (HFSS) and optimized by the Newton algorithm. Thanks to the successful pre-
design, the local optimization is sufficient, and a low number of iteration steps is required.

This provides further acceleration of the antenna structure design. According to our
knowledge, the described exploitation of ANN for the antenna pre-design has not been
presented in the open literature yet.

2. Methods

We intend to create an efficient tool for the design of planar multi-band antennas.
In order to ensure a sufficient design efficiency, we use a classifier for the selection of an
optimal normalized antenna geometry, which is the first step. Second, the geometry is
denormalized, taking into account the wavelength of the used substrate, and a full-wave
HFSS model is developed. Finally, the model is optimized by the local Newton optimizer
in a few steps.

In the following paragraphs, the individual design steps are described in detail.

2.1. Training Sets by Modal Analysis

The normalized antenna geometries consider an air substrate with the dielectric
constant εr = 1, negligible loss tan δ = 0, and a thickness of h = 1 mm. Since the corresponding
wavelength is λ0 = 300 mm, we create a set of slotted patches with the fundamental
dimension 150 mm × 150 mm.

Geometries of training patterns are depicted in Figure 1, with pixel dimensions of
5 mm × 5 mm. The green pixels represent metallization (a perfect electric conductor in
an approximation, a standard copper foil in an implementation), and the white pixels
represent an uncovered substrate.

The size of the patch is fixed at 30 × 30 pixels except for the extended patch antenna
(Figure 1b). The width of slots is fixed at 1 pixel, except for the square slot (Figure 1i).

Training geometries are going to cover the most important mechanisms of exciting
multi-band behavior:

• The conventional patch (Figure 1a) plays the role of reference. The multi-band behavior
corresponds to the higher modes of the patch. The extended patch antenna (Figure 1b)
can be understood as a conventional patch with a capacitive prolongation [21].

• The L-slot antenna (Figure 1c) represents patches with a two-segment slot that breaks
the patch edge into two parts. The currents in both sub-areas of the patch are galvani-
cally connected [21].

• The U-slot antenna (Figure 1d) represents patches with a three-segment slot that
breaks the patch edge into two parts. The currents in both sub-areas of the patch are
separated [21].

• The T-slot antenna (Figure 1e) can be understood as a folded slot dipole fed by a
coplanar waveguide (CPW) [22]. A magnetic current flowing in the slot loop is the
source of the radiation.
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Each layout was modeled in the partial differential equation (PDE) tool of MATLAB [26]: 
• Metallic parts of the layout were enclosed by Neumann boundary conditions. 
• The solver was set to evaluate eigenmodes. 

Figure 1. Training geometries of normalized multi-band patches: (a) conventional patch, (b) extended
patch, (c) L-slot patch, (d) U-slot patch, (e) T-slot patch, (f) double U-slot patch, (g) G-slot patch,
(h) H-slot patch, and (i) square-slot patch. Pixel dimensions: 5 mm × 5 mm. Green: conductive
surface; white: uncovered substrate.

The double-U antenna, the G antenna, and the H antenna are patches with slots inside
the antenna element. These slots directly influence the current distribution on the patch
and the multiband behavior of the patch. The double-U antenna (Figure 1f) consists of a
large radiator (the whole patch) and a small one (the area inside slots), which define two
operational bands [21]. The G antenna (Figure 1g) divides the patch into an internal area
and two external ones, potentially offering a triple-band operation [23]. In the case of a
non-symmetrically located non-symmetrical H slot (Figure 1h), more than three bands can
be created [24]. Finally, a square slot (Figure 1i) creates the equivalent of a loop antenna [25].

With varying positions and dimensions of slots, 60 training layouts were created. Each
layout was modeled in the partial differential equation (PDE) tool of MATLAB [26]:

• Metallic parts of the layout were enclosed by Neumann boundary conditions.
• The solver was set to evaluate eigenmodes.
• Eigenvalues were considered within the interval <0; 5 × 104>.
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Since eigenvalues are equal to the squared wave number, the operational frequencies
of antennas can be evaluated according to [27]:

fn =
c

2π

√
an (1)

where fn is the n-th resonant frequency of the antenna, corresponding to the n-th eigenvalue
an computed by the PDE tool, and c is the velocity of light in vacuum.

The numerical model of the G-slot patch is depicted in Figure 2. Boundaries (black
lines) are associated with the Neumann boundary condition. The dimensions of the patch
are fixed. Position and dimensions of the slot are varied by changing the coordinates of
polygon vertices A through L.
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The three lowest modes computed by the PDE tool (Figure 3) were used to compose a
training pattern. Other training patterns were prepared in a similar way.
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As a result, we have 60 triplets of resonant frequencies for 60 patch layouts. Neural net-
works are trained to map triples of frequencies on the input to the index of a corresponding
patch layout on the output. Details are given in the next paragraph.

2.2. ANN and Training Process

We use neural networks to map triplets of resonant frequencies computed by the
modal analysis to the index of a corresponding patch layout. Hence, the networks have
three neurons in the input layer and a single neuron in the output layer. The input neurons
simply distribute signals to neurons in the hidden layer. The output neuron collects signals
from neurons in the hidden layer and processes the signal using the activation function [1].

In order to select optimal patch layouts, we used 3 ANNs from the Deep Learning
Toolbox of MATLAB [28]:

• Feed-forward back-propagation network. Input patterns are sequentially introduced
to input neurons, the ANN response is computed, and the difference (an error) between
the output and the response from the training set is evaluated. The error propagates
back to the input and changes the settings of neurons to minimize the error.

When implementing the network, we used TRAINLM as a training function, LEARNGND
as a learning function, MSE as a performance function, and TANSIG as an activation
function. Training details are given in Figure 4a.
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Figure 4. Training neural classifiers in the Deep Learning Toolbox of MATLAB: (a) feed-forward
back-propagation ANN; (b) cascaded-forward back-propagation ANN.

• A cascade-forward back-propagation network is similar to a feed-forward network,
but includes connections from the input and every previous layer to the following
layers. The network accommodates the nonlinear relationship between the input and
the output but does not eliminate the linear relationship in between.
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When implementing the network, we used TRAINSCG as a training function, LEARNGND
as a learning function, MSE as a performance function, and LOGSIG as an activation
function. Training details are given in Figure 4b.

• A probabilistic network contains radial neurons with a Gaussian activation function in
the hidden layer. The output layer sums contributions for each class of input patterns,
producing a vector of probabilities as the output. The transfer function of the output
layer picks the maximum of these probabilities and produces 1 for the corresponding
class. For other classes, 0 is produced.

When implementing the network, we used NEWPNN to create and train the ANN.
In order to test the quality of training, four antennas differing from training patterns

(Figure 5) were created and analyzed. Corresponding triplets of resonant frequencies were
introduced to the inputs, and ANN was asked to classify the optimum layout:

• Feed-forward ANN succeeded with 61.2%/59.3%/41.2%/61.4%;
• Cascaded-forward ANN succeeded with 63.2%/52.3%/40.0%/46.0%;
• The probabilistic ANN failed.
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Since the feed-forward back-propagation network showed the best performance, we
used this classifier in further tests.

3. Design Example

In order to demonstrate the functionality of the developed methodology, we designed
a three-band antenna covering wireless local area network (WLAN) channels:

• 802.11b/g/n/ax: f 1 = 2.4 GHz;
• 802.11y: f 2 = 3.6 GHz;
• 802.11j: f 3 = 4.9 GHz.
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The antenna should be designed for the substrate ARLON 25N with εr = 3.38, tan
δ = 0.0025, and a height h = 1.524 mm. Since the whole patch is assumed to be in the half-
wavelength resonance at f 1 = 2.40 GHz, we can evaluate the wavelength in the dielectrics
according to [27]:

λd =
c

fr
√

εr
(2)

where fr = 2.4 GHz, c is the velocity of light, and the dielectric constant equals to εr = 3.38.
Numerically, λd = 68 mm, and the scaling factor related to the neural model equals to
n = λd/λ0 = 68/300 = 0.227.

Introducing the triplet of normalized frequencies [2.4/2.4; 3.6/2.4; and 4.9/2.4] to the
input of the neural classifier, a G-slot antenna (Figure 2) is recommended as an optimum
structure. The size of the patch W × L was 150 mm × 150 mm in the neural model and
34.1 mm × 34.1 mm in the recomputed model.

The coordinates of the vertices A through L of the polygonal slot (Figure 2) produced
by the neural classifier are given in Table 1. The dimensions were recomputed using the
scale n = 0.227 (Table 1), and a numerical model in HFSS was developed (Figure 6).

Table 1. Coordinates of vertices in the polygonal G slot in the patch depicted in Figure 2. Comparison
of the neural model, the recomputed one, and the optimized one.

Neural Network Recomputed Optimized

A −70.0 25.0 −15.9 5.7 −13.4 4.7
B −60.0 25.0 −13.6 5.7 −11.6 4.7
C −60.0 65.0 −13.6 14.8 −11.6 13.3
D 0.0 65.0 0.0 14.8 0.5 13.3
E 0.0 0.0 0.0 0.0 0.5 −0.5
F −20.0 0.0 −4.5 0.0 −4.0 −0.5
G −20.0 5.0 −4.5 1.1 −4.0 0.6
H −5.0 5.0 −1.1 1.1 −0.6 0.6
I −5.0 60.0 −1.1 13.6 −0.6 12.1
J −55.0 60.0 −12.5 13.6 −10.5 12.1
K −55.0 20.0 −12.5 4.5 −10.5 3.5
L −70.0 20.0 −15.9 4.5 −13.4 3.5
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Figure 6. Numerical model of the G-slot antenna in HFSS. The patch is completed by a microstrip
feeder and the wave port.

In the numerical model, the patch was completed by a microstrip feeder and a wave
port (Figure 6). The antenna was simulated in the frequency range of 1.5 GHz–5.0 GHz. The
impedance characteristics (Figure 7a) showed that resonance frequencies are shifted.
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In a consequent step, Newton optimization was run to shift resonances towards the
requested bands. After the optimization, patch dimensions were 30 mm × 30 mm. The
vertices of the optimized slot polygon are given in Table 1. The impedance characteristics
of the optimized antenna are depicted in Figure 7b. Obviously:

• f 1 = 2.4 GHz is shifted to 2.5 GHz and is not sufficiently deep.
• f 2 = 3.6 GHz corresponds to a shallow minimum, while the deep one is at 3.5 GHz.
• f 3 = 4.9 GHz is tuned successfully with |S11| < −10 dB.

4. Results

In this communication, we trained artificial neural networks on the approximate results
of modal analysis. Neural models mapped a triplet of the lowest resonant frequencies
to the corresponding layout of a patch. In order to develop sufficiently general neural
models, antena structures were normalized. In total, 60 training patterns were created
using 9 antenna layouts.

In MATLAB’s Deep Learning Toolbox, we created a feed-forward ANN, a cascaded-
forward ANN, and a probabilistic ANN. On four antenna layouts, which were not included
in the training sets, the functionality of neural classifiers was tested. Whereas the proba-
bilistic ANN failed, the feed-forward ANN showed relatively good results.

Using the feed-forward ANN, we tried to design a triple-band antenna covering
WLAN bands 2.4 GHz, 3.6 GHz, and 4.9 GHz. The neural model returned a G-slot antenna
as an optimum structure. The normalized antenna was recomputed for the substrate
ARLON 25N, and a corresponding HFSS model was developed. Due to the shift of
resonant frequencies with respect to the requested ones, the antenna was optimized by the
Newton algorithm.

The optimized impedance characteristics are close to the requested ones, but the match
is not perfect. Obviously, the concept of multiband antenna predesign by neural classifiers
can work, but much more effort has to be devoted to the composition of a larger and more
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general training set comprising further families of antenna layouts. If sufficiently large
training sets are composed, advanced deep-learning techniques can be applied. This is an
intention for future work.
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